Search results for: operating theatre
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1018

Search results for: operating theatre

58 Evaluation Method for Fouling Risk Using Quartz Crystal Microbalance

Authors: Natsuki Kishizawa, Keiko Nakano, Hussam Organji, Amer Shaiban, Mohammad Albeirutty

Abstract:

One of the most important tasks in operating desalination plants using a reverse osmosis (RO) method is preventing RO membrane fouling caused by foulants found in seawater. Optimal design of the pre-treatment process of RO process for plants enables the reduction of foulants. Therefore, a quantitative evaluation of the fouling risk in pre-treated water, which is fed to RO, is required for optimal design. Some measurement methods for water quality such as silt density index (SDI) and total organic carbon (TOC) have been conservatively applied for evaluations. However, these methods have not been effective in some situations for evaluating the fouling risk of RO feed water. Furthermore, stable management of plants will be possible by alerts and appropriate control of the pre-treatment process by using the method if it can be applied to the inline monitoring system for the fouling risk of RO feed water. The purpose of this study is to develop a method to evaluate the fouling risk of RO feed water. We applied a quartz crystal microbalance (QCM) to measure the amount of foulants found in seawater using a sensor whose surface is coated with polyamide thin film, which is the main material of a RO membrane. The increase of the weight of the sensor after a certain length of time in which the sample water passes indicates the fouling risk of the sample directly. We classified the values as “FP: Fouling Potential”. The characteristics of the method are to measure the very small amount of substances in seawater in a short time: < 2h, and from a small volume of the sample water: < 50mL. Using some RO cell filtration units, a higher correlation between the pressure increase given by RO fouling and the FP from the method than SDI and TOC was confirmed in the laboratory-scale test. Then, to establish the correlation in the actual bench-scale RO membrane module, and to confirm the feasibility of the monitoring system as a control tool for the pre-treatment process, we have started a long-term test at an experimental desalination site by the Red Sea in Jeddah, Kingdom of Saudi Arabia. Implementing inline equipment for the method made it possible to measure FP intermittently (4 times per day) and automatically. Moreover, for two 3-month long operations, the RO operation pressure among feed water samples of different qualities was compared. The pressure increase through a RO membrane module was observed at a high FP RO unit in which feed water was treated by a cartridge filter only. On the other hand, the pressure increase was not observed at a low FP RO unit in which feed water was treated by an ultra-filter during the operation. Therefore, the correlation in an actual scale RO membrane was established in two runs of two types of feed water. The result suggested that the FP method enables the evaluation of the fouling risk of RO feed water.

Keywords: fouling, monitoring, QCM, water quality

Procedia PDF Downloads 212
57 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection

Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan

Abstract:

Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.

Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori

Procedia PDF Downloads 301
56 Option Pricing Theory Applied to the Service Sector

Authors: Luke Miller

Abstract:

This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.

Keywords: option pricing theory, real options, service sector, valuation

Procedia PDF Downloads 355
55 Removal of Heavy Metal Ions from Aqueous Solution by Polymer Enhanced Ultrafiltration Using Unmodified Starch as Biopolymer

Authors: Nurul Huda Baharuddin, Nik Meriam Nik Sulaiman, Mohammed Kheireddine Aroua

Abstract:

