Search results for: equivalent stiffness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1656

Search results for: equivalent stiffness

696 Experimental and Computational Analysis of Glass Fiber Reinforced Plastic Beams with Piezoelectric Fibers

Authors: Selin Kunc, Srinivas Koushik Gundimeda, John A. Gallagher, Roselita Fragoudakis

Abstract:

This study investigates the behavior of Glass Fiber Reinforced Plastic (GFRP) laminated beams additionally reinforced with piezoelectric fibers. The electromechanical behavior of piezoelectric materials coupled with high strength/low weight GFRP laminated beams can have significant application in a wide range of industries. Energy scavenging through mechanical vibrations is the focus of this study, and possible applications can be seen in the automotive industry. This study examines the behavior of such composite laminates using Classical Lamination Theory (CLT) under three-point bending conditions. Fiber orientation is optimized for the desired stiffness and deflection that yield maximum energy output. Finite element models using ABAQUS/CAE are verified through experimental testing. The optimum stacking sequences examined are [0o]s, [ 0/45o]s, and [45/-45o]s. Results show the superiority of the stacking sequence [0/45o]s, providing higher strength at a lower weight, and maximum energy output. Furthermore, laminated GFRP beams additionally reinforced with piezoelectric fibers can be used under bending to not only replace metallic component while providing similar strength at a lower weight but also provide an energy output.

Keywords: classical lamination theory (CLT), energy scavenging, glass fiber reinforced plastics (GFRP), piezoelectric fibers

Procedia PDF Downloads 306
695 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 159
694 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel

Authors: Carlos Cuenca, Diego Sarzosa

Abstract:

Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.

Keywords: damage, SMSC, SEB, steel, failure

Procedia PDF Downloads 297
693 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 361
692 Evaluation of the Antioxidant and Antidiabetic Potential of Fruit and Vegetable Peels

Authors: E. Chiam, E. Koh, W. Teh, M. Prabhakaran

Abstract:

Fruits and vegetables (F&V) are widely eaten for their nutritional value and associated health benefits being an immense source of bioactive compounds. However, F&V peels are often discarded, and it accounts for a higher proportion of food waste. Incorporation of F&V peels as functional ingredients can add more value to food due to the higher amounts of phytochemicals present in them. In this research, methanolic extracts of different F&V peels, namely apple, orange, kiwi, grapefruit, dragon fruit, pomelo, and pumpkin are investigated for their total phenolic content (TPC) by Folin-Ciocalteau (FC) assay and the antioxidant capacity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdenum assay using UV-Vis spectroscopy. Evaluation of the α-glucosidase inhibitory assay was carried out during this study to determine the antidiabetic potential of F&V peels. Results of our study showed that grapefruit peels contained the highest total phenolic content of 477.81 ± 0.01 mg gallic acid equivalent per gram dry weight of the sample, and kiwi peel had the highest antioxidant capacity (90.51 ± 0.10 % inhibition of DPPH radical) among the different F&V peels studied. Fruit peels exhibited high α-glucosidase inhibitory activity. Comparing fruit peels with vegetable peels, it was found that fruit peels had high total phenolic content, antioxidant capacity and anti-diabetic potential compared to vegetable peels.

Keywords: polyphenolics, fruit peels, antioxidant, antidiabetic

Procedia PDF Downloads 140
691 Social Entrepreneurship and Inclusive Growth

Authors: Sudheer Gupta

Abstract:

Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.

Keywords: poverty alleviation, social enterprise, social innovation, development

Procedia PDF Downloads 399
690 The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat

Authors: Amal Yamani, Jaber Elgtou, Aziz Mohammed, Lazaar Jamila, Elachouri Mostafa

Abstract:

Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology.

Keywords: peganum harmala seeds, nephrotoxic, diuresi, histpathology, kidney

Procedia PDF Downloads 299
689 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez Camus, Carlos Lizama

Abstract:

In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.

Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations

Procedia PDF Downloads 159
688 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam

Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah

Abstract:

This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.

