Search results for: gravitational water vortex power plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16661

Search results for: gravitational water vortex power plant

15701 Water Budget in High Drought-Borne Area in Jaffna District, Sri Lanka during Dry Season

Authors: R. Kandiah, K. Miyamoto

Abstract:

In Sri Lanka, the Jaffna area is a high drought affected area and depends mainly on groundwater aquifers for water needs. Water for daily activities is extracted from wells. As households manually extract water from the wells, it is not drawn from mid evening to early morning. The water inflow at night provides the maximum water level that decreases during the daytime due to extraction. The storage volume of water in wells is limited or at its lowest level during the dry season. This study analyzes the domestic water budget during the dry season in the Jaffna area. In order to evaluate the water inflow rate into wells, storage volume and extraction volume from wells over time, water pressure is measured at the bottom of three wells, which are located in coastal area denoted as well A, in nonspecific area denoted as well B, and agricultural area denoted as well C. The water quality at the wells A, B, and C, are mostly fresh, modest fresh, and saline respectively. From the monitoring, we can find that the daily inflow amount of water into the wells and daily water extraction depend on each other, that is, higher extraction yields higher inflow. And, in the dry season, the daily inflow volume and the daily extraction volume of each well are almost in balance.

Keywords: accessible volume, consumption volume, inflow rate, water budget

Procedia PDF Downloads 358
15700 Removal of Deposits and Improvement of Shelf Life in CO₂-Rich Mineral Water by Ozone-Microbubbles

Authors: Un Hwa Choe, Jong Hyon Choe, Yong Jun Kim

Abstract:

The aim of this study was to effectively remove Fe2+ by using ozone microbubbles in bottled mineral water to prevent sediment from occurring during storage and increase shelf life. By considering the characteristics of mineral water with low solubility of ozone and high CO2 content, a suitable ozone injection step was chosen and a new mineral water treatment method using microbubbles was proposed. As a result of the treatment of the bottled mineral water with ozone microbubbles, the iron ion concentration was reduced from 0.14 mg/L to 0.01 mg/L, and the shelf life increased to 360 days. During the treatment, the concentrations of K+ and Na+ were almost unchanged, and the deposition time was reduced to one-third compared to the natural oxidation.

Keywords: CO₂-rich mineral water, ozone-micro bubble, shelf life, bottled mineral water, water treatment

Procedia PDF Downloads 85
15699 Economic Analysis of Domestic Combined Heat and Power System in the UK

Authors: Thamo Sutharssan, Diogo Montalvao, Wen-Chung Wang, Yong Chen, Claudia Pisac

Abstract:

A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in return it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10-year warranty.

Keywords: combined heat and power, clean energy, hydrogen fuel cell, economic analysis of CHP, zero emission

Procedia PDF Downloads 385
15698 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia

Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim

Abstract:

Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.

Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy

Procedia PDF Downloads 182
15697 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 510
15696 Ways to Define the Most Sustainable Actions for Water Shortage Prevention in Mega Cities, Especially in Developing Countries

Authors: Keivan Karimlou, Nemat Hassani, Abdollah Rashidi Mehrabadi

Abstract:

Climate change, industrial bloom, population growth and mismanagement are the most important factors that lead to water shortages around the world. Water shortages often lead to forced immigration, war, and thirst and hunger, especially in developing countries. One of the simplest solutions to solve the water shortage issues around the world is transferring water from one watershed to another; however it may not be a suitable solution. Water managers around the world use supply and demand management methods to decrease the incidence of water shortage in a sustainable manner. But as a matter of economic constraints, they must define a method to select the best possible action to reduce and limit water shortages. The following paper recognizes different kinds of criteria to select the best possible policy for reducing water shortage in mega cities by examining a comprehensive literature review.

