Search results for: important feature points
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17315

Search results for: important feature points

16355 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 72
16354 Temporal Profile of Exercise-Induced Changes in Plasma Brain-Derived Neurotrophic Factor Levels of Schizophrenic Individuals

Authors: Caroline Lavratti, Pedro Dal Lago, Gustavo Reinaldo, Gilson Dorneles, Andreia Bard, Laira Fuhr, Daniela Pochmann, Alessandra Peres, Luciane Wagner, Viviane Elsner

Abstract:

Approximately 1% of the world's population is affected by schizophrenia (SZ), a chronic and debilitating neurodevelopmental disorder. Among possible factors, reduced levels of Brain-derived neurotrophic factor (BDNF) has been recognized in physiopathogenesis and course of SZ. In this context, peripheral BDNF levels have been used as a biomarker in several clinical studies, since this neurotrophin is able to cross the blood-brain barrier in a bi-directional manner and seems to present a strong correlation with the central nervous system fluid levels. The patients with SZ usually adopts a sedentary lifestyle, which has been partly associated with the increase in obesity incidence rates, metabolic syndrome, type 2 diabetes and coronary heart disease. On the other hand, exercise, a non-invasive and low cost intervention, has been considered an important additional therapeutic option for this population, promoting benefits to physical and mental health. To our knowledge, few studies have been pointed out that the positive effects of exercise in SZ patients are mediated, at least in part, to enhanced levels of BDNF after training. However, these studies are focused on evaluating the effect of single bouts of exercise of chronic interventions, data concerning the short- and long-term exercise outcomes on BDNF are scarce. Therefore, this study aimed to evaluate the effect of a concurrent exercise protocol (CEP) on plasma BDNF levels of SZ patients in different time-points. Material and Methods: This study was approved by the Research Ethics Committee of the Centro Universitário Metodista do IPA (no 1.243.680/2015). The participants (n=15) were subbmited to the CEP during 90 days, 3 times a week for 60 minutes each session. In order to evaluate the short and long-term effects of exercise, blood samples were collected pre, 30, 60 and 90 days after the intervention began. Plasma BDNF levels were determined with the ELISA method, from Sigma-Aldrich commercial kit (catalog number RAB0026) according to manufacturer's instructions. Results: A remarkable increase on plasma BDNF levels at 90 days after training compared to baseline (p=0.006) and 30 days (p=0.007) values were observed. Conclusion: Our data are in agreement with several studies that show significant enhancement on BDNF levels in response to different exercise protocols in SZ individuals. We might suggest that BDNF upregulation after training in SZ patients acts in a dose-dependent manner, being more pronounced in response to chronic exposure. Acknowledgments: This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)/Brazil.

Keywords: exercise, BDNF, schizophrenia, time-points

Procedia PDF Downloads 236
16353 Spatial Variation of Nitrogen, Phosphorus and Potassium Contents of Tomato (Solanum lycopersicum L.) Plants Grown in Greenhouses (Springs) in Elmali-Antalya Region

Authors: Namik Kemal Sonmez, Sahriye Sonmez, Hasan Rasit Turkkan, Hatice Tuba Selcuk

Abstract:

In this study, the spatial variation of plant and soil nutrition contents of tomato plants grown in greenhouses was investigated in Elmalı region of Antalya. For this purpose, total of 19 sampling points were determined. Coordinates of each sampling points were recorded by using a hand-held GPS device and were transferred to satellite data in GIS. Soil samples were collected from two different depths, 0-20 and 20-40 cm, and leaf were taken from different tomato greenhouses. The soil and plant samples were analyzed for N, P and K. Then, attribute tables were created with the analyses results by using GIS. Data were analyzed and semivariogram models and parameters (nugget, sill and range) of variables were determined by using GIS software. Kriged maps of variables were created by using nugget, sill and range values with geostatistical extension of ArcGIS software. Kriged maps of the N, P and K contents of plant and soil samples showed patchy or a relatively smooth distribution in the study areas. As a result, the N content of plants were sufficient approximately 66% portion of the tomato productions. It was determined that the P and K contents were sufficient of 70% and 80% portion of the areas, respectively. On the other hand, soil total K contents were generally adequate and available N and P contents were found to be highly good enough in two depths (0-20 and 20-40 cm) 90% portion of the areas.

