Search results for: neural progentor cells
3967 Pattern Identification in Statistical Process Control Using Artificial Neural Networks
Authors: M. Pramila Devi, N. V. N. Indra Kiran
Abstract:
Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed.Keywords: control chart pattern recognition, neural network, backpropagation, generalization, early stopping
Procedia PDF Downloads 3723966 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France
Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet
Abstract:
Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.Keywords: air temperature, neural network model, urban heat island, urban weather generator
Procedia PDF Downloads 913965 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 4773964 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 853963 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 1093962 The Influence of Amygdalin on Glioblastoma Multiforme Cell Lines
Authors: Sylwia K. Naliwajko, Justyna Moskwa, Patryk Nowakowski, Renata Markiewicz-Zukowska, Krystyna Gromkowska-Kepka, Anna Puscion-Jakubik, Maria H. Borawska
Abstract:
Amygdalin is found in many fruit seeds, including apricot, peach, quince, apples, and almonds. Amygdalin (also named vitamin B17), as well as its sources, are commonly used as an alternative therapy or prevention of cancer. The potential activity of amygdalin is related to its enzymatic degradation to the hydrogen cyanide. Hydrogen cyanide is a toxic substance that causes liver and nerves damage, fever, coma or even death. Amygdalin is much better tolerated after intravenous than oral administration. The aim of this study was to examine the influence of amygdalin on glioblastoma multiforme cell lines. Three glioblastoma multiforme cell lines – U87MG, T98, LN18 were incubated (48 h) with amygdalin in concentrations 100, 250, 500, 1000 and 2000 µg/mL. The MTT (Thiazolyl Blue Tetrazolium Bromide) test and DNA binding test by [3H]-thymidine incorporation were used to determine the anti-proliferative activity of amygdalin. The secretion of metalloproteinases (MMP2 and MMP-9) from U87MG cells was estimated by gelatin zymography. The statistical analysis was performed using Statistica v. 13.0 software. The data was presented as a % of control. Amygdalin did not show significant inhibition of viability of all the glioblastoma cells in concentrations 100, 250, 500, 1000 µg/mL. In 2000 µg/mL there were significant differences compared to the control, but inhibition of viability was less than 20% (more than 80% of control). The average viability of U87MG cells was 92,0±4%, T98G: 85,8±3% and LN18: 94,7±2% of the control. There was no dose-response viability, and IC50 value was not recognized. DNA binding in U87MG cells was not inhibited (109,0±3 % of control). After treatment with amygdalin, we observed significantly increased secretion of MMP2 and MMP9 in U87MG cells (130,3±14% and 112,0±5% of control, respectively). Our results suggest that amygdalin has no anticancer activity in glioblastoma cell lines.Keywords: amygdalin, anticancer, cell line, glioblastoma
Procedia PDF Downloads 2163961 Targeting Basic Leucine Zipper Transcription Factor ATF-Like Mediated Immune Cells Regulation to Reduce Crohn’s Disease Fistula Incidence
Authors: Mohammadjavad Sotoudeheian, Soroush Nematollahi
Abstract:
Crohn’s disease (CD) is a chronic gastrointestinal segment inflammation encompassing immune dysregulation in a genetically susceptible individual in response to the environmental triggers and interaction between the microbiome and immune system. Uncontrolled inflammation leads to long-term complications, including fibrotic strictures and enteric fistulae. Increased production of Th1 and Th17-cell cytokines and defects in T-regulatory cells have been associated with CD. Th17-cells are essential for protection against extracellular pathogens, but their atypical activity can cause autoimmunity. Intrinsic defects in the control of programmed cell death in the mucosal T-cell compartment are strongly implicated in the pathogenesis of CD. The apoptosis defect in mucosal T-cells in CD has been endorsed as an imbalance of the Bcl-2 and the Bax. The immune system encounters foreign antigens through microbial colonization of mucosal surfaces or infections. In addition, FOSL downregulated