Keywords: lap splice, bond strength, fatigue loading, FRP

Procedia PDF Downloads 293
687 Comparison of Breast Surface Doses for Full-Field Digital Mammography and Digital Breast Tomosynthesis Using Breast Phantoms

Authors: Chia-Hui Chen, Chien-Kuo Wang

Abstract:

Background: Full field digital mammography (FFDM) is widely used in diagnosis of breast cancer. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Hence, the radiation dose delivered to the patients involved in an imaging protocol is of utmost concern. Aim: To compare the surface radiation dose (ESD) of digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) by using breast phantoms. Method: We analyzed the average entrance surface dose (ESD) of FFDM and DBT by using breast phantoms. Optically Stimulated luminescent Dosimeters (OSLD) were placed in a tissue-equivalent Breast phantom at difference sites of interest. Absorbed dose measurements were obtained after digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM) exposures. Results: An automatic exposure control (AEC) is proposed for surface dose measurement during DBT and FFDM. The mean ESD values for DBT and FFDM were 6.37 mGy and 3.51mGy, respectively. Using of OSLD measured for surface dose during DBT and FFDM. There were 19.87 mGy and 11.36 mGy, respectively. The surface exposure dose of DBT could possibly be increased by two times with FFDM. Conclusion: The radiation dose from DBT was higher than that of FFDM and the difference in dose between AEC and OSLD measurements at phantom surface.

Keywords: full-field digital mammography, digital breast tomosynthesis, optically stimulated luminescent dosimeters, surface dose

Procedia PDF Downloads 420
686 A Study on Explicitation Strategies Employed in Persian Subtitling of English Crime Movies

Authors: Hossein Heidari Tabrizi, Azizeh Chalak, Hossein Enayat

Abstract:

The present study seeks to investigate the application of expansion strategy in Persian subtitles of English crime movies. More precisely, this study aims at classifying the different types of expansion used in subtitles as well as investigating the appropriateness or inappropriateness of the application of each type. To achieve this end, three English movies; namely, The Net (1995), Contact (1997) and Mission Impossible 2 (2000), available with Persian subtitles, were selected for the study. To collect the data, the above mentioned movies were watched and those parts of the Persian subtitles in which expansion had been used were identified and extracted along with their English dialogs. Then, the extracted Persian subtitles were classified based on the reason that led to expansion in each case. Next, the appropriateness or inappropriateness of using expansion in the extracted Persian subtitles was descriptively investigated. Finally, an equivalent not containing any expansion was proposed for those cases in which the meaning could be fully transferred without this strategy. The findings of the study indicated that the reasons range from explicitation (explicitation of visual, co-textual and contextual information), mistranslation and paraphrasing to the preferences of subtitlers. Furthermore, it was found that the employment of expansion strategy was inappropriate in all cases except for those caused by explicitation of contextual information since correct and shorter equivalents which were equally capable of conveying the intended meaning could be posited for the original dialogs.

Keywords: audiovisual translation, English crime movies, expansion strategies, Persian subtitles

Procedia PDF Downloads 468
685 Cytokine Changes of Auricular Point Acupressure to Manage Aromatase Inhibitor-Induced Arthralgia in Postmenopausal Breast Cancer Survivors

Authors: Chao Hsing Yeh, Wei Chun Lin

Abstract:

Background: Current management of aromatase inhibitor-induced arthralgia (AIA) in postmenopausal breast cancer survivors (PBCS) has limited effect. Method: In this prospective randomized clinical trial (RCT), a 4-week APA treatment was used to manage AIA. Twenty PBCS participated. After baseline data was collected, participants were waited for a month before they receive APA at a convenient time once a week for 4 weeks. Blood samples from participants in both groups were collected at baseline and after 4 weeks of treatment. The primary outcomes included: pain intensity, pain interference, stiffness, and physical function. Results: After the 4-week APA treatment, the pro-inflammatory cytokines and chemokines display a trend of mean percentage reduction (i.e., -22% in IL-1α, -4% in IL-1β, -1% in IL-2, -3% in IL-6, -19% in IL-12, -9% in Eotaxin, and -2% in MCP-1). The anti-inflammatory cytokine IL-10 and IL-13 (i.e., 5% in IL-10 and 29% in IL-13) increased from pre- to post-APA treatment. Significant positive correlation of percentage mean change was observed between symptom severity and eotaxin (ρ = 0.56; p < 0.01) & MCP-1 (ρ = 0.65; p < 0.01). Interference and chemokines (eotaxin & MIP-1) also shows positive correlation (ρ = 0.48; p < 0.01 & ρ = 0.39; p < 0.05). Another positive correlation was found between worst pain and chemokines (eotaxin, ρ = 0.48; p < 0.01 & MIP-1, ρ = 0.39; p < 0.05). Additionally, interference also shows positive correlation among IL-1α (ρ = 0.36; p < 0.05) and IL-β (ρ = 0.33; p < 0.05). Conclusion: These findings suggest that APA intervention may inhibit inflammation of AIA patients and chemokine could be one of the key factors of AIA symptom improvement.

