Search results for: peak frequency
4288 Cardiorespiratory Fitness and the Cardiometabolic Profile in Inactive Obese Postmenopausal Women: A MONET Study
Authors: Ahmed Ghachem, Johann Colomba, Denis Prud'homme, Martin Brochu
Abstract:
Background: Inactive obese postmenopausal women, are at greater risk for metabolic complications. On the other hand, high levels of cardiorespiratory fitness (CRF) are associated with a lower risk of metabolic complications. Objective: To compare inactive obese postmenopausal women displaying ‘lower’ vs ‘higher’ levels of CRF for body composition, metabolic profile, inflammatory profile and measures of energy expenditure. Methods: 132 women (age: 57.6 ± 4.8 yrs; BMI: 32.3 ± 4.6 kg/m2; Peak VO2: 17.81 ± 3.02 ml O2•kg-1•min-1) were studied. They were first divided into tertiles based on their CRF. Then, women in the first (< 16.51 ml O2•min-1•kg-1) and second tertiles (16.51 to 19.22 ml O2•min-1•kg-1) were combined (N= 88), and compared with those in the third tertile (> 19.22 ml O2•min-1•kg-1) (N= 44). Variables of interest were: Peak VO2 (stationary bike), body composition (DXA), body fat distribution (CT scan), glucose homeostasis (fasting state and euglycemic/ hyperinsulinemic clamp), fasting lipids, resting blood pressure, inflammatory profile and energy expenditure (DLW). Results: Both CRF groups (lower= 16.0 ± 2.0 ml O2•kg-1•min-1 vs higher= 21.2 ± 1.7 ml O2•kg-1•min-1; p < 0.001) were similar for age. Significant differences were observed between groups for body composition; with lower values for body weight, BMI, fat mass and visceral fat in women with higher CRF (p between 0.001 and 0.005). Also, women with higher CRF had lower values for fasting insulin (13.4 ± 4.5 vs 15.6 ± 6.6 μU/ml; p = 0.03) and CRP levels (2.31 ± 1.97 vs 3.83 ± 3.24 mg/liter; p = 0.001); and higher values for glucose disposal (6.71 ± 1.78 vs 5.92 ± 1.67 mg/kg/min; p = 0.01). However, these differences were no longer significant after controlling for visceral adipose tissue accumulations. Finally, no significant difference was observed between groups for the other variables of interest. Conclusion: Our results suggest that, among inactive overweight/obese postmenopausal women, those with higher CRF levels have a better metabolic profile; which is caused by lower visceral fat accumulations.Keywords: cardiorespiratory fitness, metabolic profile, menopause, obesity
Procedia PDF Downloads 2664287 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links
Authors: Ahmed Bakry, Moustafa Ahmed
Abstract:
We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.Keywords: bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser
Procedia PDF Downloads 6444286 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components
Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar
Abstract:
Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum
Procedia PDF Downloads 1314285 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique
Authors: Mohamed O. Babana
Abstract:
In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation
Procedia PDF Downloads 4254284 Load Comparison between Different Positions during Elite Male Basketball Games: A Sport Metabolomics Approach
Authors: Kayvan Khoramipour, Abbas Ali Gaeini, Elham Shirzad, Øyvind Sandbakk
Abstract:
Basketball has different positions with individual movement profiles, which may influence metabolic demands. Accordingly, the present study aimed to compare the movement and metabolic load between different positions during elite male basketball games. Five main players of 14 teams (n = 70), who participated in the 2017-18 Iranian national basketball leagues, were selected as participants. The players were defined as backcourt (Posts 1-3) and frontcourt (Posts 4-5). Video based time motion analysis (VBTMA) was performed based on players’ individual running and shuffling speed using Dartfish software. Movements were classified into high and low intensity running with and without having the ball, as well as high and low-intensity shuffling and static movements. Mean frequency, duration, and distance were calculated for each class, except for static movements where only frequency was calculated. Saliva samples were collected from each player before and after 40-minute basketball games and analyzed using metabolomics. Principal component analysis (PCA) and Partial least square discriminant analysis (PLSDA) (for metabolomics data) and independent T-tests (for VBTMA) were used as statistical tests. Movement frequency, duration, and distance were higher in backcourt players (all p ≤ 0.05), while static movement frequency did not differ. Saliva samples showed that the levels of Taurine, Succinic acid, Citric acid, Pyruvate, Glycerol, Acetoacetic acid, Acetone, and Hypoxanthine were all higher in backcourt players, whereas Lactate, Alanine, 3-Metyl Histidine, and Methionine were higher in frontcourt players Based on metabolomics, we demonstrate that backcourt and frontcourt players have different metabolic profiles during games, where backcourt players move clearly more during games and therefore rely more on aerobic energy, whereas frontcourt players rely more on anaerobic energy systems in line with less dynamic but more static movement patterns.Keywords: basketball, metabolomics, saliva, sport loadomics
Procedia PDF Downloads 1164283 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems
Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance
Procedia PDF Downloads 3354282 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing
Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare
Abstract:
Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell
Procedia PDF Downloads 774281 Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure
Authors: Hamed Belloumi, Amira Zouaoui, Ferid kourda
Abstract:
A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels.Keywords: planar transformer, finite-element analysis, winding losses, planar Litz wire
Procedia PDF Downloads 4044280 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol
Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska
Abstract:
Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise
Procedia PDF Downloads 804279 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models
Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun
Abstract:
Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).Keywords: generalized linear models, risk factor, pure premium, regression model
Procedia PDF Downloads 4664278 Designing of a Micromechanical Gyroscope with Enhanced Bandwidth
Authors: Bator Shagdyrov, Elena Zorina, Tamara Nesterenko
Abstract:
The aim of the research was to develop a design of micromechanical gyroscope, which will be used in the automotive industry, safety systems and anti-lock braking system. The research resulted in improvement of one of the technical parameters – bandwidth. In the process of mass production of micromechanical sensors, problems occurred with their use. One of the problems was a narrow bandwidth typical for the gyroscopes with a high-quality factor. A constructive way of increasing bandwidth is to use multimass systems via secondary oscillations axis. When constructing, the main task was to choose the frequency - phases and antiphases as close to each other as possible, and set the frequency of the primary oscillation evenly between them. Investigations are carried out using the T-Flex CAD finite element program and T-Flex ANALYSIS support package. The results obtained are planned to use in the future for the production of an experimental model of development and testing in practice of characteristics derived by theoretical means.Keywords: bandwidth, inertial mass, mathematical model, micromechanical gyroscope, micromechanics
Procedia PDF Downloads 2604277 The Use of Relaxation Training in Special Schools for Children With Learning Disabilities
Authors: Birgit Heike Spohn
Abstract:
Several authors (e.g., Krowatschek & Reid, 2011; Winkler, 1998) pronounce themselves in favor of the use of relaxation techniques in school because those techniques could help children to cope with stress, improve power of concentration, learning, and social behavior as well as class climate. Children with learning disabilities might profit from those techniques in a special way because they contribute to improved learning behavior. There is no study addressing the frequency of the use of relaxation techniques in special schools for children with learning disabilities in German speaking countries. The paper presents a study in which all teachers of special schools for children with learning disabilities in a district of South Germany (n = 625) were questioned about the use of relaxation techniques in school using a standardized questionnaire. Variables addressed were the use of these techniques in the classroom, aspects of their use (kind of relaxation technique, frequency, and regularity of their use), and potential influencing factors. The results are discussed, and implications for further research are drawn.Keywords: special education, learning disabilities, relaxation training, concentration
Procedia PDF Downloads 1084276 Climate Change and Perceived Socialization: The Role of Parents’ Climate Change Coping Style and Household Communication
Authors: Estefanya Vazquez-Casaubon, Veroline Cauberghe, Dieneke Van de Sompel, Hayley Pearce
Abstract:
Working together to reduce the anthropogenic impact should be a collective action, including effort within the household. In the matter, children are considered to have an important role in influencing the household to reduce the environmental impact through reversed socialization where children motivate and increase the concern of the parents towards environmental protection. Previous studies reveal that communication between parents and kids is key for effective reversed socialization. However, multiple barriers have been identified in the literature, such as the acceptance of the influence from the kids, the properties of the communication, among other factors. Based on the previous evidence, the present study aims to assess barriers and facilitators of communication at the household level that have an impact on reversed socialization. More precisely, the study examines how parents’ climate change coping strategy (problem-focused, meaning-focused, disregarding) influences the valence and the type of the communication related to climate change, and eventually the extent to which they report their beliefs and behaviours to be influenced by the pro-environmental perspectives of their children; i.e. reversed socialization. Via an online survey, 723 Belgian parents self-reported on communication about environmental protection and risk within their household (such as the frequency of exchange about topics related to climate change sourced from school, the household rules, imparting knowledge to the children, and outer factors like media or peer pressure, the emotional valence of the communication), their perceived socialization, and personal factors (coping mechanisms towards climate change). The results, using structural equation modelling, revealed that parents applying a problem-solving coping strategy related to climate change, appear to communicate more often in a positive than in a negative manner. Parents with a disregarding coping style towards climate change appear to communicate less often in a positive way within the household. Parents that cope via meaning-making of