Search results for: unconventional energy source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11958

Search results for: unconventional energy source

2298 Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability

Authors: Serzhan Ashirov, Dana Nour, Rafat Rob, Khaled Alotaibi

Abstract:

There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization

Keywords: cybersecurity, supply chain methodology, secure substation, digitization

Procedia PDF Downloads 48
2297 The Human Rights Code: Fundamental Rights as the Basis of Human-Robot Coexistence

Authors: Gergely G. Karacsony

Abstract:

Fundamental rights are the result of thousand years’ progress of legislation, adjudication and legal practice. They serve as the framework of peaceful cohabitation of people, protecting the individual from any abuse by the government or violation by other people. Artificial intelligence, however, is the development of the very recent past, being one of the most important prospects to the future. Artificial intelligence is now capable of communicating and performing actions the same way as humans; such acts are sometimes impossible to tell from actions performed by flesh-and-blood people. In a world, where human-robot interactions are more and more common, a new framework of peaceful cohabitation is to be found. Artificial intelligence, being able to take part in almost any kind of interaction where personal presence is not necessary without being recognized as a non-human actor, is now able to break the law, violate people’s rights, and disturb social peace in many other ways. Therefore, a code of peaceful coexistence is to be found or created. We should consider the issue, whether human rights can serve as the code of ethical and rightful conduct in the new era of artificial intelligence and human coexistence. In this paper, we will examine the applicability of fundamental rights to human-robot interactions as well as to the actions of artificial intelligence performed without human interaction whatsoever. Robot ethics has been a topic of discussion and debate of philosophy, ethics, computing, legal sciences and science fiction writing long before the first functional artificial intelligence has been introduced. Legal science and legislation have approached artificial intelligence from different angles, regulating different areas (e.g. data protection, telecommunications, copyright issues), but they are only chipping away at the mountain of legal issues concerning robotics. For a widely acceptable and permanent solution, a more general set of rules would be preferred to the detailed regulation of specific issues. We argue that human rights as recognized worldwide are able to be adapted to serve as a guideline and a common basis of coexistence of robots and humans. This solution has many virtues: people don’t need to adjust to a completely unknown set of standards, the system has proved itself to withstand the trials of time, legislation is easier, and the actions of non-human entities are more easily adjudicated within their own framework. In this paper we will examine the system of fundamental rights (as defined in the most widely accepted source, the 1966 UN Convention on Human Rights), and try to adapt each individual right to the actions of artificial intelligence actors; in each case we will examine the possible effects on the legal system and the society of such an approach, finally we also examine its effect on the IT industry.

Keywords: human rights, robot ethics, artificial intelligence and law, human-robot interaction

Procedia PDF Downloads 230
2296 The Impact of the Covid-19 Pandemic on Marine-Wildlife Tourism in Massachusetts, United States

Authors: K. C. Bloom, Cynde McInnis

Abstract:

The Covid-19 pandemic has caused immense changes in the way that we live, work and travel. The impact of these changes is readily apparent in tourism to Massachusetts and the region of New England. Whereas, in general, Massachusetts and New England are a hotspot for travelers from around the world, this form of travel has largely been shut down due to the pandemic. One such area where the impact has been felt is in marine-based wildlife tourism. Massachusetts is home to not only whales but also seals and great white sharks. Prior to the pandemic, whale watching had long been a popular activity while seal and shark tourism has been a developing one. Given that seeing a great white shark was rare in New England for many years, shark tourism has not played a role in the economies of the region until recently. While whales have steadily been found within the marine environments of Massachusetts and whale watching has been a popular attraction since the mid-1970s, the lack of great white sharks in New England was, in part, a response to a change in their environment in that a favorite food source, the gray seals, were culled by regional fishermen as the fishermen believed that seals were taking their catch. This retaliatory behavior ended when the Marine Mammal Protection Act of 1972 (MMPA) was passed. The MMPA prohibited the killing of seals and since then the seal population has increased to traditional numbers (Tech Times, 2014). Given the increase in the seal population in New England, and especially Cape Cod, Massachusetts, there has been a similar increase in the numbers of great white sharks. In fact, over the time between 2004 and 2014, the number of sightings increased from an average of two per year to more than 20 (NY Post, 7/21/14). This has increased even more over the last six years. As a result, residents and businesses in Massachusetts have begun to embrace the great whites as a potential tourism draw. Local business owners are considering opening up cage diving and shark viewing businesses while there has also been an increase in shark-related merchandise throughout the Cape Cod region. Combined with a large whale watching industry, marine-based wildlife tourism is big business to Massachusetts. With the Covid-19 pandemic shuttering international travel, this study aims to look at the impacts of the pandemic on this industry. Through interviews with marine-based wildlife tourism businesses as well as survey data collection from visitors, this study looks at the holistic impacts of the Covid-19 pandemic on an important part of the marine tourism industry in the state.