Keywords: Elmali, nutrients, springs greenhouses, spatial variation, tomato

Procedia PDF Downloads 229
16352 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 62
16351 Optimization the Multiplicity of Infection for Large Produce of Lytic Bacteriophage pAh6-C

Authors: Sang Guen Kim, Sib Sankar Giri, Jin Woo Jun, Saekil Yun, Hyoun Joong Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park

Abstract:

Emerging of the super bacteria, bacteriophages are considered to be as an alternative to antibiotics. As the demand of phage increased, economical and large production of phage is becoming one of the critical points. For the therapeutic use, what is important is to eradicate the pathogenic bacteria as fast as possible, so higher concentration of phages is generally needed for effective therapeutic function. On the contrary, for the maximum production, bacteria work as a phage producing factory. As a microbial cell factory, bacteria is needed to last longer producing the phages without eradication. Consequently, killing the bacteria fast has a negative effect on large production. In this study, Multiplicity of Infection (MOI) was manipulated based on initial bacterial inoculation and used phage pAh-6C which has therapeutic effect against Aeromonas hydrophila. 1, 5 and 10 percent of overnight bacterial culture was inoculated and each bacterial culture was co-cultured with the phage of which MOI of 0.01, 0.0001, and 0.000001 respectively. Simply changing the initial MOI as well as bacterial inoculation concentration has regulated the production quantity of the phage without any other changes to culture conditions. It is anticipated that this result can be used as a foundational data for mass production of lytic bacteriophages which can be used as the therapeutic bio-control agent.

Keywords: bacteriophage, multiplicity of infection, optimization, Aeromonas hydrophila

Procedia PDF Downloads 288
16350 A Discussion on Urban Planning Methods after Globalization within the Context of Anticipatory Systems

Authors: Ceylan Sozer, Ece Ceylan Baba

Abstract:

The reforms and changes that began with industrialization in cities and continued with globalization in 1980’s, created many changes in urban environments. City centers which are desolated due to industrialization, began to get crowded with globalization and became the heart of technology, commerce and social activities. While the immediate and intense alterations are planned around rigorous visions in developed countries, several urban areas where the processes were underestimated and not taken precaution faced with irrevocable situations. When the effects of the globalization in the cities are examined, it is seen that there are some anticipatory system plans in the cities about the future problems. Several cities such as New York, London and Tokyo have planned to resolve probable future problems in a systematic scheme to decrease possible side effects during globalization. The decisions in urban planning and their applications are the main points in terms of sustainability and livability in such mega-cities. This article examines the effects of globalization on urban planning through 3 mega cities and the applications. When the applications of urban plannings of the three mega-cities are investigated, it is seen that the city plans are generated under light of past experiences and predictions of a certain future. In urban planning, past and present experiences of a city should have been examined and then future projections could be predicted together with current world dynamics by a systematic way. In this study, methods used in urban planning will be discussed and ‘Anticipatory System’ model will be explained and relations with global-urban planning will be discussed. The concept of ‘anticipation’ is a phenomenon that means creating foresights and predictions about the future by combining past, present and future within an action plan. The main distinctive feature that separates anticipatory systems from other systems is the combination of past, present and future and concluding with an act. Urban plans that consist of various parameters and interactions together are identified as ‘live’ and they have systematic integrities. Urban planning with an anticipatory system might be alive and can foresight some ‘side effects’ in design processes. After globalization, cities became more complex and should be designed within an anticipatory system model. These cities can be more livable and can have sustainable urban conditions for today and future.In this study, urban planning of Istanbul city is going to be analyzed with comparisons of New York, Tokyo and London city plans in terms of anticipatory system models. The lack of a system in İstanbul and its side effects will be discussed. When past and present actions in urban planning are approached through an anticipatory system, it can give more accurate and sustainable results in the future.

Keywords: globalization, urban planning, anticipatory system, New York, London, Tokyo, Istanbul

Procedia PDF Downloads 133
16349 Contribution to the Study of the Fungal Flora Seed-Borne in Cereal: Wheat and Barley

Authors: M’lik Randa, Lakhdari Wassima, Dahliz Abderrahmène, Soud Adila, Hammi Hamida

Abstract:

In cereal culture, as in the most the vegetal productions the seeds play an important role in the development of the future plant. The healthy seeds are very important for the quality and quantity production. This study on a media (P.D.A) shows that an important mycoflora exists in the crops. Among the identified fungical, we notice the presence of Helminthosporium sp, Alternaria sp, Botrytis and Macrosporium. The use of the illness causing facies, especially for Helminthosporium, Alternaria and Botrytis emphasizes the relation between the seminicole inoculums and the appearance of symptoms on young plants noted by authors.