IL-26 expression, a cytokine that marks inflammatory Th17-populations in patients suffering from CD. Furthermore, the expression of IL-23 is associated with the transcription factor primary leucine zipper transcription factor ATF-like (Batf). Batf-deficiency demonstrated the crucial role of Batf in colitis development. Batf and IL-23 mediate their effects by inducing IL-6 production. Strong association of IL-23R, Stat3, and Stat4 with IBD susceptibility point to a critical involvement of T-cells. IL-23R levels in transfer fistula were dependent on the AP-1 transcription factor JunB that additionally controlled levels of RORγt by facilitating DNA binding of Batf. T lymphocytes lacking JunB failed to induce IL-23- and Th17-mediated experimental colitis highlighting the relevance of JunB for the IL-23/ Th17 pathway. The absence of T-bet causes unrestrained Th17-cell differentiation. T-cells are central parts of immune-mediated colon fistula. Especially Th17-cells were highly prevalent in inflamed IBD tissues, as RORγt is effective in preventing colitis. Intraepithelial lymphocytes (IEL) contain unique T-cell subsets, including cells expressing RORγt. Increased activated Th17 and decreased T-regulatory cells in inflamed intestinal tissues had been seen. T-cells differentiate in response to many cytokines, including IL-1β, IL-6, IL-23, and TGF-β, into Th17-cells, a process which is critically dependent on the Batf. IL-23 promotes Th17-cell in the colon. Batf manages the generation of IL-23 induced IL-23R+ Th17-cells. Batf is necessary for TGF-β/IL-6-induced Th17-polarization. Batf-expressing T-cells are the core of T-cell-mediated colitis. The human-specific parts of three AP-1 transcription factors, FOSL1, FOSL2, and BATF, are essential during the early stages of Th17 differentiation. BATF supports the Th17 lineage. FOSL1, FOSL2, and BATF make possession of regulatory loci of genes in the Th17 lineage cascade. The AP1 transcription factor Batf is identified to control intestinal inflammation and seems to regulate pathways within lymphocytes, which could theoretically control the expression of several genes. It shows central regulatory properties over Th17-cell development and is intensely upregulated within IBD-affected tissues. Here, we demonstrated that targeting Batf in IBD appears as a therapeutic approach that reduces colitogenic T-cell activities during fistula formation while aiming to affect inflammation in the gut epithelial cells.Keywords: immune system, Crohn’s Disease, BATF, T helper cells, Bcl, interleukin, FOSL
Procedia PDF Downloads 1453960 Positive Effects of Aerobic Exercise after Bone Marrow Stem Cell Transplantation on Recovery of Dopaminergic Neurons and Promotion of Angiogenesis Markers in the Striatum of Parkinsonian Rats
Authors: S. A. Hashemvarzi, A. Heidarianpour, Z. Fallahmohammadi, M. Pourghasem, M. Kaviani
Abstract:
Introduction: Parkinson’s disease (PD) is a progressive neurodegenerative in the central nervous system characterized by the loss of dopaminergic neurons in the substantia nigra resulting in loss of dopamine release in the striatum. Non-drug treatment options such as Stem cell transplantation and exercise have been considered for treatment of Parkinson's disease. Purpose: The purpose of this study was to evaluate the effect of aerobic exercise after bone marrow stem cells transplantation on recovery of dopaminergic neurons and promotion of angiogenesis markers in the striatum of parkinsonian rats. Materials and Methods: 42 male Wistar rats were divided randomly into six groups: Normal (N), Sham (S), Parkinson’s (P), Stem cells transplanted Parkinson’s (SP), Exercised Parkinson’s (EP) and Stem cells transplanted + Exercised Parkinson’s (SEP). To create a model of Parkinson's, the striatum was destroyed by injection of 6-hydroxy-dopamine into the striatum through stereotaxic apparatus. Stem cells were derived from the bone marrow of femur and tibia of male rats with 6-8 weeks old. After cultivation, approximately 5×105 cells in 5 microliter of medium were injected into the striatum of rats through the channel. Aerobic exercise was included 8 weeks of running on the treadmill with a speed of 15 meters per minute. At the end, all subjects were decapitated and striatum tissues were separately isolated for measurement of vascular endothelial growth factor (VEGF), dopamine (DA) and tyrosine hydroxylase (TH) levels. Results: VEGF, DA and TH levels in the striatum of parkinsonian rats significantly increased in treatment groups (SP, EP and SEP), especially in SEP group compared to P group after treatment (P<0.05). Conclusion: The findings implicate that the BMSCs transplantation in combination with exercise would have synergistic effects leading to functional recovery, dopaminergic neurons recovery and promotion of angiogenesis marker in the striatum of parkinsonian rats.Keywords: stem cells, treadmill training, neurotrophic factors, Parkinson
