Search results for: street-level image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2697

Search results for: street-level image

1737 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment

Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri

Abstract:

Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.

Keywords: image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality

Procedia PDF Downloads 251
1736 Clustering Color Space, Time Interest Points for Moving Objects

Authors: Insaf Bellamine, Hamid Tairi

Abstract:

Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering

Procedia PDF Downloads 359
1735 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 77
1734 Toward a Methodology of Visual Rhetoric with Constant Reference to Mikhail Bakhtin’s Concept of “Chronotope”: A Theoretical Proposal and Taiwan Case Study

Authors: Hsiao-Yung Wang

Abstract:

This paper aims to elaborate methodology of visual rhetoric with constant reference to Mikhail Bakhtin’s concept of “chronotope”. First, it attempts to outline Ronald Barthes, the most representative scholar of visual rhetoric and structuralism, perspective on visual rhetoric and its time-space category by referring to the concurrent word-image, the symbolic systematicity, the outer dialogicity. Second, an alternative approach is explored for grasping the dynamics and functions of visual rhetoric by articulating Mikhail Bakhtin’s concept of “chronotope.” Furthermore, that visual rhetorical consciousness could be identified as “the meaning parabola which projects from word to image,” “the symbolic system which proceeds from sequence to disorder,” “the ideological environment which struggles from the local to the global.” Last but not least, primary vision of the 2014 Taipei LGBT parade would be analyzed preliminarily to evaluate the effectiveness and persuasiveness embodied by specific visual rhetorical strategies. How Bakhtin’s concept of “chronotope” to explain the potential or possible ideological struggle deployed by visual rhetoric might be interpreted empirically and extensively.

Keywords: barthes, chronotope, Mikhail Bakhtin, Taipei LGBT parade, visual rhetoric

Procedia PDF Downloads 454
1733 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 452
1732 Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, inclination, analyzed, carbon

Procedia PDF Downloads 39
1731 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network

Authors: Asmau Mukhtar Ahmed, Olga Duran

Abstract:

Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.

Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image

Procedia PDF Downloads 95
1730 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems

Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash

Abstract:

The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.

Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture

Procedia PDF Downloads 95
1729 Overcoming Mistrusted Masculinity: Analyzing Muslim Men and Their Aspirations for Fatherhood in Denmark

Authors: Anne Hovgaard Jorgensen

Abstract:

This study investigates how Muslim fathers in Denmark are struggling to overcome notions of mistrust from teachers and educators. Starting from school-home-cooperation (parent conferences, school-home communication, etc.), the study finds that many Muslim fathers do not feel acknowledged as a resource in the upbringing of their children. To explain these experiences further, the study suggest the notion of ‘mistrusted masculinity’ to grasp the controlling image these fathers meet in various schools and child-care-institutions in the Danish Welfare state. The paper is based on 9 months of fieldwork in a Danish school, a social housing area and in various ‘father groups’ in Denmark. Additional, 50 interviews were conducted with fathers, children, mothers, schoolteachers, and educators. By using Connell's concepts 'hegemonic' and 'marginalized' masculinity as steppingstones, the paper argues that these concepts might entail a too static and dualistic picture of gender. By applying the concepts of 'emergent masculinity' and 'emergent fatherhood' the paper brings along a long needed discussion of how Muslim men in Denmark are struggling to overcome and change the controlling images of them as patriarchal and/or ignorant fathers regarding the upbringing of their children. As such, the paper shows how Muslim fathers are taking action to change this controlling image, e.g. through various ‘father groups’. The paper is inspired by the phenomenological notions of ‘experience´ and in the light of this notion, the paper tells the fathers’ stories about their upbringing of their children and aspirations for fatherhood. These stories share light on how these fathers take care of their children in everyday life. The study also shows that the controlling image of these fathers have affected how some Muslim fathers are actually being fathers. The study shows that fear of family-interventions from teachers or social workers e.g. have left some Muslim fathers in a limbo, being afraid of scolding their children, and being confused of ‘what good parenting in Denmark is’. This seems to have led to a more lassie fair upbringing than these fathers actually wanted. This study is important since anthropologists generally have underexposed the notion of fatherhood, and how fathers engage in the upbringing of their children. Over more, the vast majority of qualitative studies of fatherhood have been on white middleclass fathers, living in nuclear families. In addition, this study is crucial at this very moment due to the major refugee crisis in Denmark and in the Western world in general. A crisis, which has resulted in a vast number of scare campaigns against Islam from different nationalistic political parties, which enforces the negative controlling image of Muslim fathers.