The effects of pH, polymer concentration, and metal ions feed concentration for four selected heavy metals Zn (II), Pb (II), Cr (III) and Cr (VI) were tested by using Polymer Enhanced Ultrafiltration (PEUF). An alternative biopolymer namely unmodified starch is proposed as a binding reagent in consequences, as compared to commonly used water-soluble polymers namely polyethylene glycol (PEG) and polyethyleneimine (PEI) in the removal of selected four heavy metal ions. The speciation species profiles of four selected complexes ions namely Zn (II), Pb (II), Cr (III) and Cr (VI) and the present of hydroxides ions (OH-) in variously charged ions were investigated by available software at certain pH range. In corresponds to identify the potential of complexation behavior between metal ion-polymers, potentiometric titration studies were obtained at first before carried out experimental works. Experimental works were done using ultrafiltration systems obtained by laboratory ultrafiltration bench scale equipped with 10 kDa polysulfone hollow fiber membrane. Throughout the laboratory works, the rejection coefficient and permeate flux were found to be significantly affected by the main operating parameter, namely the effects of pH, polymer composition and metal ions concentrations. The interaction of complexation between two binding polymers namely unmodified starch and PEG were occurred due to physical attraction of metal ions to the polymer on the molecular surface with high possibility of chemical occurrence. However, these selected metal ions are mainly complexes by polymer functional groups whenever there is interaction with PEI polymer. For study of single metal ions solutions, Zn (II) ions' rejections approaching over 90% were obtained at pH 7 for each tested polymer. This behavior was similar to Pb (II), Cr (III) and Cr (VI); where the rejections were obtained at lower acidic pH and increased at neutral pH of 7. Different behavior was found by Cr (VI) ions where a high rejection was only achieved at acidic pH region with PEI. Polymer concentration and metal ions concentration are found to have a significant effect on rejections. For mixed metal ion solutions, the behavior of metal ion rejections was similar to single metal ion solutions for investigation on the effects of pH. Rejection values were high at pH 7 for Zn (II) pH 7 for Zn (II) and Cr (III) ions, corresponding to higher rejections with unmodified starch. Pb (II) ions obtained high rejections when tested with PEG whenever carried out in mixed metal ion solutions. High Cr (VI) ions' rejection was found with PEI in single and mixed metal ions solutions at neutral pH range. The influence of starch’s granule structure towards the rejections of these four selected metal ions is found to be attracted in a non-ionic manner. No significant effects on permeate flux were obtained when tested at different pH ranges, polymer concentrations and metal ions feed either by single or mixtures metal ions solutions. Canizares Model was employed as the theoretical model to predict permeate flux and metal ions retention on the study of heavy metal ions removal.

Keywords: polyethyleneimine, polyethylene glycol, polymer-enhanced ultrafiltration, unmodified starch

Procedia PDF Downloads 176
54 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station

Authors: Elvis Nyirenda

Abstract:

This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.

Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy

Procedia PDF Downloads 117
53 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed

Abstract:

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration

Procedia PDF Downloads 146
52 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making

Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya

Abstract:

A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.

Keywords: emotion, ethical decision making, intuition, sustainability

Procedia PDF Downloads 132
51 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems

Authors: A. G. Akhundov

Abstract:

Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.

Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning

Procedia PDF Downloads 189
50 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 70
49 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 328
48 Outputs from the Implementation of 'PHILOS' Programme: Emergency Health Response to Refugee Crisis, Greece, 2017

Authors: K. Mellou, G. Anastopoulos, T. Zakinthinos, C. Botsi, A. Terzidis

Abstract:

‘PHILOS – Emergency health response to refugee crisis’ is a programme of the Greek Ministry of Health, implemented by the Hellenic Center for Disease Control and Prevention (HCDCP). The programme is funded by the Asylum, Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs. With the EU Member States accepting, the last period, accelerating migration flows, Greece inevitably occupies a prominent position in the migratory map due to this geographical location. The main objectives of the programme are a) reinforcement of the capacity of the public health system and enhancement of the epidemiological surveillance in order to cover refugees/migrant population, b) provision of on-site primary health care and psychological support services, and c) strengthening of national health care system task-force. The basic methods for achieving the aforementioned goals are: a) implementation of syndromic surveillance system at camps and enhancement of public health response with the use of mobile medical units (Sub-action A), b) enhancement of health care services inside the camps via increasing human resources and implementing standard operating procedures (Sub-action B), and c) reinforcement of the national health care system (primary healthcare units, hospitals, and emergency care spots) of affected regions with personnel (Sub-action C). As a result, 58 health professionals were recruited under sub-action 2 and 10 mobile unit teams (one or two at each health region) were formed. The main actions taken so far by the mobile units are the evaluation, of syndromic surveillance, of living conditions at camps and medical services. Also, vaccination coverage of children population was assessed, and more than 600 catch-up vaccinations were performed by the end of June 2017. Mobile units supported transportation of refugees/migrants from camps to medical services reducing the load of the National Center for Emergency Care (more than 350 transportations performed). The total number of health professionals (MD, nurses, etc.) placed at camps was 104. Common practices were implemented in the recording and collection of psychological and medical history forms at the camps. Protocols regarding maternity care, gender based violence and handling of violent incidents were produced and distributed at personnel working at camps. Finally, 290 health care professionals were placed at primary healthcare units, public hospitals and the National Center for Emergency Care at affected regions. The program has, also, supported training activities inside the camps and resulted to better coordination of offered services on site.