Keywords: marine tourism, ecotourism, Covid, wildlife

Procedia PDF Downloads 147
2295 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 37
2294 Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides

Authors: Tzu-Wen Liu, Yi-Feng Lin, Yu-Shao Chen

Abstract:

CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction.

Keywords: magnesium oxide, catalyst, cycloaddition, spinning disk reactor, carbon dioxide

Procedia PDF Downloads 278
2293 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still

Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama

Abstract:

A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.

Keywords: distillation, solar energy, heat transfer, mass transfer, average height

Procedia PDF Downloads 132
2292 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 280
2291 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 236
2290 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 72
2289 A Novel Harmonic Compensation Algorithm for High Speed Drives

Authors: Lakdar Sadi-Haddad

Abstract:

The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.

Keywords: active harmonic compensation, eddy current losses, high speed machine

Procedia PDF Downloads 382
2288 How to Improve the Environmental Performance in a HEI in Mexico, an EEA Adaptation

Authors: Stephanie Aguirre Moreno, Jesús Everardo Olguín Tiznado, Claudia Camargo Wilson, Juan Andrés López Barreras

Abstract:

This research work presents a proposal to evaluate the environmental performance of a Higher Education Institution (HEI) in Mexico in order to minimize their environmental impact. Given that public education has limited financial resources, it is necessary to conduct studies that support priorities in decision-making situations and thus obtain the best cost-benefit ratio of continuous improvement programs as part of the environmental management system implemented. The methodology employed, adapted from the Environmental Effect Analysis (EEA), weighs the environmental aspects identified in the environmental diagnosis by two characteristics. Number one, environmental priority through the perception of the stakeholders, compliance of legal requirements, and environmental impact of operations. Number two, the possibility of improvement, which depends of factors such as the exchange rate that will be made, the level of investment and the return time of it. The highest environmental priorities, or hot spots, identified in this evaluation were: electricity consumption, water consumption and recycling, and disposal of municipal solid waste. However, the possibility of improvement for the disposal of municipal solid waste is higher, followed by water consumption and recycling, in spite of having an equal possibility of improvement to the energy consumption, time of return and cost-benefit is much greater.

Keywords: environmental performance, environmental priority, possibility of improvement, continuous improvement programs

Procedia PDF Downloads 476
2287 Proximate Composition, Minerals and Sensory Attributes of Cake, Cookies, Cracker, and Chin-Chin Prepared from Cassava-Gari Residue Flour

Authors: Alice Nwanyioma Ohuoba, Rose Erdoo Kukwa, Ukpabi Joseph Ukpabi

Abstract:

Cassava root (Manihot esculenta) is one of the important carbohydrates containing crops in Nigeria. It is a staple food, mostly in the southern part of the country, and a source of income to farmers and processors. Cassava gari processing methods result to residue fiber (solid waste) from the sieving operation, these residue fibers ( solid wastes) can be dried and milled into flour and used to prepare cakes, cookies, crackers and chin-chin instead of being thrown away mostly on farmland or near the residential area. Flour for baking or frying may contain carbohydrates and protein (wheat flour) or rich in only carbohydrates (cassava flour). Cake, cookies, crackers, and chin-chin were prepared using the residue flour obtained from the residue fiber of cassava variety NR87184 roots, processed into gari. This study is aimed at evaluating the proximate composition, mineral content and sensory attributes of these selected snacks produced. The proximate composition results obtained showed that crackers had the lowest value in moisture (2.3390%) and fat (1.7130%), but highest in carbohydrates (85.2310%). Amongst the food products, cakes recorded the highest value in protein (8.0910%). Crude fibre values ranges from 2.5265% (cookies) to 3.4165% (crackers). The result of the mineral contents showed cookies ranking the highest in Phosphorus (65.8535 ppm) and Iron (0.1150 mg/L), Calcium (1.3800mg/L) and Potassium (7.2850 mg/L) contents, while chin-chin and crackers were lowest in Sodium ( 2.7000 mg/L). The food products were also subjected to sensory attributes evaluation by thirty member panelists using 9-hedonic scale which ranged from 1 ( dislike extremely) to 9 (like extremely). The means score obtained shows all the food products having above 7.00 (above “like moderately”). This study has shown that food products that may be functional or nutraceuticals could be prepared from the residue flour. There is a call for the use of gluten-free flour in baking due to ciliac disease and other allergic causes by gluten. Therefore local carbohydrates food crops like cassava residue flour that are gluten-free, could be the solution. In addition, this could aid cassava gari processing waste management thereby reducing post-harvest losses of cassava root.

Keywords: allergy, flour, food-products, gluten-free

Procedia PDF Downloads 141
2286 Microbiological Assessment of Soft Cheese (Wara), Raw Milk and Dairy Drinking Water from Selected Farms in Ido, Ibadan, Nigeria

Authors: Blessing C. Nwachukwu, Michael O. Taiwo, Wasiu A. Abibu, Isaac O. Ayodeji

Abstract:

Milk is an important source of micro and macronutrients for humans. Soft Cheese (Wara) is an example of a by-product of milk. In addition, water is considered as one of the most vital resources in cattle farms. Due to the high consumption rate of milk and soft cheese and the traditional techniques involved in their production in Nigeria, there was a need for a microbiological assessment which will be of utmost public health importance. The study thus investigated microbial risk assessments associated with consumption of milk and soft cheese (Wara). It also investigated common pathogens present in dairy water in farms and antibiotic sensitivity profiling for implicated pathogens were conducted. Samples were collected from three different Fulani dairy herds in Ido local government, Ibadan, Oyo State, Nigeria and subjected to microbiological evaluation and antimicrobial susceptibility testing. Aspergillus flavus was the only isolated fungal isolate from Wara while Staphylococcus aureus, Vibro cholera, Hafnia alvei, Proteus mirabilis, Escherishia coli, Psuedomonas aeuroginosa, Citrobacter freundii, and Klebsiella pneumonia were the bacteria genera isolated from Wara, dairy milk and dairy drinking water. Bacterial counts from Wara from the three selected farms A, B and C were 3.5×105 CFU/ml, 4.0×105 CFU/ml and 5.3×105 CFU/ml respectively while the fungal count was 3CFU/100µl. The total bacteria count from dairy milk from the three selected farms A, B and C were Farms 2.0 ×105 CFU/ml, 3.5 × 105 CFU/ml and 6.5 × 105 CFU/ml respectively. 1.4×105 CFU/ml, 1.9×105 CFU/ml and 4.9×105 CFU/ml were the recorded bacterial counts from dairy water from farms A, B and C respectively. The highest antimicrobial resistance of 100% was recorded in Wara with Enrofloxacin, Gentamycin, Cefatriaxone and Colistin. The highest antimicrobial susceptibility of 100% was recorded in Raw milk with Enrofloxacin and Gentamicin. Highest antimicrobial intermediate response of 100% was recorded in Raw milk with Streptomycin. The study revealed that most of the cheeses sold at Ido local Government are contaminated with pathogens. Further research is needed on standardizing the production method to prevent pathogens from gaining access. The presence of bacteria in raw milk indicated contamination due to poor handling and unhygienic practices. Thus, drinking unpasteurized milk is hazardous as it increases the risk of zoonoses. Also, the Provision of quality drinking water is crucial for optimum productivity of dairy. Health education programs aiming at increasing awareness of the importance of clean water for animal health will be helpful.

