Search results for: multiwalled carbon nano tubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4249

Search results for: multiwalled carbon nano tubes

3289 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables

Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman

Abstract:

Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.

Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology

Procedia PDF Downloads 104
3288 Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method

Authors: P. C. Okafor, A. J. Ekpunobi

Abstract:

Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed.

Keywords: copper sulphide (CuS), Manganese (Mn) doping, electrodeposition, optical band gap, optical conductivity, electrical conductivity

Procedia PDF Downloads 713
3287 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 135
3286 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 367
3285 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 441
3284 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase

Procedia PDF Downloads 378
3283 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 113
3282 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 96
3281 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase

Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay

Abstract:

The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.

Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis

Procedia PDF Downloads 129
3280 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 62
3279 The Effect of Ice in Pain Control before Digital Nerve Block

Authors: Fatemeh Rasooli, Behzad Simiari, Pooya Payandemehr, Amir Nejati, Maryam Bahreini, Atefeh Abdollahi

Abstract:

Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure.

Keywords: digital block, ice, needle, pain

Procedia PDF Downloads 225
3278 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic

Authors: Theo H. G. Moundzounga

Abstract:

Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.

Keywords: electrochemistry, electrode, limit of detection, sensor

Procedia PDF Downloads 135
3277 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 295
3276 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 60
3275 Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents

Authors: Usman D. Hamza, Noor S. Nasri, Mohammed Jibril, Husna M. Zain

Abstract:

Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials.

Keywords: activated carbon, palm shell-PEEK, regeneration, thermal

Procedia PDF Downloads 478
3274 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites

Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt

Abstract:

For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.

Keywords: carbon, electric aircraft, polymer, thermal conductivity

Procedia PDF Downloads 154
3273 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 545
3272 Application of Nitric Acid Modified Cocos nucifera, Pennisetum glaucum and Sorghum bicolor Activated Carbon for Adsorption of H₂S Gas

Authors: Z. N. Ali, O. A. Babatunde, S. Garba, H. M. S. Haruna

Abstract:

The potency of modified and unmodified activated carbons prepared from shells of Cocos nucifera (coconut shell), straws of Pennisetum glaucum (millet) and Sorghum bicolor (sorghum) for adsorption of hydrogen sulphide gas were investigated using an adsorption apparatus (stainless steel cylinder) at constant temperature (ambient temperature). The adsorption equilibria states were obtained when the pressure indicated on the pressure gauge remained constant. After modification with nitric acid, results of the scanning electron microscopy of the unmodified and modified activated carbons showed that HNO3 greatly improved the formation of micropores and mesopores on the activated carbon surface. The adsorption of H2S gas was found to be highest in modified Cocos nucifera activated carbon with maximum monolayer coverage of 28.17 mg/g, and the adsorption processes were both physical and chemical with the physical process being predominant. The adsorption data were well fitted into the Langmuir isotherm model with the adsorption capacities of the activated carbons in the order modified Cocos nucifera > modified Pennisetum glaucum > modified Sorghum bicolor > unmodified Cocos nucifera > unmodified Pennisetum glaucum > unmodified Sorghum bicolour.

Keywords: activated carbon adsorption, hydrogen sulphide, nitric acid, modification, stainless steel cylinder

Procedia PDF Downloads 128
3271 Therapeutic Role of Polygonum bistorta and Zingiber roseum by in vivo and in vitro Study

Authors: Deepak Kumar Mittal, Alok Kumar Jena, Deepmala Joshi

Abstract:

The present study was carried out to observe the hepatoprotective effect and antioxidant activity of the aqueous extract of the roots of Polygonum bistorta (PB) (200 mg/kg) and Zingiber roseum (ZR) (250 mg/kg) in rats treated with carbon tetrachloride (0.15 ml/kg, i.p.). Extract of PB and ZR at the tested doses restored the levels of liver homogenate enzymes, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymes, significantly. The activities of MTT assay significantly recovered the damage and supported the biochemical observations. This study suggests that Zingiber roseum has a higher protective effect on liver, compared to Polygonum bistorta, against carbon tetrachloride-induced hepatotoxicity and possesses antioxidant activities. Also, extracts exhibited moderate anticancer activity towards cell viability at higher concentration.