Keywords: migrants, refugees, public health, syndromic surveillance, national health care system, primary care, emergency health response

Procedia PDF Downloads 206
47 Applying Biculturalism in Studying Tourism Host Community Cultural Integrity and Individual Member Stress

Authors: Shawn P. Daly

Abstract:

Communities heavily engaged in the tourism industry discover their values intersect, meld, and conflict with those of visitors. Maintaining cultural integrity in the face of powerful external pressures causes stress among society members. This effect represents a less studied aspect of sustainable tourism. The present paper brings a perspective unique to the tourism literature: biculturalism. The grounded theories, coherent hypotheses, and validated constructs and indicators of biculturalism represent a sound base from which to consider sociocultural issues in sustainable tourism. Five models describe the psychological state of individuals operating at cultural crossroads: assimilation (joining the new culture), acculturation (grasping the new culture but remaining of the original culture), alternation (varying behavior to cultural context), multicultural (maintaining distinct cultures), and fusion (blending cultures). These five processes divide into two units of analysis (individual and society), permitting research questions at levels important for considering sociocultural sustainability. Acculturation modelling has morphed into dual processes of acculturation (new culture adaptation) and enculturation (original culture adaptation). This dichotomy divides sustainability research questions into human impacts from assimilation (acquiring new culture, throwing away original), separation (rejecting new culture, keeping original), integration (acquiring new culture, keeping original), and marginalization (rejecting new culture, throwing away original). Biculturalism is often cast in terms of its emotional, behavioral, and cognitive dimensions. Required cultural adjustments and varying levels of cultural competence lead to physical, psychological, and emotional outcomes, including depression, lowered life satisfaction and self-esteem, headaches, and back pain—or enhanced career success, social skills, and life styles. Numerous studies provide empirical scales and research hypotheses for sustainability research into tourism’s causality and effect on local well-being. One key issue in applying biculturalism to sustainability scholarship concerns identification and specification of the alternative new culture contacting local culture. Evidence exists for tourism industry, universal tourist, and location/event-specific tourist culture. The biculturalism paradigm holds promise for researchers examining evolving cultural identity and integrity in response to mass tourism. In particular, confirmed constructs and scales simplify operationalization of tourism sustainability studies in terms of human impact and adjustment.

Keywords: biculturalism, cultural integrity, psychological and sociocultural adjustment, tourist culture

Procedia PDF Downloads 409
46 The Role of Anti-corruption Clauses in the Fight Against Corruption in Petroleum Sector

Authors: Azar Mahmoudi

Abstract:

Despite the rise of global anti-corruption movements and the strong emergence of international and national anti-corruption laws, corrupt practices are still prevalent in most places, and countries still struggle to translate these laws into practice. On the other hand, in most countries, political and economic elites oppose anti-corruption reforms. In such a situation, the role of external actors, like the other States, international organizations, and transnational actors, becomes essential. Among them, Transnational Corporations [TNCs] can develop their own regime-like framework to govern their internal activities, and through this, they can contribute to the regimes established by State actors to solve transnational issues. Among various regimes, TNCs may choose to comply with the transnational anti-corruption legal regime to avoid the cost of non-compliance with anti-corruption laws. As a result, they decide to strenghen their anti-corruption compliance as they expand into new overseas markets. Such a decision extends anti-corruption standards among their employees and third-party agents and within their projects across countries. To better address the challenges posed by corruption, TNCs have adopted a comprehensive anti-corruption toolkit. Among the various instruments, anti-corruption clauses have become one of the most anti-corruption means in international commercial agreements. Anti-corruption clauses, acting as a due diligence tool, can protect TNCs against the engagement of third-party agents in corrupt practices and further promote anti-corruption standards among businesses operating across countries. An anti-corruption clause allows parties to create a contractual commitment to exclude corrupt practices during the term of their agreement, including all levels of negotiation and implementation. Such a clause offers companies a mechanism to reduce the risk of potential corruption in their dealings with third parties while avoiding civil and administrative penalties. There have been few attempts to examine the role of anti-corruption clauses in the fight against corruption; therefore, this paper aims to fill this gap and examine anti-corruption clauses in a specific sector where corrupt practices are widespread and endemic, i.e., the petroleum industry. This paper argues that anti-corruption clauses are a positive step in ensuring that the petroleum industry operates in an ethical and transparent manner, helping to reducing the risk of corruption and promote integrity in this sector. Contractual anti-corruption clauses vary in terms of the types commitment, so parties have a wide range of options to choose from for their preferred clauses incorporated within their contracts. This paper intends to propose a categorization of anti-corruption clauses in the petroleum sector. It examines particularly the anti-corruption clauses incorporated in transnational hydrocarbon contracts published by the Resource Contract Portal, an online repository of extractive contracts. Then, this paper offers a quantitative assessment of anti-corruption clauses according to the types of contract, the date of conclusion, and the geographical distribution.