Keywords: dairy, raw milk, soft cheese, Wara

Procedia PDF Downloads 157
2285 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica

Authors: Elena Listo, Miguel Marchamalo

Abstract:

This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.

Keywords: alfisols, Costa Rica, infiltration, remote sensing

Procedia PDF Downloads 676
2284 Marketing Practices of the Urban and Recycled Wood Industry in the United States

Authors: Robert Smith, Omar Espinoza, Anna Pitta

Abstract:

In the United States, trees felled in urban areas and wood generated through construction and demolition are primarily disposed of as low-value resources, such as biomass for energy, landscaping mulch, composting, or landfilled. An emerging industry makes use of these underutilized resources to produce high value-added products, with associated benefits for the environment, the local economy, and consumers. For the circular economy to be successful, markets must be created for sustainable, reusable natural materials. Research was carried out to increase the understanding of the marketing practices of urban and reclaimed wood industries. This paper presents the results of a nationwide survey of these companies. The results indicate that a majority of companies in this industry are small firms, operating for less than 10 years, which produce mostly to order and sell their products at comparatively higher prices than competing products made from virgin natural resources. Promotional messages included quality, aesthetics, and customization, conveyed through company webpages, word of mouth, and social media. Distribution channels used include direct sales, online sales, and retail sales. Partnerships are critical for effective raw material procurement. Respondents indicated optimistic growth expectations, despite barriers associated with urban and reclaimed wood materials and production.

Keywords: urban and reclaimed wood, circular economy, marketing, wood products

Procedia PDF Downloads 111
2283 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 505
2282 The Mechanical Characteristics of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings. Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 59
2281 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 107
2280 Enhancing Urban Sustainability through Integrated Green Spaces: A Focus on Tehran

Authors: Azadeh Mohajer Milani

Abstract:

Urbanization constitutes an irreversible global trend, presenting myriad challenges such as heightened energy consumption, pollution, congestion, and the depletion of natural resources. Today's urban landscapes have emerged as focal points for economic, social, and environmental challenges, underscoring the pressing need for sustainable development. This article delves into the realm of sustainable urban development, concentrating on the pivotal role played by integrated green spaces as an optimal solution to address environmental concerns within cities. The study utilizes Tehran as a case study. Our findings underscore the imperative of preserving and expanding green spaces in urban areas, coupled with the establishment of well-designed ecological networks, to enhance environmental quality and elevate the sustainability of cities. Notably, Tehran's urban green spaces exhibit a disjointed design, lacking a cohesive network to connect various patches and corridors, resulting in significant environmental impacts. The results emphasize the necessity of a balanced and proportional distribution of urban green spaces and the creation of a cohesive patch-corridor-matrix network tailored to the ecological and social needs of residents. This approach is crucial for fostering a more sustainable and livable urban environment for all species, with a specific focus on humans.

Keywords: ecology, sustainable urban development, sustainable landscape, urban green space network

Procedia PDF Downloads 56
2279 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 275
2278 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 377
2277 Effect of the Orifice Plate Specifications on Coefficient of Discharge

Authors: Abulbasit G. Abdulsayid, Zinab F. Abdulla, Asma A. Omer

Abstract:

On the ground that the orifice plate is relatively inexpensive, requires very little maintenance and only calibrated during the occasion of plant turnaround, the orifice plate has turned to be in a real prevalent use in gas industry. Inaccuracy of measurement in the fiscal metering stations may highly be accounted to be the most vital factor for mischarges in the natural gas industry in Libya. A very trivial error in measurement can add up a fast escalating financial burden to the custodian transactions. The unaccounted gas quantity transferred annually via orifice plates in Libya, could be estimated in an extent of multi-million dollars. As the oil and gas wealth is the solely source of income to Libya, every effort is now being exerted to improve the accuracy of existing orifice metering facilities. Discharge coefficient has become pivotal in current researches undertaken in this regard. Hence, increasing the knowledge of the flow field in a typical orifice meter is indispensable. Recently and in a drastic pace, the CFD has become the most time and cost efficient versatile tool for in-depth analysis of fluid mechanics, heat and mass transfer of various industrial applications. Getting deeper into the physical phenomena lied beneath and predicting all relevant parameters and variables with high spatial and temporal resolution have been the greatest weighing pros counting for CFD. In this paper, flow phenomena for air passing through an orifice meter were numerically analyzed with CFD code based modeling, giving important information about the effect of orifice plate specifications on the discharge coefficient for three different tappings locations, i.e., flange tappings, D and D/2 tappings compared with vena contracta tappings. Discharge coefficients were paralleled with discharge coefficients estimated by ISO 5167. The influences of orifice plate bore thickness, orifice plate thickness, beveled angle, perpendicularity and buckling of the orifice plate, were all duly investigated. A case of an orifice meter whose pipe diameter of 2 in, beta ratio of 0.5 and Reynolds number of 91100, was taken as a model. The results highlighted that the discharge coefficients were highly responsive to the variation of plate specifications and under all cases, the discharge coefficients for D and D/2 tappings were very close to that of vena contracta tappings which were believed as an ideal arrangement. Also, in general sense, it was appreciated that the standard equation in ISO 5167, by which the discharge coefficient was calculated, cannot capture the variation of the plate specifications and thus further thorough considerations would be still needed.

Keywords: CFD, discharge coefficients, orifice meter, orifice plate specifications

Procedia PDF Downloads 107
2276 Clustering-Based Computational Workload Minimization in Ontology Matching

Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris

Abstract:

In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.

Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching

Procedia PDF Downloads 236
2275 Relocating Migration for Higher Education: Analytical Account of Students' Perspective

Authors: Sumit Kumar

Abstract:

The present study aims to identify the factors responsible for the internal migration of students other than push & pull factors; associated with the source region and destination region, respectively, as classified in classical geography. But in this classification of factors responsible for the migration of students, an agency of individual and the family he/she belongs to, have not been recognized which has later become the centre of the argument for describing and analyzing migration in New Economic theory of migration and New Economics of labour migration respectively. In this backdrop, the present study aims to understand the agency of an individual and the family members regarding one’s migration for higher education. Therefore, this study draws upon New Economic theory of migration and New Economics of labour migration for identifying the agency of individual or family in the context of migration. Further, migration for higher education consists not only the decision to migrate but also where to migrate (location), which university, which college and which course to pursue, also. In order to understand the role of various individuals at various stage of student migration, present study seeks help from the social networking approach for migration which identifies the individuals who facilitate the process of migration by reducing negative externalities of migration through sharing information and various other sorts of help to the migrant. Furthermore, this study also aims to rank those individuals who have helped migrants at various stages of migration for higher education in taking a decision, along with the factors responsible for their migration on the basis of their perception. In order to fulfill the above mentioned objectives of this study, quantification of qualitative data (perception of respondents) has been done employing through frequency distribution analysis. Qualitative data has been collected at two levels but questionnaire survey was the tool for data collection at both the occasions. Twenty five students who have migrated to other state for the purpose of higher education have been approached for pre-questionnaire survey consisting open-ended questions while one hundred students belonging to the same clientele have been approached for questionnaire survey consisting close-ended questions. This study has identified social pressure, peer group pressure and parental pressure; variables not constituting push & pull factors, very important for students’ migration. They have been even assigned better ranked by the respondents than push factors. Further, self (migrant themselves) have been ranked followed by parents by the respondents when it comes to take various decisions attached with the process of migration. Therefore, it can be said without sounding cynical that there are other factors other than push & pull factors which do facilitate the process of migration for higher education not only at the level to migrate but also at other levels intrinsic to the process of migration for higher education.