Keywords: criteria, management, shortage, sustainable, water

Procedia PDF Downloads 289
15695 Constructed Wetlands with Subsurface Flow for Nitrogen and Metazachlor Removal from Tile Drainage: First Year Results

Authors: P. Fucik, J. Vymazal, M. Seres

Abstract:

Pollution from agricultural drainage is a severe issue for water quality, and it is a major reason for the failure in accomplishment of 'good chemical status' according to Water Framework Directive, especially due to high nitrogen and pesticide burden of receiving waters. Constructed wetlands were proposed as a suitable measure for removal of nitrogen from agricultural drainage in the early 1990s. Until now, the vast majority of constructed wetlands designed to treat tile drainage were free-surface constructed wetlands. In 2018, three small experimental constructed wetlands with horizontal subsurface flow were built in Czech Highlands to treat tile drainage from 15.73 ha watershed. The wetlands have a surface area of 79, 90 and 98 m² and were planted with Phalaris arundinacea and Glyceria maxima in parallel bands. The substrate in the first two wetlands is gravel (4-8 mm) mixed with birch woodchips (10:1 volume ratio). In one of those wetlands, the water level is kept 10 cm above the surface; in the second one, the water is kept below the surface. The third wetland has 20 cm layer of birch woodchips on top of gravel. The drainage outlet, as well as wetland outlets, are equipped with automatic discharge-gauging devices, temperature probes, as well as automatic water samplers (Teledyne ISCO). During the monitored period (2018-2019), the flows were unexpectedly low due to a drop of the shallow ground water level, being the main source of water for the monitored drainage system, as experienced at many areas of the Czech Republic. The mean water residence time was analyzed in the wetlands (KBr), which was 16, 9 and 27 days, respectively. The mean total nitrogen concentration eliminations during one-year period were 61.2%, 62.6%, and 70.9% for wetlands 1, 2, and 3, respectively. The average load removals amounted to 0.516, 0.323, and 0.399 g N m-2 d-1 or 1885, 1180 and 1457 kg ha-1 yr-1 in wetlands 1, 2 and 3, respectively. The plant uptake and nitrogen sequestration in aboveground biomass contributed only marginally to the overall nitrogen removal. Among the three variants, the one with shallow water on the surface was revealed to be the most effective for removal of nitrogen from drainage water. In August 2019, herbicide Metazachlor was experimentally poured in time of 2 hours at drainage outlet in a concentration of 250 ug/l to find out the removal rates of the aforementioned wetlands. Water samples were taken the first day every six hours, and for the next nine days, every day one water sample was taken. The removal rates were as follows 94, 69 and 99%; when the most effective wetland was the one with the longest water residence time and the birch woodchip-layer on top of gravel.

Keywords: constructed wetlands, metazachlor, nitrogen, tile drainage

Procedia PDF Downloads 149
15694 Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating

Authors: Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan

Abstract:

This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors.

Keywords: ambient temperature, de-rating factor, electric generator, power factor

Procedia PDF Downloads 358
15693 Optimization of Operational Water Quality Parameters in a Drinking Water Distribution System Using Response Surface Methodology

Authors: Sina Moradi, Christopher W. K. Chow, John Van Leeuwen, David Cook, Mary Drikas, Patrick Hayde, Rose Amal

Abstract:

Chloramine is commonly used as a disinfectant in drinking water distribution systems (DWDSs), particularly in Australia and the USA. Maintaining a chloramine residual throughout the DWDS is important in ensuring microbiologically safe water is supplied at the customer’s tap. In order to simulate how chloramine behaves when it moves through the distribution system, a water quality network model (WQNM) can be applied. In this work, the WQNM was based on mono-chloramine decomposition reactions, which enabled prediction of mono-chloramine residual at different locations through a DWDS in Australia, using the Bentley commercial hydraulic package (Water GEMS). The accuracy of WQNM predictions is influenced by a number of water quality parameters. Optimization of these parameters in order to obtain the closest results in comparison with actual measured data in a real DWDS would result in both cost reduction as well as reduction in consumption of valuable resources such as energy and materials. In this work, the optimum operating conditions of water quality parameters (i.e. temperature, pH, and initial mono-chloramine concentration) to maximize the accuracy of mono-chloramine residual predictions for two water supply scenarios in an entire network were determined using response surface methodology (RSM). To obtain feasible and economical water quality parameters for highest model predictability, Design Expert 8.0 software (Stat-Ease, Inc.) was applied to conduct the optimization of three independent water quality parameters. High and low levels of the water quality parameters were considered, inevitably, as explicit constraints, in order to avoid extrapolation. The independent variables were pH, temperature and initial mono-chloramine concentration. The lower and upper limits of each variable for two water supply scenarios were defined and the experimental levels for each variable were selected based on the actual conditions in studied DWDS. It was found that at pH of 7.75, temperature of 34.16 ºC, and initial mono-chloramine concentration of 3.89 (mg/L) during peak water supply patterns, root mean square error (RMSE) of WQNM for the whole network would be minimized to 0.189, and the optimum conditions for averaged water supply occurred at pH of 7.71, temperature of 18.12 ºC, and initial mono-chloramine concentration of 4.60 (mg/L). The proposed methodology to predict mono-chloramine residual can have a great potential for water treatment plant operators in accurately estimating the mono-chloramine residual through a water distribution network. Additional studies from other water distribution systems are warranted to confirm the applicability of the proposed methodology for other water samples.

Keywords: chloramine decay, modelling, response surface methodology, water quality parameters

Procedia PDF Downloads 225
15692 Analysis of Tannins from Padus asiatica

Authors: Telmen Dashdondov, Selenge Erdenechimeg

Abstract:

Padus asiatica contains large quantities of polyphenolic compounds, and it is one of the most consumed fruits throughout the country. These compounds have the biological activity of the fruit and have long been used in traditional Mongolian medicine for diarrhea, coughs, pneumonia, and gastritis. In this study, we studied the solvents that can be used to make extracts from dried raw fruits; in order to determine the amount of tannin in Padus asiatica, we selected three solvents: distilled water, 20% ethanol, and 40% ethanol, and determined the amount of tannin. As a result, the amount of extract (distilled water) was 11.8%, the amount of extract (20% ethanol) was 15.7%, and the amount of extract (40% ethanol) was 8.2%. Therefore, it was found that tannins are extracted better in 20% ethanol solution.

Keywords: Padus asiatica, tannin, diarrhea, Mongolian medicinal plant

Procedia PDF Downloads 162
15691 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: radon, radium, acid mine drainage, coal

Procedia PDF Downloads 432
15690 Efficacy of Sea Water with Reduced Rate Herbicide to Control Weeds in Tropical Turf

Authors: Md. Kamal Uddin, Abdul Shukor Juraimi, Md. Parvez Anwar

Abstract:

Seawater with reduced herbicide could be considered as a low cost environment friendly alternative method for weed control in turfgrass. Different concentration of sea water in combination with trifloxysulfuron-sodium and quinclorac were used to determine weed control level in turfgrass field. The weed species S. diander, C. aromaticus, and C. rotundus except E. atrovirens were fully controlled when treated with ¾ recommended trifloxysulfuron–sodium with sea water, ¾ recommended trifloxysulfuron–sodium with ¾ sea water, ½ recommended trifloxysulfuron–sodium with sea water, ¾ recommended quinclorac with sea water and ¾ recommended quinclorac with ¾ sea water. Eragrostis atrovirens showed maximum 48% injury when treated with ¾ recommended trifloxysulfuron–sodium and sea water. Among the tested turf grasses, P. vaginatum showed only 8% injury to sea water in combination with ¾ recommended quinclorac, indicating greater salt tolerance. Zoysia japonica also showed no more than 14% injury when treated with sea water in combination with ¾ recommended trifloxysulfuron–sodium or quinclorac.

