Search results for: multiwalled carbon nano tubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4331

Search results for: multiwalled carbon nano tubes

3371 Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens

Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska

Abstract:

Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development.

Keywords: CFRP, MWCNT, ELIUM, electrical properties, infusion

Procedia PDF Downloads 136
3370 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 114
3369 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 458
3368 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 407
3367 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization

Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali

Abstract:

Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.

Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization

Procedia PDF Downloads 499
3366 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 258
3365 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification

Authors: Ouerdia Benbelkacem Belouanas

Abstract:

Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.

Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite

Procedia PDF Downloads 419
3364 Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety

Authors: Catherine W. Njeru, Clarence Murithi W., Isaac W. Mwangi, Ruth Wanjau, Grace N. Kiriro, Gerald W. Mbugua

Abstract:

Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies.

Keywords: FT-IR, charcoal flue gases, beef, charcoal flue gases

Procedia PDF Downloads 24
3363 The Effect of Ice in Pain Control before Digital Nerve Block

Authors: Fatemeh Rasooli, Behzad Simiari, Pooya Payandemehr, Amir Nejati, Maryam Bahreini, Atefeh Abdollahi

Abstract:

Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure.

Keywords: digital block, ice, needle, pain

Procedia PDF Downloads 236
3362 Arsenite Remediation by Green Nano Zero Valent Iron

Authors: Ratthiwa Deewan, Visanu Tanboonchuy

Abstract:

The optimal conditions for green synthesis of zero-valent (G-NZVI) synthesis are investigated in this study using a Box Behnken design. The factors that were used in the study consisted of 3 factors as follows: the iron solution to mango peel extract ratio (1:1-1:3), feeding rate of mango peel extracts (1-5 mL/min), and agitation speed (300-30 rpm). The results showed that the optimization of conditions using the regression model was appropriate. The optimal conditions of the synthesis of G-NZVI for arsenate removal are the iron solution to mango peel extract ratio of 1:1, the feeding rate of mango peel extract at 5 mL/min, and the agitation speed rate of 300 rpm, which was able to arsenate removal of 100%.

Keywords: Box Behnken design, arsenate removal, green nano zero valent iron, arsenic

Procedia PDF Downloads 29
3361 Effect of Manganese Doping Percentage on Optical Band Gap and Conductivity of Copper Sulphide Nano-Films Prepared by Electrodeposition Method

Authors: P. C. Okafor, A. J. Ekpunobi

Abstract:

Mn doped copper sulphide (CuS:Mn) nano-films were deposited on indiums coated tin oxide (ITO) glass substrates using electrodeposition method. Electrodeposition was carried out using bath of PH = 3 at room temperature. Other depositions parameters such as deposition time (DT) are kept constant while Mn doping was varied from 3% to 23%. Absorption spectra of CuS:Mn films was obtained by using JENWAY 6405 UV-VIS -spectrophotometer. Optical band gap (E_g ), optical conductivity (σo) and electrical conductivity (σe) of CuS:Mn films were determined using absorption spectra and appropriate formula. The effect of Mn doping % on these properties were investigated. Results show that film thickness (t) for the 13.27 nm to 18.49 nm; absorption coefficient (α) from 0.90 x 1011 to 1.50 x 1011 optical band gap from 2.29eV to 2.35 eV; optical conductivity from 1.70 x 1013 and electrical conductivity from 160 millions to 154 millions. Possible applications of such films for solar cells fabrication and optoelectronic devices applications were also discussed.

Keywords: copper sulphide (CuS), Manganese (Mn) doping, electrodeposition, optical band gap, optical conductivity, electrical conductivity

Procedia PDF Downloads 722
3360 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 145
3359 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills

Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li

Abstract:

Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.

Keywords: nanotechnology, science education, project-based learning, information and communication technology

Procedia PDF Downloads 375
3358 The Prototype of the Solar Energy Utilization for the Finding Sustainable Conditions in the Future: The Solar Community with 4000 Dwellers 960 Families, equal to 480 Solar Dwelling Houses and 32 Mansion Buildings (480 Dwellers)

Authors: Kunihisa Kakumoto

Abstract:

This technical paper is for the prototype of solar energy utilization for finding sustainable conditions. This model has been simulated under the climate conditions in Japan. At the beginning of the study, the solar model house was built up on site. And the concerned data was collected in this model house for several years. On the basis of these collected data, the concept on the solar community was built up. For the finding sustainable conditions, the amount of the solar energy generation and its reduction of carbon dioxide and the reduction of carbon dioxide by the green planting and the amount of carbon dioxide according to the normal daily life in the solar community and the amount of the necessary water for the daily life in the solar community and the amount of the water supply by the rainfall on-site were calculated. These all values were taken into consideration. The relations between each calculated result are shown in the expression of inequality. This solar community and its consideration for finding sustainable conditions can be one prototype to do the feasibility study for our life in the future