Keywords: fatherhood, Muslim fathers, mistrust, education

Procedia PDF Downloads 172
1728 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 63
1727 Extraction of Urban Building Damage Using Spectral, Height and Corner Information

Authors: X. Wang

Abstract:

Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.

Keywords: building damage, corner, earthquake, height, very high resolution (VHR)

Procedia PDF Downloads 196
1726 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.

Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding

Procedia PDF Downloads 114
1725 Non-Invasive Imaging of Tissue Using Near Infrared Radiations

Authors: Ashwani Kumar Aggarwal

Abstract:

NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.

Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering

Procedia PDF Downloads 298
1724 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 39
1723 Mythical Geography, Collective Imaginary and Spiritual Patrimony in the Romanian Carpathians: A Tourist Image Component

Authors: Cosmin-Gabriel Porumb-Ghiurco, Dumitrana Fiț-Iordache, Szőke Árpád

Abstract:

The literature incorporating geographical or tourist-geographical themes and explicit references to the Carpathian area is extremely abundant. Through this paper, we attempt to “undermine” the traditional, tourist-geographical approaches of the Carpathian Arch by targeting an aspect often regarded as marginal but which, if examined, even only empirically, takes the form of a vast problem with multidisciplinary vocation. Therefore, we propose a more extravagant yet pro-touristic approach to the Romanian Carpathian geo-space. Consequently, the explicit goal of this approach consists precisely in broadening the multidisciplinary, essentially geographic scope of the research, the vision and mental representation of the Carpathian area by advancing a lever that would symbolize a different kind of unification between geography and tourism on a more intimate, subtle, mythological and archetypal level. The spiritual and mercantile dimensions of the tourism field in general and of the local Carpathian tourism can meld harmoniously together in order to create a common territorial reality of referral and favorable perspectives for the consolidation of their symbiotic relationship.

Keywords: tourist image, mythical geography, collective imaginary, spiritual patrimony, Carpathians

Procedia PDF Downloads 79
1722 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration

Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef

Abstract:

Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.

Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab

Procedia PDF Downloads 365
1721 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 251
1720 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 359
1719 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 487
1718 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 121
1717 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques

Authors: Elizabeth Malebogo Mosepele

Abstract:

Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.

Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation

Procedia PDF Downloads 411
1716 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri

Authors: Shishay T. Kidanu

Abstract:

The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.

Keywords: ERT, Karst, MASW, sinkhole

Procedia PDF Downloads 197
1715 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate

Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout

Abstract:

The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.

Keywords: impinging jet, coherent structures, SPIV, aeroacoustics

Procedia PDF Downloads 65
1714 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 91
1713 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 75
1712 A Cognitive Semantic Analysis of the Metaphorical Extensions of Come out and Take Over

Authors: Raquel Rossini, Edelvais Caldeira

Abstract:

The aim of this work is to investigate the motivation for the metaphorical uses of two verb combinations: come out and take over. Drawing from cognitive semantics theories, image schemas and metaphors, it was attempted to demonstrate that: a) the metaphorical senses of both 'come out' and 'take over' extend from both the verbs and the particles central (spatial) senses in such verb combinations; and b) the particles 'out' and 'over' also contribute to the whole meaning of the verb combinations. In order to do so, a random selection of 579 concordance lines for come out and 1,412 for take over was obtained from the Corpus of Contemporary American English – COCA. One of the main procedures adopted in the present work was the establishment of verb and particle central senses. As per the research questions addressed in this study, they are as follows: a) how does the identification of trajector and landmark help reveal patterns that contribute for the identification of the semantic network of these two verb combinations?; b) what is the relationship between the schematic structures attributed to the particles and the metaphorical uses found in empirical data?; and c) what conceptual metaphors underlie the mappings from the source to the target domains? The results demonstrated that not only the lexical verbs come and take, but also the particles out and over play an important whole in the different meanings of come out and take over. Besides, image schemas and conceptual metaphors were found to be helpful in order to establish the motivations for the metaphorical uses of these linguistic structures.