Keywords: sea water, trifloxysulfuron–sodium, quinclorac, turf

Procedia PDF Downloads 379
15689 Evaluating the Effect of Splitting Wind Farms on Power Output

Authors: Nazanin Naderi, Milton Smith

Abstract:

Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.

Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation

Procedia PDF Downloads 586
15688 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization

Procedia PDF Downloads 174
15687 Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam (Ankara, Turkey)

Authors: Gulsen Tozsin, Fatma Bakir, Cemil Acar, Ercument Koc

Abstract:

Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. The quality of these surface water resources were evaluated in terms of pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results revealed that the quality of all the investigated water sources are generally at satisfactory level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.

Keywords: Kurtbogazi dam, water quality assessment, Ankara water, water supply

Procedia PDF Downloads 377
15686 Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi

Authors: Kamel A. Abd-Elsalam, Alexei R. Khokhlov

Abstract:

Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used.

Keywords: biohybrids, biocides, bioagent, plant pathogenic fungi

Procedia PDF Downloads 255
15685 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing

Authors: Kedibone Masenya, Memory Tekere, Jasper Rees

Abstract:

Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.

Keywords: bacteria, multitrophic, sorghum, target sequencing

Procedia PDF Downloads 284
15684 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex

Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda

Abstract:

Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.

Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis

Procedia PDF Downloads 201
15683 Formulation of a Stress Management Program for Human Error Prevention in Nuclear Power Plants

Authors: Hyeon-Kyo Lim, Tong-il Jang, Yong-Hee Lee

Abstract:

As for any nuclear power plant, human error is one of the most dreaded factors that may result in unexpected accidents. Thus, for accident prevention, it is quite indispensable to analyze and to manage the influence of any factor which may raise the possibility of human errors. Among lots factors, stress has been reported to have significant influence on human performance. Stress level of a person may fluctuate over time. To handle the possibility over time, robust stress management program is required, especially in nuclear power plants. Therefore, to overcome the possibility of human errors, this study aimed to develop a stress management program as a part of Fitness-for-Duty (FFD) Program for the workers in nuclear power plants. The meaning of FFD might be somewhat different by research objectives, appropriate definition of FFD was accomplished in this study with special reference to human error prevention, and diverse stress factors were elicited for management of human error susceptibility. In addition, with consideration of conventional FFD management programs, appropriate tests and interventions were introduced over the whole employment cycle including selection and screening of workers, job allocation, job rotation, and disemployment as well as Employee-Assistance-Program (EAP). The results showed that most tools mainly concentrated their weights on common organizational factors such as Demands, Supports, and Relationships in sequence, which were referred as major stress factors.

Keywords: human error, accident prevention, work performance, stress, fatigue

Procedia PDF Downloads 326
15682 The Technics of Desalination Water in Algeria

Authors: H. Aburideh, Z.Tigrine, D. Ziou, S. Hout, R. Bellatreche, D. Belhout, Z. Belgroun, M. Abbas

Abstract:

Faced with climate hazards in recent decades and the constant increase of the population, Algeria is making considerable efforts to provide water resources and water availability, both for its nascent industry, agriculture and for the drinking water supply of cities and arid region of the country. Following a remarkable worldwide technological breakthrough in seawater and brackish water desalination, known in recent years, the specialists have seen that the use of desalination of sea water in Algeria is a promising alternative as long as it has a coastline of 1200 km. Seawater is clean and virtually inexhaustible resource; mainly for population and industry that have high water consumption and are close to the sea. The purpose of this work is to present information on the number of sea water desalination stations and demineralization plants existing in Algeria. The constraints related to the operation of certain stations; those which are operational, those that are not operational as well as the seawater desalination program that was hired to cover 49 desalination plants across the country at the end of 2019 with the aim of increasing and diversifying water resources.

Keywords: desalination, water, membrane, demineralization

Procedia PDF Downloads 388
15681 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process

Authors: Venkata Ramanaiah, Shabina Khanam

Abstract:

Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.