Keywords: carbon dioxide, green planting, smart city, solar community, sustainable condition, water activity

Procedia PDF Downloads 287
3357 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase

Procedia PDF Downloads 391
3356 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching

Procedia PDF Downloads 287
3355 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 236
3354 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
3353 Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency

Authors: Y. S. Lee, F. Malek, E. M. Cheng, W. W. Liu, F. H. Wee, M. N. Iqbal, Z. Liyana, B. S. Yew, F. S. Abdullah

Abstract:

This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular wave guide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex permittivity is represented in terms of both the real and imaginary parts of permittivity in X-band frequency. The conductivity of RHCNTs shows increasing when the ratio of CNTs mixture increases. The composites materials were simulated using Computer Simulation Technology (CST) Microwave Studio simulation software. The shielding effectiveness of RHCNTs and pure rice husk was compared. The highest EMI SE of 30 dB is obtained for RHCNTs composites of 10 wt % CNTs with 10 mm thick.

Keywords: EMI shielding effectiveness, carbon nanotube, composite materials wave guide, x-band

Procedia PDF Downloads 409
3352 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 305
3351 Adsorption and Desorption of Emerging Water Contaminants on Activated Carbon Fabrics

Authors: S. Delpeux-Ouldriane, M. Gineys, S. Masson, N. Cohaut, L. Reinert, L. Duclaux, F. Béguin

Abstract:

Nowadays, a wide variety of organic contaminants are present at trace concentrations in wastewater effluents. In order to face these pollution problems, the implementation of the REACH European regulation has defined lists of targeted pollutants to be eliminated selectively in water. It therefore implies the development of innovative and more efficient remediation techniques. In this sense, adsorption processes can be successfully used to achieve the removal of organic compounds in waste water treatment processes, especially at low pollutant concentration. Especially, activated carbons possessing a highly developed porosity demonstrate high adsorption capacities. More specifically, carbon cloths show high adsorption rates, an easily handling, a good mechanical integrity and regeneration potentialities. When loaded with pollutants, these materials can be indeed regenerated using an electrochemical polarization.

Keywords: nanoporous carbons, activated carbon cloths, adsorption, micropollutants, emerging contaminants, regeneration, electrochemistry

Procedia PDF Downloads 401
3350 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: activated carbon, POME based lipase, immobilization, adsorption

Procedia PDF Downloads 243
3349 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 442
3348 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 98
3347 Difference in the Expression of CIRBP, RBM3 and HSP70 in the Myocardium and Cerebellum after Death by Hypothermi a and Carbon Monoxide Poisoning

Authors: Satoshi Furukawa, Satomu Morita, Lisa Wingenfeld, Katsuji Nishi, Masahito Hitosugi

Abstract:

We studied the expression of hypoxia-related antigens (e.g., cold-inducible antigens and apoptotic antigens) in the myocardium and the cerebellumthat were obtained from individuals after death by carbon monoxide or hypothermia. The immunohistochemistry results revealed that expression of cold-inducible RNA binding protein (CIRBP) and RNA-binding protein 3 (RBM3) may be associated with hpyothermic and the hypoxic conditions. The expression of CIRBP and RBM3 in the myocardium was different from their expression in the cerebellum, especially in the Purkinje cells. The results indicate that agonal duration influences antigen expression. In the hypothermic condition, the myocardium uses more ATP since the force of the excitation-contraction coupling of the myocardium increases by more than 400% when the experimental temperature is reduced from 35°C to 25°C. The results obtained in this study indicate that physicians should pay attention to the myocardium when cooling the patient’s body to protect the brain.

Keywords: carbon monoxide death, cerebellum, CIRBP, hypothermic death, myocardium, RBM3

Procedia PDF Downloads 363
3346 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil

Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva

Abstract:

The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.

Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits

Procedia PDF Downloads 76
3345 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Metal-enhanced luminescence of silicon nano crystals (SiNCs) was determined using two different particle sizes of silver nano particles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to ×9 and ×3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.

Keywords: silver nanoparticles, surface enhanced raman spectroscopy (SERS), silicon nanocrystals, luminescence

Procedia PDF Downloads 421
3344 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables

Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman

Abstract:

Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.

Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology

Procedia PDF Downloads 116
3343 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 311
3342 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 449