Keywords: cognitive linguistics, English syntax, multi-word verbs, prepositions

Procedia PDF Downloads 134
1711 Multiplayer Game System for Therapeutic Exercise in Which Players with Different Athletic Abilities Can Participate on an Even Competitive Footing

Authors: Kazumoto Tanaka, Takayuki Fujino

Abstract:

Sports games conducted as a group are a form of therapeutic exercise for aged people with decreased strength and for people suffering from permanent damage of stroke and other conditions. However, it is difficult for patients with different athletic abilities to play a game on an equal footing. This study specifically examines a computer video game designed for therapeutic exercise, and a game system with support given depending on athletic ability. Thereby, anyone playing the game can participate equally. This video-game, to be specific, is a popular variant of balloon volleyball, in which players hit a balloon by hand before it falls to the floor. In this game system, each player plays the game watching a monitor on which the system displays tailor-made video-game images adjusted to the person’s athletic ability, providing players with player-adaptive assist support. We have developed a multiplayer game system with an image generation technique for the tailor-made video-game and conducted tests to evaluate it.

Keywords: therapeutic exercise, computer video game, disability-adaptive assist, tailor-made video-game image

Procedia PDF Downloads 536
1710 How Cultural Tourists Perceive Authenticity in World Heritage Historic Centers: An Empirical Research

Authors: Odete Paiva, Cláudia Seabra, José Luís Abrantes, Fernanda Cravidão

Abstract:

There is a clear ‘cult of authenticity’, at least in modern Western society. So, there is a need to analyze the tourist perception of authenticity, bearing in mind the destination, its attractions, motivations, cultural distance, and contact with other tourists. Our study seeks to investigate the relationship among cultural values, image, sense of place, perception of authenticity and behavior intentions at World Heritage Historic Centers. From a theoretical perspective, few researches focus on the impact of cultural values, image and sense of place on authenticity and intentions behavior in tourists. The intention of this study is to help close this gap. A survey was applied to collect data from tourists visiting two World Heritage Historic Centers – Guimarães in Portugal and Cordoba in Spain. Data was analyzed in order to establish a structural equation model (SEM). Discussion centers on the implications of model to theory and managerial development of tourism strategies. Recommendations for destinations managers and promoters and tourist organizations administrators are addressed.

Keywords: authenticity perception, behavior intentions, cultural tourism, cultural values, world heritage historic centers

Procedia PDF Downloads 289
1709 Efficient Storage and Intelligent Retrieval of Multimedia Streams Using H. 265

Authors: S. Sarumathi, C. Deepadharani, Garimella Archana, S. Dakshayani, D. Logeshwaran, D. Jayakumar, Vijayarangan Natarajan

Abstract:

The need of the hour for the customers who use a dial-up or a low broadband connection for their internet services is to access HD video data. This can be achieved by developing a new video format using H. 265. This is the latest video codec standard developed by ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) on April 2013. This new standard for video compression has the potential to deliver higher performance than the earlier standards such as H. 264/AVC. In comparison with H. 264, HEVC offers a clearer, higher quality image at half the original bitrate. At this lower bitrate, it is possible to transmit high definition videos using low bandwidth. It doubles the data compression ratio supporting 8K Ultra HD and resolutions up to 8192×4320. In the proposed model, we design a new video format which supports this H. 265 standard. The major areas of applications in the coming future would lead to enhancements in the performance level of digital television like Tata Sky and Sun Direct, BluRay Discs, Mobile Video, Video Conferencing and Internet and Live Video streaming.

Keywords: access HD video, H. 265 video standard, high performance, high quality image, low bandwidth, new video format, video streaming applications

Procedia PDF Downloads 342
1708 Smartphone Photography in Urban China

Authors: Wen Zhang

Abstract:

The smartphone plays a significant role in media convergence, and smartphone photography is reconstructing the way we communicate and think. This article aims to explore the smartphone photography practices of urban Chinese smartphone users and images produced by smartphones from a techno-cultural perspective. The analysis consists of two types of data: One is a semi-structured interview of 21 participants, and the other consists of the images created by the participants. The findings are organised in two parts. The first part summarises the current tendencies of capturing, editing, sharing and archiving digital images via smartphones. The second part shows that food and selfie/anti-selfie are the preferred subjects of smartphone photographic images from a technical and multi-purpose perspective and demonstrates that screenshots and image texts are new genres of non-photographic images that are frequently made by smartphones, which contributes to improving operational efficiency, disseminating information and sharing knowledge. The analyses illustrate the positive impacts between smartphones and photography enthusiasm and practices based on the diffusion of innovation theory, which also makes us rethink the value of photographs and the practice of ‘photographic seeing’ from the screen itself.

Keywords: digital photography, image-text, media convergence, photographic- seeing, selfie/anti-selfie, smartphone, technological innovation

Procedia PDF Downloads 334