Keywords: seeds, barley, wheat, fungical flora

Procedia PDF Downloads 399
16348 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 38
16347 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 79
16346 Qualitative Study Method on Case Assignment Adopted by Singapore Medical Social Workers

Authors: Joleen L. H. Lee, K. F. Yen, Janette W. P. Ng, D. Woon, Mandy M. Y. Lau, Ivan M. H. Woo, S. N. Goh

Abstract:

Case assignment systems are created to meet a need for equity in work distribution and better match between medical social workers' (MSWs) competencies and patients' problems. However, there is no known study that has explored how MSWs in Singapore assign cases to achieve equity in work distribution. Focus group discussions were conducted with MSWs from public hospitals to understand their perception on equitable workload and case allocation. Three approaches to case allocation were found. First is the point system where points are allocated to cases based on a checklist of presenting issues identified most of the time by non-MSWs. Intensity of case is taken into consideration, but allocation of points is often subject to variation in appreciation of roles of MSWs by the source of referral. Second is the round robin system, where all MSWs are allocated cases based on a roster. This approach resulted in perceived equity due to element of luck, but it does not match case complexity with competencies of MSWs. Third approach is unit-based allocation, where MSWs are assigned to attend to cases from specific unit. This approach helps facilitate specialization among MSWs but may result in MSWs having difficulty providing transdisciplinary care due to narrow set of knowledge and skills. Trade-offs resulted across existing approaches for case allocation by MSWs. Conversations are needed among Singapore MSWs to decide on a case allocation system that comes with trade-offs that are acceptable for patients and other key stakeholders of the care delivery system.

Keywords: case allocation, equity, medical social worker, work distribution

Procedia PDF Downloads 106
16345 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models

Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo

Abstract:

Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.

Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps

Procedia PDF Downloads 80
16344 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 34
16343 Gender and Citizen Participation at the Local Governments: A Case of Vietnam

Authors: Trinh Hoang Hong Hue

Abstract:

Citizen Participation has been largely considered as an important objective of improving democracy and government decision-making in Vietnam recently. The Public Administration Performance Index Survey data (PAPI) indicated that citizens in provinces that have a higher proportion of male often less participate in local governance than those in provinces that have lower proportion of male. That means Vietnamese women more actively participate at the local governance rather than men. Thus this study will explore factors involving gender differences that impact on citizen participation at the local level. Applying qualitative approach, mainly in-depth interview, this study explores four diverse perspectives on enhancing citizen participation for both women and men at the local governance including civic knowledge; the trust of citizens; suitable policies of local government; and the role of NGOs. Furthermore, this study also points out two crucial reasons that are leading to the gender differences of citizen participation at the local level. Firstly, because Vietnamese women play the main role in family financial management; then they are willing to highly contribute to ‘voluntary contributions’; one of the four sub-dimensions of the concept ‘citizen participation’ of PAPI. Secondly, in Vietnam, women are deeply prone to be interested in the small issues at the local governance; whereas men are much keen on the bigger issues at national and international governance.

Keywords: citizen participation, gender, women, local governance, PAPI, Vietnam

Procedia PDF Downloads 120
16342 Constructing Notation for Music Learning in Athletes: Identifying Key Concepts in Music and Body Movements

Authors: Fung Chiat Loo, Fung Ying Loo

Abstract:

This paper discusses, suggests, and constructs a notation system to facilitate the learning and understanding of the two aspects of music and movement in a sports routine. This model serves to provide a simple and logical notation that does not require training in both music and choreography. Notation is an important medium in many art forms, particularly in music and dance, transmitting information that cannot easily be expressed using words or language. Another field that is closely associated with dance and music is sports routine, which equally requires choreography and music. However, from the perspective of music, it is common to observe many incongruencies appearing between the music used and the choreography that impede an optimal perception of the performance. The concept of the notation proceeds with a discussion and review of existing dance notations that could contribute to sports routines, along with rules and a code of points in selected sports routines. The author's involvement as an insider of numerous musical theatre productions also contributed to this study. The notation constructed includes time (tempo), significances of musical accents, direction, and phrasing, along with significances of movements (jump, punch, shape). It is believed that the level of congruence between music and movement will provide optimal visualization, and in that, the notation serves to provide adequate information on both entities for the understanding of athletes and coaches.