Keywords: Polygonum bistorta, Zingiber roseum, hepatoprotective effect, carbon tetrachloride, anti-cancerous

Procedia PDF Downloads 421
3270 Graphene-reinforced Metal-organic Framework Derived Cobalt Sulfide/Carbon Nanocomposites as Efficient Multifunctional Electrocatalysts

Authors: Yongde Xia, Laicong Deng, Zhuxian Yang

Abstract:

Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced cobalt sulfide/carbon nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of cobalt sulfide embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis-Mass spectroscopy, Scanning electronic microscopy, Transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It was found that cobalt sulfide nanoparticles were homogenously dispersed in the in-situ formed N, S co-doped porous carbon/Graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% current after continuously running for around 5 hours, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active cobalt sulfide and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

Keywords: MOF derivative, graphene, electrocatalyst, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction

Procedia PDF Downloads 42
3269 Fracture Strength of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating

Authors: Anup Kumar Keshri, Arvind Agarwal

Abstract:

Carbon nanotube (CNT) reinforced aluminum oxide (Al2O3) composite coating was synthesized on the steel substrate using plasma spraying technique. Three different compositions of coating such as Al2O3, Al2O¬3-4 wt. % CNT and Al2O3-8 wt. % CNT were synthesized and the fracture strength was determined using the four point bend test. Uniform dispersion of CNTs over Al2O3 powder particle was successfully achieved. With increasing CNT content, porosity in the coating showed decreasing trend and hence contributed towards enhanced mechanical properties such as hardness (~12% increased) and elastic modulus (~34 % increased). Fracture strength of the coating was found to be increasing with the CNT additions. By reinforcement of 8 wt. % of CNT, fracture strength increased by ~2.5 times. The improvement in fracture strength of Al2O3-CNT coating was attributed to three competitive phenomena viz. (i) lower porosity (ii) higher hardness and elastic modulus (iii) CNT bridging between splats.

Keywords: aluminum oxide, carbon nanotube, fracture strength, plasma spraying

Procedia PDF Downloads 386
3268 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence

Procedia PDF Downloads 411
3267 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 302
3266 Heterogeneous Catalytic Ozonation of Diethyl Phthalate

Authors: Chedly Tizaoui, Hussain Mohammed, Lobna Mansouri, Nidal Hilal, Latifa Bousselmi

Abstract:

The degradation of diethyl phthalate (DEP) was studied using heterogeneous catalytic ozonation. Activated carbon was used as a catalyst. The degradation of DEP with ozone alone was slow while catalytic ozonation increased degradation rates. Second-order reaction kinetics was used to describe the experimental data, and the corresponding rate constant values were 1.19 and 3.94 M-1.s-1 for ozone and ozone/activated carbon respectively.

Keywords: ozone, heterogeneous catalytic ozonation, diethyl phthalate, endocrine disrupting chemicals

Procedia PDF Downloads 339
3265 Single Layer Carbon Nanotubes Array as an Efficient Membrane for Desalination: A Molecular Dynamics Study

Authors: Elisa Y. M. Ang, Teng Yong Ng, Jingjie Yeo, Rongming Lin, Zishun Liu, K. R. Geethalakshmi

Abstract:

