Search results for: color conversion films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3111

Search results for: color conversion films

2151 Bioremediation of Disposed X-Ray Film for Nanoparticles Production

Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen

Abstract:

The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.

Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD

Procedia PDF Downloads 483
2150 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 146
2149 Skin-Dose Mapping for Patients Undergoing Interventional Radiology Procedures: Clinical Experimentations versus a Mathematical Model

Authors: Aya Al Masri, Stefaan Carpentier, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis and ulceration to appear. In order to prevent these deterministic effects, an accurate calculation of the patient skin-dose mapping is essential. For most machines, the 'Dose Area Product (DAP)' and fluoroscopy time are the only information available for the operator. These two parameters are a very poor indicator of the peak skin dose. We developed a mathematical model that reconstructs the magnitude (delivered dose), shape, and localization of each irradiation field on the patient skin. In case of critical dose exceeding, the system generates warning alerts. We present the results of its comparison with clinical studies. Materials and methods: Two series of comparison of the skin-dose mapping of our mathematical model with clinical studies were performed: 1. At a first time, clinical tests were performed on patient phantoms. Gafchromic films were placed on the table of the IR machine under of PMMA plates (thickness = 20 cm) that simulate the patient. After irradiation, the film darkening is proportional to the radiation dose received by the patient's back and reflects the shape of the X-ray field. After film scanning and analysis, the exact dose value can be obtained at each point of the mapping. Four experimentation were performed, constituting a total of 34 acquisition incidences including all possible exposure configurations. 2. At a second time, clinical trials were launched on real patients during real 'Chronic Total Occlusion (CTO)' procedures for a total of 80 cases. Gafchromic films were placed at the back of patients. We performed comparisons on the dose values, as well as the distribution, and the shape of irradiation fields between the skin dose mapping of our mathematical model and Gafchromic films. Results: The comparison between the dose values shows a difference less than 15%. Moreover, our model shows a very good geometric accuracy: all fields have the same shape, size and location (uncertainty < 5%). Conclusion: This study shows that our model is a reliable tool to warn physicians when a high radiation dose is reached. Thus, deterministic effects can be avoided.

Keywords: clinical experimentation, interventional radiology, mathematical model, patient's skin-dose mapping.

Procedia PDF Downloads 140
2148 In vitro Antioxidant and DNA Protectant Activity of Different Skin Colored Eggplant (Solanum melongena)

Authors: K. M. Somawathie, V. Rizliya, H. A. M. Wickrmasinghe, Terrence Madhujith

Abstract:

The main objective of our study was to determine the in vitro antioxidant and DNA protectant activity of aqueous extract of S. melongena with different skin colors; dark purple (DP), moderately purple (MP), light purple (LP) and purple and green (PG). The antioxidant activity was evaluated using the DPPH and ABTS free radical scavenging assay, ferric reducing antioxidant power (FRAP), ferric thiocyanate (FTC) and the egg yolk model. The effectiveness of eggplant extracts against radical induced DNA damage was also determined. There was a significant difference (p < 0.0001) between the skin color and antioxidant activity. TPC and FRAP values of eggplant extracts ranged from 48.67±0.27-61.11±0.26 (mg GAE/100 g fresh weight) and 4.19±0.11-7.46±0.26 (mmol of FeS04/g of fresh weight) respectively. MP displayed the highest percentage of DPPH radical scavenging activity while, DP demonstrated the strongest total antioxidant capacity. In the FTC and egg yolk model, DP and MP showed better antioxidant activity than PG and LP. All eggplant extracts showed potent antioxidant activity in retaining DNA against AAPH mediated radical damage. DP and MP demonstrated better antioxidant activity which may be attributed to the higher phenolic content since a positive correlation was observed between the TPC and the antioxidant parameters.

Keywords: Solanum melongena, skin color, antioxidant, DNA protection, lipid peroxidation

Procedia PDF Downloads 431
2147 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 45
2146 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton

Authors: Saba Belgheisi

Abstract:

Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.

Keywords: coating, whey protein, mutton, moisture, sensory

Procedia PDF Downloads 461
2145 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform

Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr

Abstract:

Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.

Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing

Procedia PDF Downloads 85
2144 Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method

Authors: Marzieh Joda, Narges Fallah, Neda Afsham

Abstract:

Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments.