Keywords: acupressure, cytokine, pain management, breast cancer survivors

Procedia PDF Downloads 261
684 The Effects of Different Parameters of Wood Floating Debris on Scour Rate Around Bridge Piers

Authors: Muhanad Al-Jubouri

Abstract:

A local scour is the most important of the several scours impacting bridge performance and security. Even though scour is widespread in bridges, especially during flood seasons, the experimental tests could not be applied to many standard highway bridges. A computational fluid dynamics numerical model was used to solve the problem of calculating local scouring and deposition for non-cohesive silt and clear water conditions near single and double cylindrical piers with the effect of floating debris. When FLOW-3D software is employed with the Rang turbulence model, the Nilsson bed-load transfer equation and fine mesh size are considered. The numerical findings of single cylindrical piers correspond pretty well with the physical model's results. Furthermore, after parameter effectiveness investigates the range of outcomes based on predicted user inputs such as the bed-load equation, mesh cell size, and turbulence model, the final numerical predictions are compared to experimental data. When the findings are compared, the error rate for the deepest point of the scour is equivalent to 3.8% for the single pier example.

Keywords: local scouring, non-cohesive, clear water, computational fluid dynamics, turbulence model, bed-load equation, debris

Procedia PDF Downloads 69
683 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 178
682 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 329
681 Study of Mechanical Properties of Leno Woven Bags in Lower Weight Capacities

Authors: Golda Honey Madhu, Priyanka Gupta, Anil Kumar Yadav

Abstract:

The study is aimed at analyzing and understanding the design and performance properties of leno woven sacks specifically meant for holding lower weight goods under the category of lower weight capacities. The sacks are a huge part of the agro-based packaging industries which helps in keeping the perishable produce, especially fruits, fresh during transit and storage. Nowadays, Leno bags are primarily made from polypropylene, mainly due its cost-effectiveness, reusability and high strength with low weight property making it an ideal packaging solution for transportation. The design parameters are noted, and major properties like tensile strength, abrasion resistance, bursting strength, impact resistance, stiffness and bagging behaviour has been analyzed for lower weight capacities. An examination of these particular weight categories will provide valuable information on how to scale performance. Currently there are standards available for only 25 kg and 50 kg Leno sacks, and this study will further enhance the already existing testing standards and also provide tested structure-property analysis for lower weight Leno sacks. Hence the results of this research can provide significant insights for researchers, manufacturers and industry-experts with the goal of improving the quality and longevity of Leno woven sacks, thereby developing the packaging technology.

Keywords: leno bags, structure-property analysis, agro-based packaging, lower weight sacks

Procedia PDF Downloads 21
680 In vivo Antiplatelet Activity Test of Wet Extract of Mimusops elengi L.'s Leaves on DDY Strain Mice as an Effort to Treat Atherosclerosis

Authors: Dewi Tristantini, Jason Jonathan

Abstract:

Coronary Artery Disease (CAD) is one of the deathliest diseases which is caused by atherosclerosis. Atherosclerosis is a disease that plaque builds up inside the arteries. Plaque is made up of fat, cholesterol, calcium, platelet, and other substances found in blood. The current treatment of atherosclerosis is to provide antiplatelet therapy treatment, but such treatments often cause gastrointestinal irritation, muscle pain and hormonal imbalance. Mimusops elengi L.’s leaves can be utilized as a natural and cheap antiplatelet’s source because it contains flavonoids such as quertecin. Antiplatelet aggregation effect of Mimusops elengi L.’s leaves’ wet extract was measured by bleeding time on DDY strain mice with the test substances were given orally during the period of 8 days. The bleeding time was measured on first day and 9th day. Empirically, the dose which is used for humans is 8.5 g of leaves in 600 ml of water. This dose is equivalent to 2.1 g of leaves in 350 ml of water for mice. The extract was divided into 3 doses for mice: 0.05 ml/day; 0.1 ml/day; 0.2 ml/day. After getting the percentage of the increase in bleeding time, data were analyzed by analysis of variance test (Anova), followed by individual comparison within the groups by LSD test. The test substances above respectively increased bleeding time 21%, 62%, and 128%. As the conclusion, the 0.02 ml/day dose of Mimusops elengi L.’s leaves’ wet extract could increase bleeding time better than clopidogrel as positive controls with 110% increase in bleeding time.

Keywords: antiplatelets, atheroschlerosis, bleeding time, Mimusops elengi

Procedia PDF Downloads 264
679 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 388
678 Landsat 8-TIRS NEΔT at Kīlauea Volcano and the Active East Rift Zone, Hawaii

Authors: Flora Paganelli

Abstract:

The radiometric performance of remotely sensed images is important for volcanic monitoring. The Thermal Infrared Sensor (TIRS) on-board Landsat 8 was designed with specific requirements in regard to the noise-equivalent change in temperature (NEΔT) at ≤ 0.4 K at 300 K for the two thermal infrared bands B10 and B11. This study investigated the on-orbit NEΔT of the TIRS two bands from a scene-based method using clear-sky images over the volcanic activity of Kīlauea Volcano and the active East Rift Zone (Hawaii), in order to optimize the use of TIRS data. Results showed that the NEΔTs of the two bands exceeded the design specification by an order of magnitude at 300 K. Both separate bands and split window algorithm were examined to estimate the effect of NEΔT on the land surface temperature (LST) retrieval, and NEΔT contribution to the final LST error. These results were also useful in the current efforts to assess the requirements for volcanology research campaign using the Hyperspectral Infrared Imager (HyspIRI) whose airborne prototype MODIS/ASTER instruments is plan to be flown by NASA as a single campaign to the Hawaiian Islands in support of volcanology and coastal area monitoring in 2016.

Keywords: landsat 8, radiometric performance, thermal infrared sensor (TIRS), volcanology

Procedia PDF Downloads 241
677 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 199
676 Free Vibration Analysis of FG Nanocomposite Sandwich Beams Using Various Higher-Order Beam Theories

Authors: Saeed Kamarian

Abstract:

In this paper, free vibrations of Functionally Graded Sandwich (FGS) beams reinforced by randomly oriented Single-Walled Carbon Nanotubes (SWCNTs) are investigated. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the structure. The natural frequencies of the FGS nanocomposite beam are analyzed based on various Higher-order Shear Deformation Beam Theories (HSDBTs) and using an analytical method. The verification study represents the simplicity and accuracy of the method for free vibration analysis of nanocomposite beams. The effects of carbon nanotube volume fraction profiles in the face layers, length to span ratio and thicknesses of face layers on the natural frequency of structure are studied for the different HSDBTs. Results show that by utilizing the FGS type of structures, free vibration characteristics of structures can be improved. A comparison is also provided to show the difference between natural frequency responses of the FGS nanocomposite beam reinforced by aligned and randomly oriented SWCNT.

Keywords: sandwich beam, nanocomposite beam, functionally graded materials, higher-order beam theories, Mori-Tanaka approach

Procedia PDF Downloads 462
675 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish

Authors: Pramod K. Prabhakar, Prem P. Srivastav

Abstract:

Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.

Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation

Procedia PDF Downloads 234
674 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio

Procedia PDF Downloads 148
673 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 374
672 Efficient Principal Components Estimation of Large Factor Models

Authors: Rachida Ouysse

Abstract:

This paper proposes a constrained principal components (CnPC) estimator for efficient estimation of large-dimensional factor models when errors are cross sectionally correlated and the number of cross-sections (N) may be larger than the number of observations (T). Although principal components (PC) method is consistent for any path of the panel dimensions, it is inefficient as the errors are treated to be homoskedastic and uncorrelated. The new CnPC exploits the assumption of bounded cross-sectional dependence, which defines Chamberlain and Rothschild’s (1983) approximate factor structure, as an explicit constraint and solves a constrained PC problem. The CnPC method is computationally equivalent to the PC method applied to a regularized form of the data covariance matrix. Unlike maximum likelihood type methods, the CnPC method does not require inverting a large covariance matrix and thus is valid for panels with N ≥ T. The paper derives a convergence rate and an asymptotic normality result for the CnPC estimators of the common factors. We provide feasible estimators and show in a simulation study that they are more accurate than the PC estimator, especially for panels with N larger than T, and the generalized PC type estimators, especially for panels with N almost as large as T.

Keywords: high dimensionality, unknown factors, principal components, cross-sectional correlation, shrinkage regression, regularization, pseudo-out-of-sample forecasting

Procedia PDF Downloads 150
671 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B

Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo

Abstract:

Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.

Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties

Procedia PDF Downloads 147
670 Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure

Authors: M'Hamed Boulakroune, Mouloud Challal, Hassiba Louazene, Saida Fentiz

Abstract:

This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere.

Keywords: defected ground structure, diode varactor, microstrip bandpass filter, multiple-mode resonator

Procedia PDF Downloads 311
669 Seismic Behavior of Pile-Supported Bridges Considering Soil-Structure Interaction and Structural Non-Linearity

Authors: Muhammad Tariq A. Chaudhary

Abstract:

Soil-structure interaction (SSI) in bridges under seismic excitation is a complex phenomenon which involves coupling between the non-linear behavior of bridge pier columns and SSI in the soil-foundation part. It is a common practice in the study of SSI to model the bridge piers as linear elastic while treating the soil and foundation with a non-linear or an equivalent linear modeling approach. Consequently, the contribution of soil and foundation to the SSI phenomenon is disproportionately highlighted. The present study considered non-linear behavior of bridge piers in FEM model of a 4-span, pile-supported bridge that was designed for five different soil conditions in a moderate seismic zone. The FEM model of the bridge system was subjected to a suite of 21 actual ground motions representative of three levels of earthquake hazard (i.e. Design Basis Earthquake, Functional Evaluation Earthquake and Maximum Considered Earthquake). Results of the FEM analysis were used to delineate the influence of pier column non-linearity and SSI on critical design parameters of the bridge system. It was found that pier column non-linearity influenced the bridge lateral displacement and base shear more than SSI for majority of the analysis cases for the class of bridge investigated in the study.

Keywords: bridge, FEM model, reinforced concrete pier, pile foundation, seismic loading, soil-structure interaction

Procedia PDF Downloads 232
668 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 138
667 Improved Postprandial Response and Feeling of Satiety After Consumption of Sour Cherry Pomace Enriched Muffins

Authors: Joanna Bajerska, Sylwia Mildner-Szkudlarz, Pawel Górnas, Dalija Segliņac

Abstract:

Sour cherry pomace (CP) by-products obtained during fruit processing, was used to replace the wheat flour in muffin formula on the levels 20% (CP20) and 30% (CP30). The sensory profile of this muffins were characterized, and their impact on glycemic response and appetite sensation were studied. Randomized crossover study where test subjects were given either plain muffin (PM) or CP20 or CP30 during 2 different occasions. In the first study test muffins with equivalent of 50 g available carbohydrate were consumed. Blood glucose was measured before and up to 120 min after consuming the test muffins. To study satiety response in the second trial of the test muffins (portion 1700 kJ per serve) were ingested. Sensory analysis was performed earlier by a sensory panel consisting of 10 well-trained individuals. It is acceptable to incorporate CP into a muffin formula at concentrations up to 30%. With the CP muffins treatment, the glucose responses were significantly lower at 30, 45 and 60 min of the intervals also the incremental peak glucose was 0.40 mmol/L and 0.60 mmol/L lower than for PM. CP20 and CP30 also improved satiety as compared to PM. CP can be a good functional ingredient of functional bakery products to assist in managing glucose levels and satiety in healthy individuals.

Keywords: muffins, postprandial glucose, sensory analysis, satiety sour cherry pomace

Procedia PDF Downloads 363