Search results for: wastewater treatment plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10955

Search results for: wastewater treatment plant

10025 Density Interaction in Determinate and Indeterminate Faba Bean Types

Authors: M. Abd El Hamid Ezzat

Abstract:

Two field trials were conducted to study the effect of plant densities i.e., 190, 222, 266, 330 and 440 10³ plants ha⁻¹ on morphological characters, physiological and yield attributes of two faba bean types viz. determinate (FLIP-87 -117 strain) and indeterminate (c.v. Giza-461). The results showed that the indeterminate plants significantly surpassed the determinate plants in plant height at 75 and 90 days from sowing, number of leaves at all growth stages and dry matter accumulation at 45 and 90 days from sowing. Determinate plants possessed greater number of side branches than that of the indeterminate plants, but it was only significant at 90 days from sowing. Greater number of flowers were produced by the indeterminate plants than that of the determinate plants at 75 and 90 days from sowing, and although shedding was obvious in both types, it was greater in the determinate plants as compared with the indeterminate one at 90 days from sowing. Increasing plant density resulted in reductions in number of leaves, branches flowers and dry matter accumulation per plant of both faba bean types. However, plant height criteria took a reversible magnitude. Moreover, under all rates of plant densities the indeterminate type plants surpassed the determinate plants in all growth characters studied except for number of branches per plant at 90 days from sowing. The indeterminate plant leaves significantly contained greater concentrations of photosynthetic pigments i.e., chl. a, b and carotenoids than those found in the determinate plant leaves. Also, the data showed significant reduction in photosynthetic pigments concentration as planting density increases. Light extinction coefficient (K) values reached their maximum level at 60 days from sowing, then it declined sharply at 75 days from sowing. The data showed that the illumination inside the determinate faba bean canopies was better than the indeterminate plants. (K) values tended to increase as planting density increases, meanwhile, significant interactions were reported between faba bean type as planting density on (K) at all growth stages. Both of determinate and indeterminate faba bean plant leaves reached their maximum expansion at 75 days from sowing reflecting the highest LAI values, then their declined in the subsequent growth stage. The indeterminate faba bean plants significantly surpassed the determinate plants in LAI up to 75 days from sowing. Growth analysis showed that NAR, RGR and CGR reached their maximum rates at (60-75 days growth stage). Faba bean types did not differ significantly in NAR at the early growth stage. The indeterminate plants were able to grow faster with significant CGR values than the determinate plants. The indeterminate faba bean plants surpassed the determinate ones in number of seeds/pod and per plant, 100-seed weight, seed yield per plant and per hectare at all rates of plant density. Seed yield increased with increasing plant densities of both types. The highest seed yield was attained for both types 440 103 plants ha⁻¹.

Keywords: determinate, indeterminate faba bean, Physiological attributes, yield attributes

Procedia PDF Downloads 225
10024 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 137
10023 Efficacy of Plant Extracts on Insect Pests of Watermelon and Their Effects on Nutritional Contents of the Fruits

Authors: Fatai Olaitan Alao, Thimoty Abiodun Adebayo, Oladele Abiodun Olaniran

Abstract:

This experiment was conducted at Ladoke Akintola University of Technology, Ogbomoso, Teaching and Research farm during the major and minor planting season , 2017 to determine the effects of Annona squamosa (Linn.) and Moringa oleifera (Lam) extracts on insect pests of watermelon and their effects on nutritional contents of watermelon fruits. Synthetic insecticide and untreated plots were included in the treatments for comparison. Selected plants were prepared with cold water and each plant extracts was applied at three different concentrations (5,10 and 20% v/v). Data were collected on population density of insect pests, number of aborted fruits, number of defoliated flowers , the yield was calculated in t/ha, nutritional and fatty acid contents were determine using gas chromatography. The results show that the two major insects were observed - Diabrotica undicimpunctata and Dacus cucurbitea. The tested plant extracts had about 65% control of the observed insect pests when compared with the control and the two plant extracts had the same insecticidal efficacy. However, the applied plant extracts at 20% v/v had higher insecticidal effects than the other tested concentrations. Significant higher yield was observed on the plant extracts treated plants compared with untreated plants which had the least yield() but none of the plant extracts performed effectively as Lambdachyalothrin in the control of insect pests and yield. Meanwhile, the tested plant extracts significantly improved the proximate and fatty acid contents of watermelon fruits while Lambdachyalothrin contributed negatively to the nutritional contents of watermelon fruits. Therefore, A. squpmosa and M. oleifera can be used in the management of insect pests and to improve the nutritional contents of the watermelon especially in the organic farming system.