By stacking carbon nanotubes (CNT) one on top of another, single layer CNT arrays can perform water-salt separation with ultra-high permeability and selectivity. Such outer-wall CNT slit membrane is named as the transverse flow CNT membrane. By adjusting the slit size between neighboring CNTs, the membrane can be configured to sieve out different solutes, right down to the separation of monovalent salt ions from water. Molecular dynamics (MD) simulation results show that the permeability of transverse flow CNT membrane is more than two times that of conventional axial-flow CNT membranes, and orders of magnitude higher than current reverse osmosis membrane. In addition, by carrying out MD simulations with different CNT size, it was observed that the variance in desalination performance with CNT size is small. This insensitivity of the transverse flow CNT membrane’s performance to CNT size is a distinct advantage over axial flow CNT membrane designs. Not only does the membrane operate well under constant pressure desalination operation, but MD simulations further indicate that oscillatory operation can further enhance the membrane’s desalination performance, making it suitable for operation such as electrodialysis reversal. While there are still challenges that need to be overcome, particularly on the physical fabrication of such membrane, it is hope that this versatile membrane design can bring the idea of using low dimensional structures for desalination closer to reality.

Keywords: carbon nanotubes, membrane desalination, transverse flow carbon nanotube membrane, molecular dynamics

Procedia PDF Downloads 186
3264 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography

Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias

Abstract:

In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.

Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA

Procedia PDF Downloads 326
3263 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes

Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra

Abstract:

Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.

Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis

Procedia PDF Downloads 179
3262 Synthesis, Microstructure and Photoluminescence Properties of Yttrium Orthovanadates: Influences of Silica Nano-Particles and Nano-Layers

Authors: Seyed Mahdi Rafiaei

Abstract:

In this investigation, firstly Eu3+ doped YVO4 phosphor was synthesized using solid-state method. Then silica was coated on the surface of particles via sol-gel method. To study the influence of SiO2 addition on microstructure and photoluminescence characteristics of YVO4:4% Eu3+ phosphor materials, we employed X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmitted Electron Microscope (HRTEM), Focused Ion Beam (FIB), Brunauer Emmett Teller (BET), Inductively coupled plasma (ICP), Electron Spin Resonance (ESR) and Photoluminescence (PL) equipments. The XPS characterization confirmed the formation of Y–O–Si and V-O-Si bondings between YVO4:Eu3+ phosphor particle and SiO2 coating. In addition, it was found that although the amounts of added SiO2 were not remarkable, but it resulted in enhancement of emission intensity of the phosphors. Finally by employing ESR analysis, it was shown that surface oxygen vacancies, result in reduction of V5+ to the lower valence state of V4+.

Keywords: solid state, sol-gel, silica, coating, photoluminescence

Procedia PDF Downloads 212
3261 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation

Authors: Zhaoyang Liu

Abstract:

It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.

Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions

Procedia PDF Downloads 160
3260 Effect of Temperature on Adsorption of Nano Ca-DTPMP Scale Inhibitor

Authors: Radhiyatul Hikmah Binti Abu, Zukhairi Bin Md Rahim, Siti Ujila Binti Masuri, Nur Ismarrubie Binti Zahari, Mohd Zobir Hussein

Abstract:

This paper describes the synthesis of Calcium Diethylenetriamine-penta (Ca-DTPMP) Scale Inhibitor (SI) and the effect of temperature on its adsorption onto the mineral surfaces. Nanosized particles of Ca-DTPMP SI were synthesized and TEM result shows that the sizes of the synthesized particles are ranged from 10 nm to 30 nm. This synthesized nano SI was then used in static adsorption/precipitation test with various temperatures (37°C, 60°C and 100°C) to determine the effect of temperature on its adsorption ability. The performance of the SI was measured by their diffusion capability, which can be inferred by weighing the metal-SI that successfully adsorbed onto the kaolinite (mineral) surface. The kaolinite samples were analyzed using Scanning Electron Microscope (SEM) and the results show the reduction of pores on kaolinite surface as temperature increases. This indicates higher adsorption of the SI particles onto the mineral surface. Furthermore, EDX analysis shows the presence of Phosphorus (P) and Magnesium (Mg2+) on kaolinite particle surface, hence reaffirming the fact that adsorption took place on the kaolinite surface.

Keywords: adsorption, diffusivity, scale, scale inhibitor

Procedia PDF Downloads 432