Procedia PDF Downloads 3423959 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment
Authors: Shima Fasahat
Abstract:
This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse. By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable
Procedia PDF Downloads 2273958 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules
Authors: T. H. Huang, C. L. Fern, Y. K. Tseng
Abstract:
The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement
Procedia PDF Downloads 1123957 Using Electro-Biogrouting to Stabilize of Soft Soil
Authors: Hamed A. Keykha, Hadi Miri
Abstract:
This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement
Procedia PDF Downloads 5283956 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks
Procedia PDF Downloads 2233955 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells
Authors: Moustafa Elhamouly, Masayuki Shimada
Abstract:
The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).
Procedia PDF Downloads 833954 Neural Networks Underlying the Generation of Neural Sequences in the HVC
Authors: Zeina Bou Diab, Arij Daou
Abstract:
The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird
Procedia PDF Downloads 703953 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1123952 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 663951 MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells
Authors: Jae-Hyeon Kim, Michael Lee
Abstract:
Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs.Keywords: microRNA, BRAF inhibitor, drug resistance, autophagy
Procedia PDF Downloads 3253950 Intracellular Strategies for Gene Delivery into Mammalian Cells Using Bacteria as a Vector
Authors: Kumaran Narayanan, Andrew N. Osahor
Abstract:
E. coli has been engineered by our group and by others as a vector to deliver DNA into cultured human and animal cells. However, so far conditions to improve gene delivery using this vector have not been investigated, resulting in a major gap in our understanding of the requirements for this vector to function optimally. Our group recently published novel data showing that simple addition of the DNA transfection reagent Lipofectamine increased the efficiency of the E. coli vector by almost 3-fold, providing the first strong evidence that further optimization of bactofection is possible. This presentation will discuss advances that demonstrate the effects of several intracellular strategies that improve the efficiency of this vector. Conditions that promote endosomal escape of internalized bacteria to evade lysosomal destruction after entry in the cell, a known obstacle limiting this vector, are elucidated. Further, treatments that increase bacterial lysis so that the vector can release its transgene into the mammalian environment for expression will be discussed. These experiments will provide valuable new insight to advance this E. coli system as an important class of vector technology for genetic correction of human disease models in cells and whole animals.Keywords: DNA, E. coli, gene expression, vector
Procedia PDF Downloads 3583949 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis
Authors: Chang-Hui Shen, Paulina Konarzewska
Abstract:
Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1
Procedia PDF Downloads 1273948 Development of a Natural Anti-cancer Formulation Which Can Target Triple Negative Breast Cancer Stem Cells
Authors: Samashi Munaweera
Abstract:
Cancer stem cells (CSC) are responsible for the initiation, extensive proliferation and metastasis of cancer. CSCs, including breast cancer stem cells (bCSCs) have a capacity to generate chemo and radiotherapy resistance heterogeneous population of cells. Over-expressed ABCB1 has been reported as a main reason for drug resistance of CSCs via activating drug efflux pumps by creating pores in the cell membrane. The overall efficiency of chemotherapeutic agents might be enhanced by blocking the ABCB protein efflux pump in the CSC membrane. There is an urgent need to search for persuasive natural drugs which can target CSCs. Anti-cancer properties of Hylocereus undatus on cancer CSCs have not yet been studied. In the present study, the anti-cancer effects of the peel and flesh of H. undatus fruit on bCSCs were evaluated with the aim of developing a marketable anti-cancer nutraceutical formulation. The flesh and peel of H. undatus were freeze-dried and sequentially extracted into four different solvents (hexane, chloroform, ethyl acetate and ethanol). All extracts (eight extracts) were dried under reduced pressure, and different concentrations (12.5-400 µg/mL) were treated on bCSCs isolated from a triple-negative chemo-resistant breast cancer phenotype (MDA-MB-231 cells). Anti-proliferative effects of all extracts and paclitaxel (positive control) were determined by a colorimetric assay (WST-1 based). Since peel-chloroform (IC50= 54.8 µg/mL) and flesh-ethyl acetate (IC50= 150.5 µg/mL) extras exerted a potent anti-proliferative effect at 72 h post-incubation, a combinatorial formulation (CF) was developed with the most active peel-chloroform extract and 20 µg/mL of verapamil (a known ABCB1 drug efflux pump blocker) first time in the world. Anti-proliferative effects and pro-apoptotic effects of CF were confirmed by estimating activated caspase3 and caspase7 levels and apoptotic morphological features in the CF-treated bCSCs compared to untreated and only verapamil (20 µg/mL) treated bCSCs, and CF treated normal mammary epithelial cells (MCF-10A). The antiproliferative effects of CF (16.4 µg/mL) are greater than paclitaxel (19.2 µg/mL) and three folds greater than peel-chloroform extract (IC50= 54.8 µg/mL) on bCSCs while exerting less effects on normal cells (> 400 µg/mL). Collectively, CF can be considered as a potential initiative of a nutraceutical formulation that can target CSCs.Keywords: breast cancer stem cells (bCSCs), Hylocereus undatus, combinatorial formulation (CF), ABCB 1 protein, verapamil
Procedia PDF Downloads 273947 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using one-dimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment
Procedia PDF Downloads 3383946 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 1843945 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production
Authors: Apurva Gupta, Surendra Singh
Abstract:
Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin
Procedia PDF Downloads 1683944 Therapeutic Evaluation of Bacopa Monnieri Extract on Liver Fibrosis in Rats
Authors: Yu Wen Wang, Shyh Ming Kuo, Hsia Ying Cheng, Yu Chiuan Wu
Abstract:
Liver fibrosis is caused by the activation of hepatic stellate cells in the liver to secrete excessive and deposition of extracellular matrix. In recent years, many treatment strategies have been developed to reduce the activation of hepatic stellate cells and therefore to increase the decomposition of extracellular matrix. Bacopa monnieri, an herbaceous plant of the scrophulariaceae, containing saponins and glycosides, which with antioxidant, anti-inflammation, pain relief and free radical scavenging characteristics. This study was to evaluate the inhibition of hepatic stellate cell activity by Bacopa monnieri extract and its therapeutic potential in treating thioacetamide-induced liver fibrosis in rats. The results showed that the IC50 of Bacopa monnieri extract was 0.39 mg/mL. Bacopa monnieri extract could effectively reduce H2O2-induced hepatic stellate cells inflammation. In the TAA-induced liver fibrosis animal studies, albumin secretion recovered to normal level after treated with Bacopa monnieri extract for 2-w, and fibrosis related proteins, α-SMA and TGF-1levels decreased indicating the extract exerted therapeutic effect on the liver fibrosis. However, inflammatory factors TNF- obviously decreased after 4-w treatment. In summary, we could successfully extract the main component-Bacopaside I from the plant and acquired a potential therapy using this component in treating TAA-induced liver fibrosis in rat.Keywords: anti-inflammatory, Bacopa monnieri, fibrosis, hepatic stellate cells, water extract