climate change showed to communicate less often in either a positive or negative way. Moreover, the perceived valence of the communication (positive or negative) influenced the frequency and type of household communication. Positive emotions increased the frequency of the communication overall. However, the direct effect of neither of the coping mechanisms on the reversed socialization was significant. High frequency of communication about the media, environmental views of the household members among other external topics had a positive impact on the perceived socialization, followed by discussions school-related; while parental instructing had a negative impact on the perceived socialization. Moreover, the frequency of communication was strongly affected by the perceived valence of the communication (positive or negative). The results go in line with previous evidence that a higher frequency of communication facilitates reversed socialization. Hence the results outstand how the coping mechanisms of the parents can be either a facilitator when they cope via problem-solving, while parents that disregard might avert frequent communication about climate change at the household.Keywords: communication, parents’ coping mechanisms, environmental protection, household, perceived socialization
Procedia PDF Downloads 854275 Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber
Authors: Su Yi Ming, Hou Ying, Zou Guang Ping
Abstract:
Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves.Keywords: metal-net rubber vibration isolator, relative density, vibration level, wire diameter
Procedia PDF Downloads 3984274 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid
Authors: S. Levitsky, R. Bergman
Abstract:
Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.Keywords: elastic tube, sound propagation, temperature effect, viscoelastic liquid
Procedia PDF Downloads 4214273 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties
Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid
Abstract:
High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology
Procedia PDF Downloads 3134272 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems
Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber
Abstract:
In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition
Procedia PDF Downloads 2404271 Radio Frequency Energy Harvesting Friendly Self-Clocked Digital Low Drop-Out for System-On-Chip Internet of Things
Authors: Christos Konstantopoulos, Thomas Ussmueller
Abstract:
Digital low drop-out regulators, in contrast to analog counterparts, provide an architecture of sub-1 V regulation with low power consumption, high power efficiency, and system integration. Towards an optimized integration in the ultra-low-power system-on-chip Internet of Things architecture that is operated through a radio frequency energy harvesting scheme, the D-LDO regulator should constitute the main regulator that operates the master-clock and rest loads of the SoC. In this context, we present a D-LDO with linear search coarse regulation and asynchronous fine regulation, which incorporates an in-regulator clock generation unit that provides an autonomous, self-start-up, and power-efficient D-LDO design. In contrast to contemporary D-LDO designs that employ ring-oscillator architecture which start-up time is dependent on the frequency, this work presents a fast start-up burst oscillator based on a high-gain stage with wake-up time independent of coarse regulation frequency. The design is implemented in a 55-nm Global Foundries CMOS process. With the purpose to validate the self-start-up capability of the presented D-LDO in the presence of ultra-low input power, an on-chip test-bench with an RF rectifier is implemented as well, which provides the RF to DC operation and feeds the D-LDO. Power efficiency and load regulation curves of the D-LDO are presented as extracted from the RF to regulated DC operation. The D-LDO regulator presents 83.6 % power efficiency during the RF to DC operation with a 3.65 uA load current and voltage regulator referred input power of -27 dBm. It succeeds 486 nA maximum quiescent current with CL 75 pF, the maximum current efficiency of 99.2%, and 1.16x power efficiency improvement compared to analog voltage regulator counterpart oriented to SoC IoT loads. Complementary, the transient performance of the D-LDO is evaluated under the transient droop test, and the achieved figure-of-merit is compared with state-of-art implementations.Keywords: D-LDO, Internet of Things, RF energy harvesting, voltage regulators
Procedia PDF Downloads 1464270 Philosophy, Geometry, and Purpose in Islamic and Gothic Architecture as Two Religious-Based Styles
Authors: P. Nafisi Poor, P. Javid
Abstract:
Religion and divinity have always held important meaning to humans, and therefore it affects different aspects of life including art and architecture. Numerous works of art are related to religion whether supporting or denying it. Religion and religious scholars have influenced and changed art throughout history. This paper focuses on Islam and Christianity because these two religions have been the most discussed and most popular of all time, starting from the birth of Jesus to the arrival of Mohammad. Based on this popularity, these religions have influenced the arts and especially architecture. Islam on one hand changed Iranian and Arabian architecture and they applied it in different places around the world. From the appearance of Islam at 622 AD to this day, Islamic architecture has been evolving; however, one of the most important periods for this style was between 1501 AD and 1736 AD in Iran. Christianity, on the other hand, changed European architecture especially between 1150 AD and 1450 AD or