Keywords: anti-corruption, oil and gas, transnational corporations, due diligence, contractual clauses, hydrocarbon, petroleum sector

Procedia PDF Downloads 131
45 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 459
44 Stability in Slopes Related to Expansive Soils

Authors: Ivelise M. Strozberg, Lucas O. Vale, Maria V. V. Morais

Abstract:

Expansive soils are characterized by their significant volumetric variations, tending to suffer an increase of this volume when added water in their voids and a decrease of volume when this water is removed. The parameters of resistance (especially the angle of friction, cohesion and specific weight) of expansive or non-expansive soils of the same field present differences, as found in laboratory tests. What is expected is that, through this research, demonstrate that this variation directly affects the results of the calculation of factors of safety for slope stability. The expansibility due to specific clay minerals such as montmorillonites and vermiculites is the most common form of expansion of soils or rocks, causing expansion pressures. These pressures can become an aggravating problem in regions across the globe that, when not previously studied, may present high risks to the enterprise, such as cracks, fissures, movements in structures, breaking of retaining walls, drilling of wells, among others. The study provides results based on analyzes carried out in the Slide 2018 software belonging to the Rocsience group, where the software is a two-dimensional equilibrium slope stability program that calculates the factor of safety or probability of failure of certain surfaces composed of soils or rocks (or both, depending on the situation), - through the methods of: Bishop simplified, Fellenius and Janbu corrected. This research compares the factors of safety of a homogeneous earthfill dam geometry, analysed for operation and end-of-construction situations, having a height of approximately 35 meters, with a slope of 1.5: 1 in the slope downstream and 2: 1 on the upstream slope. As the water level is 32.73m high and the water table is drawn automatically by the Slide program using the finite element method for the operating situation, considering two hypotheses for the use of materials - the first with soils with characteristics of expansion and the second with soils without expansibility. For this purpose, soil samples were collected from the region of São Bento do Una - Pernambuco, Brazil and taken to the soil mechanics laboratory to characterize and determine the percentage of expansibility. There were found 2 types of soils in that area: 1 site of expansive soils (8%) and another with non- expansive ones. Based on the results found, the analysis of the values of factors of safety indicated, both upstream and downstream slopes, the highest values were obtained in the case where there is no presence of materials with expansibility resulting, for one of the situations, values of 1.353 (Fellenius), 1,295 (Janbu corrected) and 1,409 (Bishop simplified). There is a considerable drop in safety factors in cases where soils are potentially expansive, resulting in values for the same situation of 0.859 (Fellenius), 0.809 (Janbu corrected) and 0.842 (Bishop simplified), in the case of higher expansibility (8 %). This shows that the expansibility is a determinant factor in the fall of resistance of soil, determined by the factors of cohesion and angle of friction.

Keywords: dam. slope. software. swelling soil

Procedia PDF Downloads 122
43 Toxic Chemicals from Industries into Pacific Biota. Investigation of Polychlorinated Biphenyls (PCBs), Dioxins (PCDD), Furans (PCDF) and Polybrominated Diphenyls (PBDE No. 47) in Tuna and Shellfish in Kiribati, Solomon Islands and the Fiji Islands

Authors: Waisea Votadroka, Bert Van Bavel

Abstract:

The most commonly consumed shellfish species produced in the Pacific, shellfish and tuna fish, were investigated for the occurrence of a range of brominated and chlorinated contaminants in order to establish current levels. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analysed in the muscle of tuna species Katsuwonis pelamis, yellow fin tuna, and shellfish species from the Fiji Islands. The investigation of polychlorinated biphenyls (PCBs), furans (PCDFs) and polybrominated diphenylethers (PBDE No.47) in tuna and shellfish in Kiribati, Solomon Islands and Fiji is necessary due to the lack of research data in the Pacific region. The health risks involved in the consumption of marine foods laced with toxic organo-chlorinated and brominated compounds makes in the analyses of these compounds in marine foods important particularly when Pacific communities rely on these resources as their main diet. The samples were homogenized in a motor with anhydrous sodium sulphate in the ratio of 1:3 (muscle) and 1:4-1:5 (roe and butter). The tuna and shellfish samples were homogenized and freeze dried at the sampling location at the Institute of Applied Science, Fiji. All samples were stored in amber glss jars at -18 ° C until extraction at Orebro University. PCDD/Fs, PCBs and pesticides were all analysed using an Autospec Ultina HRGC/HRMS operating at 10,000 resolutions with EI ionization at 35 eV. All the measurements were performed in the selective ion recording mode (SIR), monitoring the two most abundant ions of the molecular cluster (PCDD/Fs and PCBs). Results indicated that the Fiji Composite sample for Batissa violacea range 0.7-238.6 pg/g lipid; Fiji sample composite Anadara antiquate range 1.6 – 808.6 pg/g lipid; Solomon Islands Katsuwonis Pelamis 7.5-3770.7 pg/g lipid; Solomon Islands Yellow Fin tuna 2.1 -778.4 pg/g lipid; Kiribati Katsuwonis Pelamis 4.8-1410 pg/g lipids. The study has demonstrated that these species are good bio-indicators of the presence of these toxic organic pollutants in edible marine foods. Our results suggest that for pesticides levels, p,p-DDE is the most dominant for all the groups and seems to be highest at 565.48 pg/g lipid in composite Batissa violacea from Fiji. For PBDE no.47 in comparing all samples, the composite Batissa violacea from Fiji had the highest level of 118.20 pg/g lipid. Based upon this study, the contamination levels found in the study species were quite lower compared with levels reported in impacted ecosystems around the world

Keywords: polychlorinated biphenyl, polybrominated diphenylethers, pesticides, organoclorinated pesticides, PBDEs

Procedia PDF Downloads 383
42 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 279
41 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths

Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval

Abstract:

The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.

Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor

Procedia PDF Downloads 340
40 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 279
39 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 298
38 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 32
37 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate

Procedia PDF Downloads 520
36 Developing Granular Sludge and Maintaining High Nitrite Accumulation for Anammox to Treat Municipal Wastewater High-efficiently in a Flexible Two-stage Process

Authors: Zhihao Peng, Qiong Zhang, Xiyao Li, Yongzhen Peng

Abstract:

Nowadays, conventional nitrogen removal process (nitrification and denitrification) was adopted in most wastewater treatment plants, but many problems have occurred, such as: high aeration energy consumption, extra carbon sources dosage and high sludge treatment costs. The emergence of anammox has bring about the great revolution to the nitrogen removal technology, and only the ammonia and nitrite were required to remove nitrogen autotrophically, no demand for aeration and sludge treatment. However, there existed many challenges in anammox applications: difficulty of biomass retention, insufficiency of nitrite substrate, damage from complex organic etc. Much effort was put into the research in overcoming the above challenges, and the payment was rewarded. It was also imperative to establish an innovative process that can settle the above problems synchronously, after all any obstacle above mentioned can cause the collapse of anammox system. Therefore, in this study, a two-stage process was established that the sequencing batch reactor (SBR) and upflow anaerobic sludge blanket (UASB) were used in the pre-stage and post-stage, respectively. The domestic wastewater entered into the SBR first and went through anaerobic/aerobic/anoxic (An/O/A) mode, and the draining at the aerobic end of SBR was mixed with domestic wastewater, the mixture then entering to the UASB. In the long term, organic and nitrogen removal performance was evaluated. All along the operation, most COD was removed in pre-stage (COD removal efficiency > 64.1%), including some macromolecular organic matter, like: tryptophan, tyrosinase and fulvic acid, which could weaken the damage of organic matter to anammox. And the An/O/A operating mode of SBR was beneficial to the achievement and maintenance of partial nitrification (PN). Hence, sufficient and steady nitrite supply was another favorable condition to anammox enhancement. Besides, the flexible mixing ratio helped to gain a substrate ratio appropriate to anammox (1.32-1.46), which further enhance the anammox. Further, the UASB was used and gas recirculation strategy was adopted in the post-stage, aiming to achieve granulation by the selection pressure. As expected, the granules formed rapidly during 38 days, which increased from 153.3 to 354.3 μm. Based on bioactivity and gene measurement, the anammox metabolism and abundance level rose evidently, by 2.35 mgN/gVss·h and 5.3 x109. The anammox bacteria mainly distributed in the large granules (>1000 μm), while the biomass in the flocs (<200 μm) and microgranules (200-500 μm) barely displayed anammox bioactivity. Enhanced anammox promoted the advanced autotrophic nitrogen removal, which increased from 71.9% to 93.4%, even when the temperature was only 12.9 ℃. Therefore, it was feasible to enhance anammox in the multiple favorable conditions created, and the strategy extended the application of anammox to the full-scale mainstream, enhanced the understanding of anammox in the aspects of culturing conditions.