Keywords: notation, choreography, music learning, sports routines, congruence

Procedia PDF Downloads 71
16341 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 258
16340 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 275
16339 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 448
16338 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 151
16337 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction

Authors: Radul Shishkov, Orlin Davchev

Abstract:

The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.

Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction

Procedia PDF Downloads 36
16336 Attitude towards Doping of High-Performance Athletes in a Sports Institute of the City of Medellin, Colombia

Authors: Yuban Sebastian Cuartas-Agudelo, Sandra Marcela López-Hincapié, Vivianna Alexandra Garrido-Altamar, María de los Ángeles Rodríguez-Gázquez, Camilo Ruiz-Mejía, Lina María Martínez-Sánchez, Gloria Inés Martínez-Domínguez, Luis Eduardo Contreras, Felipe Eduardo Marino-Isaza

Abstract:

Introduction: Doping is a prohibited practice in competitive sports with potential adverse effects; therefore, it is crucial to describe the attitudes of athletes towards this behavior and to determine which o these increase the susceptibility to carry out this practice. Objective: To determine the attitude of high-performance athletes towards doping in a sports institute in the city of Medellin, Colombia. Methods: We performed a cross-sectional study during 2016, with a sample taken to convenience consisting of athletes over 18 years old enrolled in a sports institute of the city of Medellin (Colombia). The athletes filled by themselves the Petroczi and Aidman questionnaire: Performance Enhancement Attitude Scale (PEAS) adapted to the Spanish language by Morente-Sánchez et al. This scale has 17 items with likert answer options, with a score ranging from 1 to 6, with a higher score indicating a stronger tendency towards doping practices. Results: 112 athletes were included with an average age of 21.6 years old, a 60% of them were male and the most frequent sports were karate 17%, judo 12.5% and athletics 9.8%. The average score of the questionnaire was 35.5 points of a 102 possible points. The lowest score was obtained in the following items: Is Doping necessary 1,4 and Doping isn’t cheating, everyone does it 1,5. Conclusion: In our population, there is a low tendency towards doping practices.

Keywords: sports, doping in sports, athletic performance, attitude

Procedia PDF Downloads 207
16335 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 129
16334 The Six 'P' Model: Principles of Inclusive Practice for Inclusion Coaches

Authors: Tiffany Gallagher, Sheila Bennett

Abstract:

Based on data from a larger study, this research is based in a small school district in Ontario, Canada, that has made a transition from self-contained classes for students with exceptionalities to inclusive classroom placements for all students with their age-appropriate peers. The school board aided this transition by hiring Inclusion Coaches with a background in special education to work alongside teachers as partners and inform their inclusive practice. Based on qualitative data from four focus groups conducted with Inclusion Coaches, as well as four blog-style reflections collected at various points over two years, six principles of inclusive practice were identified for coaches. The six principles form a model during transition: pre-requisite, process, precipice, promotion, proof, and promise. These principles are encapsulated in a visual model of a spiraling staircase displaying the conditions that exist prior to coaching, during coaching interactions and considerations for the sustainability of coaching. These six principles are re-iterative and should be re-visited each time a coaching interaction is initiated. Exploring inclusion coaching as a model emulates coaching in other contexts and allows us to examine an established process through a new lens. This research becomes increasingly important as more school boards transition toward inclusive classrooms, The Six ‘P’ Model: Principles of Inclusive Practice for Inclusion Coaches allows for a unique look into a scaffolding model of building educator capacity in an inclusive setting.