Keywords: agency, migration for higher education, perception, push and pull factors

Procedia PDF Downloads 222
2274 Effects of Gelatin on Characteristics and Dental Pathogen Inhibition by Silver Nanoparticles Synthesized from Ascorbic Acid

Authors: Siriporn Okonogi, Temsiri Suwan, Sakornrat Khongkhunthian, Jakkapan Sirithunyalug

Abstract:

In this study, silver nanoparticles (AgNPs) were prepared using ascorbic acid as a reducing agent and silver nitrate as a precursor. The effects of gelatin (G) on particle characteristics and dental pathogen inhibition were investigated. The spectra of AgNPs and G-AgNPs were compared using UV-Vis and Energy-dispersive X-ray (EDX) spectroscopy. The obtained AgNPs and G-AgNPs showed the maximum absorption at 410 and 430 nm, respectively, and EDX spectra of both systems confirmed Ag element. Scanning electron microscope showed that AgNPs and G-AgNPs were spherical in shape. Particles size, size distribution, and zeta potential were determined using dynamic light scattering approach. The size of AgNPs and G-AgNPs were 56 ± 2.4 and 67 ± 3.6 nm, respectively with a size distribution of 0.23 ± 0.03 and 0.19 ± 0.02, respectively. AgNPs and G-AgNPs exhibited negative zeta potential of 24.1 ± 2.7 mV and 32.7 ± 1.2 mV, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the obtained AgNPs and G-AgNPs against three strains of dental pathogenic bacteria; Streptococcus gordonii, Streptococcus mutans, and Staphylococcus aureus were determined using broth dilution method. AgNPs and G-AgNPs showed the strongest inhibition against S. gordonii with the MIC of 0.05 and 0.025 mg/mL, respectively and the MBC of 0.1 and 0.05 mg/mL, respectively. Cytotoxicity test of AgNPs and G-AgNPs on human breast cancer cells using MTT assay indicated that G-AgNPs (0.1 mg/mL) was significantly stronger toxic than AgNPs with the cell inhibition of 91.1 ± 5.4%. G-AgNPs showed significantly less aggregation after storage at room temperature for 90 days than G-AgNPs.

Keywords: antipathogenic activity, ascorbic acid, cytotoxicity, stability

Procedia PDF Downloads 133
2273 Economic Value Added of Green Marketing for Urban Commerical Center

Authors: Kuo-Wei Hsu, Yen-Ting, Wu

Abstract:

Recently, green marketing issues have emerged as the developing direction for local governments and social enterprises. At the same time, many social enterprises have considered how to effectively create a low-carbon and sustainable environment. Local government has a role to play in promoting low-carbon life styles and creating a green sustainable environment within this green marketing trend. Therefore, urban commercial centers have implemented relevant plans such as: Green Store, Green Action Shops, Green Restaurants and Green Hotels. The purpose of these plans to select the commercial center organizations have potential energy saving demonstration and environmental greenification. These organizations are willing to provide assistance counseling and become a green demonstration district, thereby promoting the major shopping district to take the initiative to enhance its green competitiveness. Finally, they create a new landscape for the commercial center. Studies on green marketing in commercial centers are seen as less attractive and only a few studies for commercial centers have focused on green marketing strategies. There is no empirical evidence for how commercial center managers evaluate a commercial center green marketing strategy. This research investigated the major commercial centers in Taichung City and found green marketing helps to enhance the connection between the urban commercial center value and society value, shape corporate image with social responsibility and create brand value, and therefore impact the increase of economic value.

Keywords: economic value added, green marketing, sustainable environment, urban commercial center.

Procedia PDF Downloads 349
2272 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 145
2271 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds

Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo

Abstract:

Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.

Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins

Procedia PDF Downloads 413
2270 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 48
2269 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 152