Keywords: Electro deposition, Nickel oxide-hydroxide, Nitrogen selectivity, Ammonia oxidation

Procedia PDF Downloads 221
2143 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production

Authors: Enlin Lo, Ioannis Dogaris, George Philippidis

Abstract:

Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.

Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid

Procedia PDF Downloads 219
2142 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity

Authors: Monalisa Pal, Kalyan Mandal

Abstract:

Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.

Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis

Procedia PDF Downloads 387
2141 Feasibility Study of Plant Design with Biomass Direct Chemical Looping Combustion for Power Generation

Authors: Reza Tirsadi Librawan, Tara Vergita Rakhma

Abstract:

The increasing demand for energy and concern of global warming are intertwined issues of critical importance. With the pressing needs of clean, efficient and cost-effective energy conversion processes, an alternative clean energy source is needed. Biomass is one of the preferable options because it is clean and renewable. The efficiency for biomass conversion is constrained by the relatively low energy density and high moisture content from biomass. This study based on bio-based resources presents the Biomass Direct Chemical Looping Combustion Process (BDCLC), an alternative process that has a potential to convert biomass in thermal cracking to produce electricity and CO2. The BDCLC process using iron-based oxygen carriers has been developed as a biomass conversion process with in-situ CO2 capture. The BDCLC system cycles oxygen carriers between two reactor, a reducer reactor and combustor reactor in order to convert coal for electric power generation. The reducer reactor features a unique design: a gas-solid counter-current moving bed configuration to achieve the reduction of Fe2O3 particles to a mixture of Fe and FeO while converting the coal into CO2 and steam. The combustor reactor is a fluidized bed that oxidizes the reduced particles back to Fe2O3 with air. The oxidation of iron is an exothermic reaction and the heat can be recovered for electricity generation. The plant design’s objective is to obtain 5 MW of electricity with the design of the reactor in 900 °C, 2 ATM for the reducer and 1200 °C, 16 ATM for the combustor. We conduct process simulation and analysis to illustrate the individual reactor performance and the overall mass and energy management scheme of BDCLC process that developed by Aspen Plus software. Process simulation is then performed based on the reactor performance data obtained in multistage model.

Keywords: biomass, CO2 capture, direct chemical looping combustion, power generation

Procedia PDF Downloads 506
2140 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
2139 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere

Authors: Gizachew Belay Adugna

Abstract:

Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.

Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing

Procedia PDF Downloads 73
2138 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method

Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama

Abstract:

SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.

Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies

Procedia PDF Downloads 85
2137 Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs

Authors: Seyed Mehdi Hashemi, Gholamreza Raisali, Mehran Taheri

Abstract:

One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT.

Keywords: photoneutron, Linac, PMMA shield, equivalent dose

Procedia PDF Downloads 493
2136 Study the Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5 wt% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, acid value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the cured films were observed by scanning electron microscopy. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: alkyd resin, nano-coatings, dehydration, palm oil

Procedia PDF Downloads 310
2135 Influence of Visual Merchandising Elements on Instant Purchase

Authors: Pooja Sharma, Renu Jain, Alka David

Abstract:

The primary goal of this research is to comprehend the many features of visual merchandising (VM) and impulsive or instant purchasing behavior. It aims to explain the link between visual merchandising and customer purchasing behavior. The reviews were compiled from research articles, professional journal articles, and the opinions of many authors. It also discusses the impact of different internal and external VM elements on instant purchasing. The visual merchandising elements are divided into two sections: interior element (inside the display, spaces, and layout, fixtures, mannequins, attention-grabbing device) and outside element (outside display, space, and layout, fixture, mannequins, attention-grabbing device) (Window Display, Exterior signs, Marquees, Entrance, color, and texture). By focusing on selected clothing stores from the four markets of Bhopal city, we discovered that the exterior elements (window display, color, and texture) and interior elements (mannequins like dummies and fixtures such as lighting) have a significant positive impact on instant buying among the elements of Visual merchandising.

Keywords: instant purchase, visual merchandising, instant buying behavior, consumer behavior, window display, fixtures, mannequins, marquees

Procedia PDF Downloads 116
2134 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil

Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade

Abstract:

Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.

Keywords: algae, biomass, lipid, protein

Procedia PDF Downloads 214
2133 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 508
2132 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala

Authors: Jina Lee

Abstract:

Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.

Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management

Procedia PDF Downloads 165
2131 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.

Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid

Procedia PDF Downloads 503
2130 Real Time Implementation of Efficient DFIG-Variable Speed Wind Turbine Control

Authors: Fayssal Amrane, Azeddine Chaiba, Bruno Francois

Abstract:

In this paper, design and experimental study based on Direct Power Control (DPC) of DFIG is proposed for Stand-alone mode in Variable Speed Wind Energy Conversion System (VS-WECS). The proposed IDPC method based on robust IP (Integral-Proportional) controllers in order to control the Rotor Side Converter (RSC) by the means of the rotor current d-q axes components (Ird* and Irq*) of Doubly Fed Induction Generator (DFIG) through AC-DC-AC converter. The implementation is realized using dSPACE dS1103 card under Sub and Super-synchronous operations (means < and > of the synchronous speed “1500 rpm”). Finally, experimental results demonstrate that the proposed control using IP provides improved dynamic responses, and decoupled control of the wind turbine has driven DFIG with high performances (good reference tracking, short response time and low power error) despite for sudden variation of wind speed and rotor references currents.

Keywords: Direct Power Control (DPC), Doubly fed induction generator (DFIG), Wind Energy Conversion System (WECS), Experimental study.

Procedia PDF Downloads 126
2129 High-Frequency Full-Bridge Isolated DC-DC Converter for Fuel Cell Power Generation Systems

Authors: Nabil A. Ahmed

Abstract:

DC-DC converters are necessary to interface low-voltage fuel cell power generation systems to a higher voltage DC bus system. A system and method for generating a regulated output power from fuel cell power generation systems is proposed in this paper, this includes a soft-switching isolated DC-DC converter to reduce the idling and circulating currents. The system incorporates a high-frequency center tap transformer link DC-DC converter using secondary-side soft switching control. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS) in the primary side of the high-frequency transformer. Therefore, no extra resonant components are required for ZVS. The inherent soft-switching capability allows high power density, efficient power conversion, and compact packaging. A prototype rated at 6.5 kW is proposed and simulated. Simulation results confirmed a wide range of soft-switching operation and consequently high conversion efficiency will be achieved.

Keywords: secondary-side, phase-shift, high-frequency transformer, zero voltage, zero current, soft switching operation, switching losses

Procedia PDF Downloads 310
2128 Pro-Ecological Antioxidants for Polymeric Composites

Authors: Masek A., Zaborski M.

Abstract:

In our studies, we propose the use of natural, pro-ecological substances such as polyphenols to protect polymers against ageing. In our studies, we plan to focus on the following compounds: polyphenols, gallic acid esters, flavonoides, carotenoids, curcumin and its derivatives, vitamin A, tocochromanoles, betalain. Phyto-compounds will be selected on the basis of available literature and our preliminary studies. So, we will select compounds with various contents of hydroxyl groups and colored substances capable of participating in color oxidation processes. The natural antioxidants which were added to ethylene-octene elastomer (polyolefin elastomer-Engage) and ethylene-nonbornene (TOPAS). Composites were then subjected to numerous ageing: weathering (climat of Floryda), UV (0,7 W/m2), thermo-oxidation ageing (1000C/10days) and thermal-shock (-600C/+1000C) as a function of the aging time. The efficiency of used anti-ageing agents was checked on the base of the changes after the degradation in deformation energy (tensile strength and elongation at the break), cross-link density, color (parameters L,a,b) and values of carbonyl index (based on the spectrum of infra red spectroscopy), OIT (induction oxygen time as performed in using differential scanning calorimeter -DSC) of the vulcanizates. Therefore polyphenols are considered to be the best stabilisers for polymeric composites against to oxidation processes.

Keywords: polymers, flavonoids, stabilization, ageing, oxidation

Procedia PDF Downloads 307
2127 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 247
2126 Logistics Process of Pineapple’s Leaves Product in Prachuapkhirikhan Province

Authors: Atcharawan Phenwansuk

Abstract:

The product design is important to the development of SME towards the global, because it made to the quality product to react the needs of consumers and could reduces cost in the production, making it more profitable. As a results, the business are competition advantage for more marketing. It also enhance image of product and firms to build its own brand products to be acceptable. The product was designed should be shape, size, colorful, and direct of target consumers. This is method to add value products to get popular and effective, because the beauty is first satisfaction which come from main shape and color of the design product, but the product was designed need to hold data and law combination of shape and color between artistic theory and satisfaction of consumers together. The design must consider the safety of life and asset of consumers the most important. From to use of designed products should be to consider the cost savings, convenient distance, transportation, routes (land, water or air) of living space on transport (capacity, volume, width, length of the car, truck and container, etc). The packaging must be can to prevent not damage of the products. If products is more large , maybe to design new packaging, which can easily disassembled for make smaller package such as designing the assembly. Products must be packed in the container for size standard for save costs, as well as the buyer can make transport and assembly of products to fit easily on your own.