Procedia PDF Downloads 1113943 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 1903942 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1343941 The Ability of Adipose Derived Mesenchymal Stem Cells for Diabetes Mellitus Type 2 Treatment
Authors: Purwati, Sony Wibisono, Ari Sutjahjo, Askandar T. J., Fedik A. Rantam
Abstract:
Diabetes mellitus type 2 (T2DM), also known as hyperglycemia, results from insulin resistance and relative insulin deficiency. Diabetes mellitus is the main cause of premature death, particularly among individuals under the age of 70 years old. Mesenchymal stem cells (MSCs) can release bioactive molecules that promote tissue repair and regeneration. Hence, in this research, we evaluated the potential of autologous adipose-derived mesenchymal stem cells (AD-MSCs) in 40 patients of phase I clinical trial in T2DM with various ages between 30-79 years. AD-MSCs are transferred through catheterization. MSCs were validated by measures of CD105+ and CD34- expression. The result showed that after AD-MSCs transplantation, blood glucose levels (fasting and 2-hour postprandial) and insulin levels were significantly decreasing. Besides that, the level of HbA1c significantly decreased after three months of AD-MSCs injection and increasing level of c-peptide after injection. Thus, we conclude that AD-MSCs injection has the potential for T2DM therapy.Keywords: glucose, hyperglycemia, MSCs, T2DM
Procedia PDF Downloads 813940 Endocrine Therapy Resistance and Epithelial to Mesenchymal Transition Inhibits by INT3 & Quercetin in MCF7 Cell Lines
Authors: D. Pradhan, G. Tripathy, S. Pradhan
Abstract:
Objectives: Imperviousness gainst estrogen treatments is a noteworthy reason for infection backslide and mortality in estrogen receptor alpha (ERα)- positive breast diseases. Tamoxifen or estrogen withdrawal builds the reliance of breast malignancy cells on INT3 flagging. Here, we researched the commitment of Quercetin and INT3 motioning in endocrine-safe breast tumor cells. Methods: We utilized two models of endocrine treatments safe (ETR) breast tumor: Tamoxifen-safe (TamR) and long haul estrogen-denied (LTED) MCF7 cells. We assessed the transitory and intrusive limit of these cells by Transwell cells. Articulation of epithelial to mesenchymal move (EMT) controllers and in addition INT3 receptors and targets were assessed by constant PCR and western smudge investigation. Besides, we tried in-vitro hostile to Quercetin monoclonal Antibodies (mAbs) and Gamma Secretase Inhibitors (GSIs) as potential EMT inversion remedial specialists. At last, we created stable Quercetin overexpressing MCF7 cells and assessed their EMT components and reaction to Tamoxifen. Results: We found that ETR cells procured an Epithelial to Mesenchymal move (EMT) phenotype and showed expanded levels of Quercetin and INT3 targets. Interestingly, we distinguished more elevated amount of INT3 however lower levels of INT1 and INT3 proposing a change to motioning through distinctive INT3 receptors after obtaining of resistance. Against Quercetin monoclonal antibodies and the GSI PF03084014 were powerful in obstructing the Quercetin/INT3 pivot and in part repressing the EMT process. As a consequence of this, cell relocation and attack were weakened and the immature microorganism like populace was essentially decreased. Hereditary hushing of Quercetin and INT3 prompted proportionate impacts. At long last, stable overexpression of Quercetin was adequate to make MCF7 lethargic to Tamoxifen by INT3 initiation. Conclusions: ETR cells express abnormal amounts of Quercetin and INT3, whose actuation eventually drives intrusive conduct. Hostile to Quercetin mAbs and GSI PF03084014 lessen articulation of EMT particles decreasing cell obtrusiveness. Quercetin overexpression instigates Tamoxifen resistance connected to obtaining of EMT phenotype. Our discovering propose that focusing on Quercetin and INT3 warrants further clinical Correlation as substantial restorative methodologies in endocrine-safe breast.Keywords: endocrine, epithelial, mesenchymal, INT3, quercetin, MCF7
Procedia PDF Downloads 3053939 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 773938 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 352