Keywords: anammox, granules, nitrite accumulation, nitrogen removal efficiency

Procedia PDF Downloads 47
35 The Inverse Problem in the Process of Heat and Moisture Transfer in Multilayer Walling

Authors: Bolatbek Rysbaiuly, Nazerke Rysbayeva, Aigerim Rysbayeva

Abstract:

Relevance: Energy saving elevated to public policy in almost all developed countries. One of the areas for energy efficiency is improving and tightening design standards. In the tie with the state standards, make high demands for thermal protection of buildings. Constructive arrangement of layers should ensure normal operation in which the humidity of materials of construction should not exceed a certain level. Elevated levels of moisture in the walls can be attributed to a defective condition, as moisture significantly reduces the physical, mechanical and thermal properties of materials. Absence at the design stage of modeling the processes occurring in the construction and predict the behavior of structures during their work in the real world leads to an increase in heat loss and premature aging structures. Method: To solve this problem, widely used method of mathematical modeling of heat and mass transfer in materials. The mathematical modeling of heat and mass transfer are taken into the equation interconnected layer [1]. In winter, the thermal and hydraulic conductivity characteristics of the materials are nonlinear and depends on the temperature and moisture in the material. In this case, the experimental method of determining the coefficient of the freezing or thawing of the material becomes much more difficult. Therefore, in this paper we propose an approximate method for calculating the thermal conductivity and moisture permeability characteristics of freezing or thawing material. Questions. Following the development of methods for solving the inverse problem of mathematical modeling allows us to answer questions that are closely related to the rational design of fences: Where the zone of condensation in the body of the multi-layer fencing; How and where to apply insulation rationally his place; Any constructive activities necessary to provide for the removal of moisture from the structure; What should be the temperature and humidity conditions for the normal operation of the premises enclosing structure; What is the longevity of the structure in terms of its components frost materials. Tasks: The proposed mathematical model to solve the following problems: To assess the condition of the thermo-physical designed structures at different operating conditions and select appropriate material layers; Calculate the temperature field in a structurally complex multilayer structures; When measuring temperature and moisture in the characteristic points to determine the thermal characteristics of the materials constituting the surveyed construction; Laboratory testing to significantly reduce test time, and eliminates the climatic chamber and expensive instrumentation experiments and research; Allows you to simulate real-life situations that arise in multilayer enclosing structures associated with freezing, thawing, drying and cooling of any layer of the building material.

Keywords: energy saving, inverse problem, heat transfer, multilayer walling

Procedia PDF Downloads 397
34 Numerical Analyses of Dynamics of Deployment of PW-Sat2 Deorbit Sail Compared with Results of Experiment under Micro-Gravity and Low Pressure Conditions

Authors: P. Brunne, K. Ciechowska, K. Gajc, K. Gawin, M. Gawin, M. Kania, J. Kindracki, Z. Kusznierewicz, D. Pączkowska, F. Perczyński, K. Pilarski, D. Rafało, E. Ryszawa, M. Sobiecki, I. Uwarowa

Abstract:

Big amount of space debris constitutes nowadays a real thread for operating space crafts; therefore the main purpose of PW-Sat2’ team was to create a system that could help cleanse the Earth’s orbit after each small satellites’ mission. After 4 years of development, the motorless, low energy consumption and low weight system has been created. During series of tests, the system has shown high reliable efficiency. The PW-Sat2’s deorbit system is a square-shaped sail which covers an area of 4m². The sail surface is made of 6 μm aluminized Mylar film which is stretched across 4 diagonally placed arms, each consisting of two C-shaped flat springs and enveloped in Mylar sleeves. The sail is coiled using a special, custom designed folding stand that provides automation and repeatability of the sail unwinding tests and placed in a container with inner diameter of 85 mm. In the final configuration the deorbit system weights ca. 600 g and occupies 0.6U (in accordance with CubeSat standard). The sail’s releasing system requires minimal amount of power based on thermal knife that burns out the Dyneema wire, which holds the system before deployment. The Sail is being pushed out of the container within a safe distance (20 cm away) from the satellite. The energy for the deployment is completely assured by coiled C-shaped flat springs, which during the release, unfold the sail surface. To avoid dynamic effects on the satellite’s structure, there is the rotational link between the sail and satellite’s main body. To obtain complete knowledge about complex dynamics of the deployment, a number of experiments have been performed in varied environments. The numerical model of the dynamics of the Sail’s deployment has been built and is still under continuous development. Currently, the integration of the flight model and Deorbit Sail is performed. The launch is scheduled for February 2018. At the same time, in cooperation with United Nations Office for Outer Space Affairs, sail models and requested facilities are being prepared for the sail deployment experiment under micro-gravity and low pressure conditions at Bremen Drop Tower, Germany. Results of those tests will provide an ultimate and wide knowledge about deployment in space environment to which system will be exposed during its mission. Outcomes of the numerical model and tests will be compared afterwards and will help the team in building a reliable and correct model of a very complex phenomenon of deployment of 4 c-shaped flat springs with surface attached. The verified model could be used inter alia to investigate if the PW-Sat2’s sail is scalable and how far is it possible to go with enlarging when creating systems for bigger satellites.