Keywords: coal consumption, energy conservation, process integration, sponge iron plant

Procedia PDF Downloads 144
15680 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT

Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh

Abstract:

Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.

Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module

Procedia PDF Downloads 194
15679 Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas

Authors: H. Demirtaş, İ. H. Kara, H. Ahlatcı

Abstract:

Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment.

Keywords: SA 210 Gr. C steel pipes, TIG welding, HAZ region, Widmanstatten ferrite

Procedia PDF Downloads 298
15678 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm

Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan

Abstract:

Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.

Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power

Procedia PDF Downloads 85
15677 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: bioelectricity, COD, microbial fuel cell, sanitary wastewater, wheat starch

Procedia PDF Downloads 257
15676 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 246
15675 Affordability and Expenditure Patterns towards Sustainable Consumption in Malaysia

Authors: Affordability, Expenditure Patterns towards Sustainable Consumption in Malaysia

Abstract:

Safe drinking water is needed for survival. Households have to pay the water bill monthly. However, lower income households are sometimes unable to afford the cost. This study examines water access and affordability among households in Malaysia and the determinants of water affordability using cross-sectional data and multiple regression. The paper expects that the bill for basic water consumption is inversely related to average income. This means that policy makers need to redesign the water tariff to improve the quality of life of lower income households.

Keywords: affordability, sustainable consumption, income, water tariff

Procedia PDF Downloads 245
15674 Influence of Salicylic Acid on Submergence Stress Recovery in Selected Rice Cultivars (Oryza sativa L.)

Authors: Ja’afar U., A. M. Gumi, Salisu N., Obadiah C. D.

Abstract:

Rice is susceptible to flooding due to its semi-aquatic characteristics, which enable it to thrive in wet or submerged environments. The development of aerenchyma allows for oxygen transfer, enabling faster lengthening of submerged shoot organs. Rice's germination and early seedling growth phases are highly intolerant of submersion, resulting in survival in low-oxygen environments. The research involved a study on rice plants treated with salicylic acid at different concentrations. Hypo was used for washing, while a reagent was used for submergence treatment. The plants were waterlogged for 11 days and submerged for 7 days, with control plants receiving distilled water. The study found a significant difference between Jirani Zawara's control and treated plants, with plants treated with 2 g/L of S.A. showing a 6.00 node increase per plant and Faro cultivars having more nodes. The study found significant differences between the control and treated plants, with the Jirani Zawara plant showing longer internode lengths and the Faro cultivar having longer internode lengths, while the B.G. cultivar had the longest. The research found that the Jirani Zawara cultivar treated with 3 g/L of S.A. produced tallest plants, with heights increasing from 14.43 cm to 15.50 cm in Faro cultivar S.A., and the highest height was 16.30 cm. The study reveals that salicylic acid significantly enhances the number of nodes, internode length, plant height, and root length in rice cultivars, thereby improving submerged stress recovery and promoting plant development.

Keywords: rice, submergence, stress, salicylic acid

Procedia PDF Downloads 14
15673 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 110
15672 Analysis of Human Mental and Behavioral Models for Development of an Electroencephalography-Based Human Performance Management System

Authors: John Gaber, Youssef Ahmed, Hossam A. Gabbar, Jing Ren

Abstract:

Accidents at Nuclear Power Plants (NPPs) occur due to various factors, notable among them being poor safety management and poor safety culture. During abnormal situations, the likelihood of human error is many-fold higher due to the higher cognitive workload. The most common cause of human error and high cognitive workload is mental fatigue. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue using an EEG system. This requires an analysis of the mental model of the NPP operator, changes in brain wave power in response to certain stimuli, and the risk factors on mental fatigue and attention that NPP operators face when performing their tasks. We analyzed these factors and developed an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention hinders their ability to maintain safety.

Keywords: brain imaging, EEG, power plant operator, psychology

Procedia PDF Downloads 101