Keywords: capacity building, coaching, inclusion, special education

Procedia PDF Downloads 232
16333 Building Deep: Mystery And Sensuality In The Underground World

Authors: Rene Davids

Abstract:

Urban undergrounds spaces such as parking garages or metro stations are perceived as interludes before reaching desired destinations, as commodities devoid of aesthetic value. Within the encoded space of the city, commercial underground spaces are the closest expression to pure to structures of consumption and commodity. Even in the house, the cellar is associated with castoffs and waste or, as scholar Mircea Eliade has pointed out at best, with a place to store abandoned household and childhood objects, which lie forgotten and on rediscovery evoke a nostalgic and uncanny sense of the past. Despite a growing body of evidence presented by an increasing number of buildings situated entirely below or semi underground that feature exemplary spatial and sensuous qualities, critics and scholars see them largely as efforts to produce efforts in producing low consumption non-renewable energy. Buildings that also free space above ground. This critical approach neglects to mention and highlight other project drivers such as the notion that the ground and sky can be considered a building’s fundamental context, that underground spaces are conducive to the exploration of pure space, namely an architecture that doesn’t have to deal with facades and or external volumes and that digging into geology can inspire the textural and spatial richness. This paper will argue that while the assessment about the reduced energy consumption of underground construction is important, it does not do justice to the qualities underground buildings can contribute to a city’s expanded urban and or landscape experiences.

Keywords: low non-renewable energy consumption, pure space, underground buildings, urban and landscape experience

Procedia PDF Downloads 168
16332 Development of Standard Thai Appetizer in Rattanakosin Era‘s Standard: Case Study of Thai Steamed Dumpling

Authors: Nunyong Fuengkajornfung, Pattama Hirunyophat, Tidarat Sanphom

Abstract:

The objectives of this research were: To study of the recipe standard of Thai steamed dumpling, to study the ratio of modified starch in Thai steamed dumpling, to study chemical elements analyzing and Escherichia coli in Thai steamed dumpling. The experimental processes were designed in two stages as follows: To study the recipe standard of Thai steamed dumpling and to study the ratio of rice flour: modify starch by three levels 90:10, 73:30, and 50:50. The evaluation test used 9 Points Hedonic Scale method by the sensory evaluation test such as color, smell, taste, texture and overall liking. An experimental by Randomized Complete Block Design (RCBD). The statistics used in data analyses were means, standard deviation, one-way ANOVA and Duncan’s New Multiple Range Test. Regression equation, at a statistically significant level of .05. The results showed that the recipe standard was studied from three recipes by the sensory evaluation test such as color, odor, taste, spicy, texture and total acceptance. The result showed that the recipe standard of second was suitably to development. The ratio of rice flour: modified starch had 3 levels 90:10, 73:30, and 50:50 which the process condition of 50:50 had well scores (like moderately to like very much; used 9 Points Hedonic Scale method for the sensory test). Chemical elements analyzing, it showed that moisture 58.63%, fat 5.45%, protein 4.35%, carbohydrate 30.45%, and Ash 1.12%. The Escherichia coli is not found in lab testing.

Keywords: Thai snack in Rattanakosin era, Thai steamed dumpling, modify starch, recipe standard

Procedia PDF Downloads 311
16331 Examining the Attitudes of Pre-School Teachers towards Values Education in Terms of Gender, School Type, Professional Seniority and Location

Authors: Hatice Karakoyun, Mustafa Akdag

Abstract:

This study has been made to examine the attitudes of pre-school teachers towards values education. The study has been made as a general scanning model. The study’s working group contains 108 pre-school teachers who worked in Diyarbakır, Turkey. In this study Values Education Attitude Scale (VEAS), which developed by Yaşaroğlu (2014), was used. In order to analyze the data for sociodemographic structure, percentage and frequency values were examined. The Kolmogorov-Smirnov method was used in determination of the normal distribution of data. During analyzing the data, KolmogorovSimirnov test and the normal curved histograms were examined to determine which statistical analyzes would be applied on the scale and it was found that the distribution was not normal. Thus, the Mann Whitney U analysis technique which is one of the nonparametric statistical analysis techniques were used to test the difference of the scores obtained from the scale in terms of independent variables. According to the analyses, it seems that pre-school teachers’ attitudes toward values education are positive. According to the scale with the highest average, it points out that pre-school teachers think that values education is very important for students’ and children’s future. The variables included in the scale (gender, seniority, age group, education, school type, school place) seem to have no effect on the pre-school teachers’ attitude grades which joined to the study.