Keywords: cubesat, deorbitation, sail, space, debris

Procedia PDF Downloads 290
33 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process

Authors: Marek Vondra, Petr Bobák

Abstract:

Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.

Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation

Procedia PDF Downloads 387
32 Use of Analytic Hierarchy Process for Plant Site Selection

Authors: Muzaffar Shaikh, Shoaib Shaikh, Mark Moyou, Gaby Hawat

Abstract:

This paper presents the use of Analytic Hierarchy Process (AHP) in evaluating the site selection of a new plant by a corporation. Due to intense competition at a global level, multinational corporations are continuously striving to minimize production and shipping costs of their products. One key factor that plays significant role in cost minimization is where the production plant is located. In the U.S. for example, labor and land costs continue to be very high while they are much cheaper in countries such as India, China, Indonesia, etc. This is why many multinational U.S. corporations (e.g. General Electric, Caterpillar Inc., Ford, General Motors, etc.), have shifted their manufacturing plants outside. The continued expansion of the Internet and its availability along with technological advances in computer hardware and software all around the globe have facilitated U.S. corporations to expand abroad as they seek to reduce production cost. In particular, management of multinational corporations is constantly engaged in concentrating on countries at a broad level, or cities within specific countries where certain or all parts of their end products or the end products themselves can be manufactured cheaper than in the U.S. AHP is based on preference ratings of a specific decision maker who can be the Chief Operating Officer of a company or his/her designated data analytics engineer. It serves as a tool to first evaluate the plant site selection criteria and second, alternate plant sites themselves against these criteria in a systematic manner. Examples of site selection criteria are: Transportation Modes, Taxes, Energy Modes, Labor Force Availability, Labor Rates, Raw Material Availability, Political Stability, Land Costs, etc. As a necessary first step under AHP, evaluation criteria and alternate plant site countries are identified. Depending upon the fidelity of analysis, specific cities within a country can also be chosen as alternative facility locations. AHP experience in this type of analysis indicates that the initial analysis can be performed at the Country-level. Once a specific country is chosen via AHP, secondary analyses can be performed by selecting specific cities or counties within a country. AHP analysis is usually based on preferred ratings of a decision-maker (e.g., 1 to 5, 1 to 7, or 1 to 9, etc., where 1 means least preferred and a 5 means most preferred). The decision-maker assigns preferred ratings first, criterion vs. criterion and creates a Criteria Matrix. Next, he/she assigns preference ratings by alternative vs. alternative against each criterion. Once this data is collected, AHP is applied to first get the rank-ordering of criteria. Next, rank-ordering of alternatives is done against each criterion resulting in an Alternative Matrix. Finally, overall rank ordering of alternative facility locations is obtained by matrix multiplication of Alternative Matrix and Criteria Matrix. The most practical aspect of AHP is the ‘what if’ analysis that the decision-maker can conduct after the initial results to provide valuable sensitivity information of specific criteria to other criteria and alternatives.

Keywords: analytic hierarchy process, multinational corporations, plant site selection, preference ratings

Procedia PDF Downloads 288
31 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 237
30 Small and Medium-Sized Enterprises, Flash Flooding and Organisational Resilience Capacity: Qualitative Findings on Implications of the Catastrophic 2017 Flash Flood Event in Mandra, Greece

Authors: Antonis Skouloudis, Georgios Deligiannakis, Panagiotis Vouros, Konstantinos Evangelinos, Loannis Nikolaou

Abstract:

On November 15th, 2017, a catastrophic flash flood devastated the city of Mandra in Central Greece, resulting in 24 fatalities and extensive damages to the built environment and infrastructure. It was Greece's deadliest and most destructive flood event for the past 40 years. In this paper, we examine the consequences of this event too small and medium-sized enterprises (SMEs) operating in Mandra during the flood event, which were affected by the floodwaters to varying extents. In this context, we conducted semi-structured interviews with business owners-managers of 45 SMEs located in flood inundated areas and are still active nowadays, based on an interview guide that spanned 27 topics. The topics pertained to the disaster experience of the business and business owners-managers, knowledge and attitudes towards climate change and extreme weather, aspects of disaster preparedness and related assistance needs. Our findings reveal that the vast majority of the affected businesses experienced heavy damages in equipment and infrastructure or total destruction, which resulted in business interruption from several weeks up to several months. Assistance from relatives or friends helped for the damage repairs and business recovery, while state compensations were deemed insufficient compared to the extent of the damages. Most interviewees pinpoint flooding as one of the most critical risks, and many connect it with the climate crisis. However, they are either not willing or unable to apply property-level prevention measures in their businesses due to cost considerations or complex and cumbersome bureaucratic processes. In all cases, the business owners are fully aware of the flood hazard implications, and since the recovery from the event, they have engaged in basic mitigation measures and contingency plans in case of future flood events. Such plans include insurance contracts whenever possible (as the vast majority of the affected SMEs were uninsured at the time of the 2017 event) as well as simple relocations of critical equipment within their property. The study offers fruitful insights on latent drivers and barriers of SMEs' resilience capacity to flash flooding. In this respect, findings such as ours, highlighting tensions that underpin behavioral responses and experiences, can feed into a) bottom-up approaches for devising actionable and practical guidelines, manuals and/or standards on business preparedness to flooding, and, ultimately, b) policy-making for an enabling environment towards a flood-resilient SME sector.

Keywords: flash flood, small and medium-sized enterprises, organizational resilience capacity, disaster preparedness, qualitative study

Procedia PDF Downloads 132
29 Numerical Investigation of Thermal Energy Storage Panel Using Nanoparticle Enhanced Phase Change Material for Micro-Satellites

Authors: Jelvin Tom Sebastian, Vinod Yeldho Baby

Abstract:

In space, electronic devices are constantly attacked with radiation, which causes certain parts to fail or behave in unpredictable ways. To advance the thermal controllability for microsatellites, we need a new approach and thermal control system that is smaller than that on conventional satellites and that demand no electric power. Heat exchange inside the microsatellites is not that easy as conventional satellites due to the smaller size. With slight mass gain and no electric power, accommodating heat using phase change materials (PCMs) is a strong candidate for solving micro satellites' thermal difficulty. In other words, PCMs can absorb or produce heat in the form of latent heat, changing their phase and minimalizing the temperature fluctuation around the phase change point. The main restriction for these systems is thermal conductivity weakness of common PCMs. As PCM is having low thermal conductivity, it increases the melting and solidification time, which is not suitable for specific application like electronic cooling. In order to increase the thermal conductivity nanoparticles are introduced. Adding the nanoparticles in base PCM increases the thermal conductivity. Increase in weight concentration increases the thermal conductivity. This paper numerically investigates the thermal energy storage panel with nanoparticle enhanced phase change material. Silver nanostructure have increased the thermal properties of the base PCM, eicosane. Different weight concentration (1, 2, 3.5, 5, 6.5, 8, 10%) of silver enhanced phase change material was considered. Both steady state and transient analysis was performed to compare the characteristics of nanoparticle enhanced phase material at different heat loads. Results showed that in steady state, the temperature near the front panel reduced and temperature on NePCM panel increased as the weight concentration increased. With the increase in thermal conductivity more heat was absorbed into the NePCM panel. In transient analysis, it was found that the effect of nanoparticle concentration on maximum temperature of the system was reduced as the melting point of the material reduced with increase in weight concentration. But for the heat load of maximum 20W, the model with NePCM did not attain the melting point temperature. Therefore it showed that the model with NePCM is capable of holding more heat load. In order to study the heat load capacity double the load is given, maximum of 40W was given as first half of the cycle and the other is given constant OW. Higher temperature was obtained comparing the other heat load. The panel maintained a constant temperature for a long duration according to the NePCM melting point. In both the analysis, the uniformity of temperature of the TESP was shown. Using Ag-NePCM it allows maintaining a constant peak temperature near the melting point. Therefore, by altering the weight concentration of the Ag-NePCM it is possible to create an optimum operating temperature required for the effective working of the electronics components.

Keywords: carbon-fiber-reinforced polymer, micro/nano-satellite, nanoparticle phase change material, thermal energy storage

Procedia PDF Downloads 203