Keywords: logistics process , pineapple’s leaves product, product design, satisfaction of consumers

Procedia PDF Downloads 397
2125 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)

Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.

Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone

Procedia PDF Downloads 367
2124 Comparative Effects of Dietary Ocimum Gratissimum and Antibiotic Growth Promoter on Body Weight and Gut Morphometry of Broiler Starters

Authors: Victor U. Odoemelam, Ihemdirim C. Unamba-Opara, Martins C. Anyanwuocha

Abstract:

Antibiotics used as growth promoters in animal feeds have been criticized and banned in many nations due to possible development of both drug resistance, cross resistance and multiple resistances by consumers. Numerous additives are now being used or proposed as alternatives. A study to compare the effects of Ocimum gratissimum (Scent leaf) and antibiotic growth promoter (Oxytetracycline HCl) on growth performance and intestinal morphology of starter broiler birds was conducted using ninety six (96) days old broiler birds. The birds were randomly assigned to four treatments with each treatment comprising 24 birds replicated three times with 8 birds per replicate in a completely randomized design experiment. Four diets (T1 control diet without Oxytetracycline HCl and Ocimum gratissimum; T2 had Oxytetracycline HCl; T3 had 1% Ocimum gratissimum; T4 had 1.5% Ocimum gratissimum) were formulated and offered ad libitum to the respective birds. Data was collected on feed intake, body weight gain and feed conversion ratio (FCR) also Jejenal sections of the intestine were collected for examination of Villi length and Crypt depth at the end of starter phase. Results show that there were no significant difference (P>0.05) observed in feed intake and final body weight. However, feed conversion ratio (FCR) and daily weight gain significantly differed (P<0.05). T1, T2, and T4 were similar, however T2 differed (P<0.05) from T3. FCR followed the same pattern. Dietary treatment significantly (P<0.05) affected Villi length, Crypt depth and Villi length/crypt depth ratio. Birds fed OG containing diets, had significantly higher (P<0.05) villi length/crypt depth ratio. However, this did not translate to a significantly higher body weight gain or feed conversion ratio. It can be concluded that O. gratissimum can replace antibiotic growth promoter (Oxytetracycline HCl) since their effect on performance were similar.

Keywords: antibiotics, body weight, feed additives, intestinal morphology, phytogenics

Procedia PDF Downloads 544
2123 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans

Authors: Rene Hellmuth

Abstract:

Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.

Keywords: building information modeling, digital factory model, factory planning, restructuring

Procedia PDF Downloads 114
2122 Formation of an Artificial Cultural and Language Environment When Teaching a Foreign Language in the Material of Original Films

Authors: Konysbek Aksaule

Abstract:

The purpose of this work is to explore new and effective ways of teaching English to students who are studying a foreign language since the timeliness of the problem disclosed in this article is due to the high level of English proficiency that potential specialists must have due to high competition in the context of global globalization. The article presents an analysis of the feasibility and effectiveness of using an authentic feature film in teaching English to students. The methodological basis of the study includes an assessment of the level of students' proficiency in a foreign language, the stage of evaluating the film, and the method of selecting the film for certain categories of students. The study also contains a list of practical tasks that can be applied in the process of viewing and perception of an original feature film in a foreign language, and which are aimed at developing language skills such as speaking and listening. The results of this study proved that teaching English to students through watching an original film is one of the most effective methods because it improves speech perception, speech reproduction ability, and also expands the vocabulary of students and makes their speech fluent. In addition, learning English through watching foreign films has a huge impact on the cultural views and knowledge of students about the country of the language being studied and the world in general. Thus, this study demonstrates the high potential of using authentic feature film in English lessons for pedagogical science and methods of teaching English in general.

Keywords: university, education, students, foreign language, feature film

Procedia PDF Downloads 148