Keywords: attitude scale, pedagogy, pre-school teacher, values education

Procedia PDF Downloads 229
16330 The Role of Microbe-Microplastics Associations in Marine Nematode Feeding Behaviors

Authors: A. Ridall, J. Ingels

Abstract:

Microplastics (MPs; < 5 mm) have been cited as exceptionally detrimental to marine organisms and ocean health. They can carry other pollutants and abundant microbes that can serve as food for other organisms. Their small particle size and high abundance means that non-discriminatory feeders may ingest MPs involuntarily and microbial colonization of the particles (a niche coined ‘Plastisphere’) could facilitate particle ingestion. To assess how marine nematodes, the most abundant member of the meiofauna (32-500 um), are affected by microbe-MP associations, an experiment was conducted with three MP concentrations (low, medium, and expected high values of MPs in a local bay system), and two levels of microbe-MP associations (absence or presence). MPs were introduced into sediment microcosms and treatments were removed at three distinct time points (0, 3, and 7 days) to measure mean MP consumption/individual nematode. The quantitative results from this work should inform on microbial facilitation of MP ingestion and MP effects on seafloor ecology. As most MP feeding experiments use straight-from-package or sterile MPs, this work represents an important step in realizing the effects of MPs and their plastispheres in coastal sediments where they likely accumulate microbial biofilms prior to their ingestion by marine metazoans. Furthermore, the results here convey realistic effects of MPs on faunal behaviors, as the MP concentrations used are based on field measurements rather than artificially high levels.

Keywords: ecosystem function, microbeads, plastisphere, pollution, polyethylene

Procedia PDF Downloads 78
16329 Topographic Coast Monitoring Using UAV Photogrammetry: A Case Study in Port of Veracruz Expansion Project

Authors: Francisco Liaño-Carrera, Jorge Enrique Baños-Illana, Arturo Gómez-Barrero, José Isaac Ramírez-Macías, Erik Omar Paredes-JuáRez, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga

Abstract:

Topographical changes in coastal areas are usually assessed with airborne LIDAR and conventional photogrammetry. In recent times Unmanned Aerial Vehicles (UAV) have been used several in photogrammetric applications including coastline evolution. However, its use goes further by using the points cloud associated to generate beach Digital Elevation Models (DEM). We present a methodology for monitoring coastal topographic changes along a 50 km coastline in Veracruz, Mexico using high-resolution images (less than 10 cm ground resolution) and dense points cloud captured with an UAV. This monitoring develops in the context of the port of Veracruz expansion project which construction began in 2015 and intends to characterize coast evolution and prevent and mitigate project impacts on coastal environments. The monitoring began with a historical coastline reconstruction since 1979 to 2015 using aerial photography and Landsat imagery. We could define some patterns: the northern part of the study area showed accretion while the southern part of the study area showed erosion. Since the study area is located off the port of Veracruz, a touristic and economical Mexican urban city, where coastal development structures have been built since 1979 in a continuous way, the local beaches of the touristic area are been refilled constantly. Those areas were not described as accretion since every month sand-filled trucks refill the sand beaches located in front of the hotel area. The construction of marinas and the comitial port of Veracruz, the old and the new expansion were made in the erosion part of the area. Northward from the City of Veracruz the beaches were described as accretion areas while southward from the city, the beaches were described as erosion areas. One of the problems is the expansion of the new development in the southern area of the city using the beach view as an incentive to buy front beach houses. We assessed coastal changes between seasons using high-resolution images and also points clouds during 2016 and preliminary results confirm that UAVs can be used in permanent coast monitoring programs with excellent performance and detail.

Keywords: digital elevation model, high-resolution images, topographic coast monitoring, unmanned aerial vehicle

Procedia PDF Downloads 255
16328 Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy

Authors: A. Flammini, R. Morbidelli, C. Saltalippi

Abstract:

The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past.

Keywords: climatic change, temperature, rainfall regime, trend analysis

Procedia PDF Downloads 98
16327 Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield

Authors: Ismail Tas, Yusuf Ersoy Yildirim, Yavuz Fatih Fidantemiz, Aysegul Boyacioglu, Demet Uygan, Ozgur Ates, Erdinc Savasli, Oguz Onder, Murat Tugrul

Abstract:

The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed.

Keywords: MDIS, linear sprinkler, sugar beet, irrigation efficiency

Procedia PDF Downloads 75
16326 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 312