the so-called "Gothic" era, which begins at medieval time and reaches its peak at International Gothic ages. At both of these periods, designing buildings based on spiritual concepts and divine statements reached its peak, and architects were considering God and religion as their center of attention. This article studies the focus on the religions of Islam and Christianity in terms of architecture and presents a general philosophy of both styles to comprehend the idea behind each one, followed by an analysis of their geometry and architectural aspects derived from the best examples, all to understand the purpose of each style and to realize, which one was more successful in reaching their purpose. Subsequently, a comprehensive review of each building is provided including 3D visualizations to help achieve the goal of the article. These studies can support diverse inquiries about both Islamic and Gothic architecture and can be used as a resource to support studies and research towards designing based on religion or for divine purposes.Keywords: architecture, Gothic, Islamic, religion
Procedia PDF Downloads 1404269 Prediction for DC-AC PWM Inverters DC Pulsed Current Sharing from Passive Parallel Battery-Supercapacitor Energy Storage Systems
Authors: Andreas Helwig, John Bell, Wangmo
Abstract:
Hybrid energy storage systems (HESS) are gaining popularity for grid energy storage (ESS) driven by the increasingly dynamic nature of energy demands, requiring both high energy and high power density. Particularly the ability of energy storage systems via inverters to respond to increasing fluctuation in energy demands, the combination of lithium Iron Phosphate (LFP) battery and supercapacitor (SC) is a particular example of complex electro-chemical devices that may provide benefit to each other for pulse width modulated DC to AC inverter application. This is due to SC’s ability to respond to instantaneous, high-current demands and batteries' long-term energy delivery. However, there is a knowledge gap on the current sharing mechanism within a HESS supplying a load powered by high-frequency pulse-width modulation (PWM) switching to understand the mechanism of aging in such HESS. This paper investigates the prediction of current utilizing various equivalent circuits for SC to investigate sharing between battery and SC in MATLAB/Simulink simulation environment. The findings predict a significant reduction of battery current when the battery is used in a hybrid combination with a supercapacitor as compared to a battery-only model. The impact of PWM inverter carrier switching frequency on current requirements was analyzed between 500Hz and 31kHz. While no clear trend emerged, models predicted optimal frequencies for minimized current needs.Keywords: hybrid energy storage, carrier frequency, PWM switching, equivalent circuit models
Procedia PDF Downloads 284268 Vibration Frequencies Analysis of Nanoporous Graphene Membrane
Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang
Abstract:
In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with different size under the SFSF and CFFF boundary conditions. The fundamental frequencies computed for the graphene layers without pore are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphene layers under the SFSF and CFFF boundary conditions, the frequencies decrease as the size of the nanopore increase. When the positions of the pore are symmetric with respect to the center of the graphene, the frequency of the zigzag pore graphene is higher than that of the armchair one.Keywords: atomic-scale finite element method, graphene, nanoporous, natural frequency
Procedia PDF Downloads 3624267 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4904266 Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications
Authors: M. Naimur Rahman, Mohammad Tariqul Islam, Mandeep Singh Jit Singh, Norbahiah Misran
Abstract:
This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band.Keywords: Ku-band antenna, microstrip antenna, psi-shaped antenna, satellite applications
Procedia PDF Downloads 3134265 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface
Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto
Abstract:
Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns
Procedia PDF Downloads 1294264 Comparison of FNTD and OSLD Detectors' Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data
Authors: M. R. Akbari, H. Yousefnia, A. Ghasemi
Abstract:
Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy.Keywords: comparison, FNTD and OSLD detectors response, light ion beams, Monte Carlo simulations
Procedia PDF Downloads 3434263 The Greek Version of the Southampton Nostalgia Scale: Psychometric Properties in Young Adults and Associations with Life Satisfaction, Positive and Negative Emotions, Time Perspective and Wellbeing
Authors: Eirini Petratou, Pezirkianidis Christos, Anastassios Stalikas
Abstract:
Nostalgia is characterized as a mental state of human’s emotional longing for the past that activates both positive and negative emotions. The bittersweet emotions that are activated by nostalgia aid psychological functions to humans and are depended on the type of stimuli that evoke nostalgia but also on the nostalgia activation context. In general, despite that nostalgia can be activated and experienced by all people; however, it differs both in terms of nostalgia experience but also nostalgia frequency. As a matter of fact, nostalgia experience along with nostalgia frequency differs according to the level of the nostalgia proneness. People with high nostalgia proneness tend to experience nostalgia more intensely and frequently than people with low nostalgia proneness. Nostalgia proneness is considered as a basic individual difference that affects the experience of nostalgia, and it can be measured by the Southampton Nostalgia Scale (SNS); a psychometric instrument that measures human’s nostalgia proneness consisting of seven questions that assess a person’s attitude towards nostalgia, the degree of experience or tendency to nostalgic feelings and the nostalgia frequency. In the current study, we translated, validated and calibrated the SNS in Greek population (N = 267). For the calibration process, we used several scales relevant to positive dimensions, such as life satisfaction, positive and negative emotions, time perspective and wellbeing. A confirmatory factor analysis revealed the factors that provide a good Southampton Nostalgia Proneness model fit for young adult Greek population.Keywords: nostalgia proneness, nostalgia, psychometric instruments, psychometric properties
Procedia PDF Downloads 1524262 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 2734261 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature
Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby
Abstract:
Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2-xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law (σac = σdc+Aωn). The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.Keywords: dielectric ceramics, dielectric constant, loss tangent, AC conductivity, impedance spectroscopy
Procedia PDF Downloads 4574260 A Corpus-Based Analysis of Japanese Learners' English Modal Auxiliary Verb Usage in Writing
Authors: S. Nakayama
Abstract:
For non-native English speakers, using English modal auxiliary verbs appropriately can be among the most challenging tasks. This research sought to identify differences in modal verb usage between Japanese non-native English speakers (JNNS) and native speakers (NS) from two different perspectives: frequency of use and distribution of verb phrase structures (VPS) where modal verbs occur. This study can contribute to the identification of JNNSs' interlanguage with regard to modal verbs; the main aim is to make a suggestion for the improvement of teaching materials as well as to help language teachers to be able to teach modal verbs in a way that is helpful for learners. To address the primary question in this study, usage of nine central modals (‘can’, ‘could’, ‘may’, ‘might’, ‘shall’, ‘should’, ‘will’, ‘would’, and ‘must’) by JNNS was compared with that by NSs in the International Corpus Network of Asian Learners of English (ICNALE). This corpus is one of the largest freely-available corpora focusing on Asian English learners’ language use. The ICNALE corpus consists of four modules: ‘Spoken Monologue’, ‘Spoken Dialogue’, ‘Written Essays’, and ‘Edited Essays’. Among these, this research adopted the ‘Written Essays’ module only, which is the set of 200-300 word essays and contains approximately 1.3 million words in total. Frequency analysis revealed gaps as well as similarities in frequency order. Specifically, both JNNSs and NSs used ‘can’ with the most frequency, followed by ‘should’ and ‘will’; however, usage of all the other modals except for ‘shall’ was not identical to each other. A log-likelihood test uncovered JNNSs’ overuse of ‘can’ and ‘must’ as well as their underuse of ‘will’ and ‘would’. VPS analysis revealed that JNNSs used modal verbs in a relatively narrow range of VPSs as compared to NSs. Results showed that JNNSs used most of the modals with bare infinitives or the passive voice only whereas NSs used the modals in a wide range of VPSs including the progressive construction and the perfect aspect, both of which were the structures where JNNSs rarely used the modals. Results of frequency analysis suggest that language teachers or teaching materials should explain other modality items so that learners can avoid relying heavily on certain modals and have a wide range of lexical items to reflect their feelings more accurately. Besides, the underused modals should be more stressed in the classroom because they are members of epistemic modals, which allow us to not only interject our views into propositions but also build a relationship with readers. As for VPSs, teaching materials should present more examples of the modals occurring in a wide range of VPSs to help learners to be able to express their opinions from a variety of viewpoints.Keywords: corpus linguistics, Japanese learners of English, modal auxiliary verbs, International Corpus Network of Asian Learners of English
Procedia PDF Downloads 1274259 Perception of Authorities in Social Support by Students under the Conditions of Inclusive Education
Authors: Jarmila Zolnova, Lucia Hrebenarova, Veronika Palkova
Abstract:
The interconnections between supportive sources of authorities at school and students have been proved. Lacking research in this field in Slovakia translates into absenting perception of social support by students with special educational needs. The aim of this paper (presented by the poster) is to reveal and interpret the perception of frequency and importance of authorities at school from students' perspective. The sample included 718 students aged 10 years and 1 month on average. Eighty nine students of this count were students with special educational needs. Data were obtained from the Child and Adolescent Social Support Scale (CASSS) for students. Mutual relations between teachers acting as the source of support and students were not significant. Neither was significant the support of other school employees. Both groups of students assessed the frequency and importance of social support from teachers more positively than the support from other school employees.Keywords: intact student, pedagogue, pupil with special education needs, school employee, social support
Procedia PDF Downloads 349