Keywords: Annona squamosa, Dacus cucubitea, Diabrotical undicimpunctata, Moringa oleifera, watermelon

Procedia PDF Downloads 115
10022 Co-Limitation of Iron Deficiency in Stem Allantoin and Amino-N Formation of Peanut Plants Intercropped with Cassava

Authors: Hong Li, Tingxian Li, Xudong Wang, Weibo Yang

Abstract:

Co-limitation of iron (Fe) deficiency in legume nitrogen fixation process is not well understood. Our objectives were to examine how peanut plants cope with Fe deficiency with the rhizobial inoculants and N-nutrient treatments. The study was conducted in the tropical Hainan Island during 2012-2013. The soil was strongly acidic (pH 4.6±0.7) and deficient in Fe (9.2±2.3 mg/kg). Peanut plants were intercropped with cassava. The inoculants and N treatments were arranged in a split-plot design with three blocks. Peanut root nodulation, stem allantoin, amino acids and plant N derived from fixation (P) reduced with declining soil Fe concentrations. The treatment interactions were significant on relative ureide % and peanut yields (P<0.05). Residual fixed N from peanut plants was beneficial to cassava plants. It was concluded that co-variance of Fe deficiency could influence peanut N fixation efficiency and rhizobia and N inputs could help improving peanut tolerance to Fe deficiency stress.

Keywords: amino acids, plant N derived from N fixation, root nodulation, soil Fe co-variance, stem ureide, peanuts, cassava

Procedia PDF Downloads 281
10021 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass

Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva

Abstract:

Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up.

Keywords: radioceaseum, Japanese basil, polymer, soil-plant system

Procedia PDF Downloads 173
10020 The Introduction of Medicine Plants in Bogor Agricultural University: A Case Study in Cikabayan and Tropical Medicinal Plant Conservation Laboratory

Authors: Eki Devung, Eka Tyastutik, Indha Annisa, Digdaya Anoraga, Jamaluddin Arsyad

Abstract:

Plant medicine is a whole species of plants are known to have medicinal properties. Bogor Agricultural University has high biodiversity, one of which flora potential as a drug. This study was conducted from 19 September to 10 October 2016 at Bogor Agricultural University using literature study and field observation. There are 85 species of medicinal plants which include a medicinal plant cultivation and wild plants. Family herbs most commonly found in Cikabayan that while the Euphorbiaceae, family which is found in the Tropical Medicinal Plant Conservation Laboratory is the family of Achantaceae. Species of medicinal plants is dominated by herbs and shrubs. Part herbs most widely used are the leaves. The diversity of diseases that can be treated with medicine plants include digestive system diseases and metabolic disorder.

Keywords: benefits, biodiversity, Bogor Agricultural University, medicinal plants

Procedia PDF Downloads 343
10019 Phytochemical Constituents and Bioactive Properties of Glinus oppositifolius (L.) Aug. DC. against Bacterial Pathogens

Authors: Juliana Janet R. Martin-Puzon, Demetrio L. Valle, Windell L. Rivera

Abstract:

This study aimed to determine the presence of bioactive phytochemical constituents and evaluate the in vitro antibacterial activities of Glinus oppositifolius or carpet weed, a plant valued for its use in traditional medicine and as a vegetable. The leaves, stems, and roots were extracted using chloroform, ethanol, and methanol. Phytochemical screening revealed that the entire G. oppositifolius plant, i.e. roots, stems, and leaves, is a rich source of alkaloids, flavonoids, glycosides, saponins, sterols, tannins, and triterpenes. The antibacterial activity of the leaf and stem extracts were evaluated through disc diffusion, minimum inhibitory concentration, and bactericidal concentration assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing (ESβL+), carbapenem-resistant Enterobacteriaceae (CRE), and metallo-β-lactamase-producing (MβL+) Pseudomonas aeruginosa and Acinetobacter baumannii. The leaf extracts revealed antibacterial activities, inhibiting the growth of non-resistant and multidrug-resistant (MDR) strains of the Gram-negative bacteria E. coli, P. aeruginosa, and A. baumanii. In conclusion, the various biological activities of G. oppositifolius, including its antibacterial activity, are due to the presence of diverse bioactive secondary metabolites. The presence of phytochemical compounds in G. oppositifolius is scientific evidence on its use for treatment of many ailments. Thus, the results demonstrate the great potential of the plant as a new, alternative source of antimicrobials and other components with therapeutic value.

Keywords: antibacterial, Glinus oppositifolius, multidrug-resistant, secondary metabolites

Procedia PDF Downloads 557
10018 Improvement of Water Quality of Al Asfar Lake Using Constructed Wetland System

Authors: Jamal Radaideh

Abstract:

Al-Asfar Lake is located about 14 km east of Al-Ahsa and is one of the most important wetland lakes in the Al Ahsa/Eastern Province of Saudi Arabia. Al-Ahsa is may be the largest oasis in the world, having an area of 20,000 hectares, in addition, it is of the largest and oldest agricultural centers in the region. The surplus farm irrigation water beside additional water supplied by treated wastewater from Al-Hofuf sewage station is collected by a drainage network and discharged into Al-Asfar Lake. The lake has good wetlands, sand dunes as well as large expanses of open and shallow water. Salt tolerant vegetation is present in some of the shallow areas around the lake, and huge stands of Phragmites reeds occur around the lake. The lake presents an important habitat for wildlife and birds, something not expected to find in a large desert. Although high evaporation rates in the range of 3250 mm are common, the water remains in the evaporation lakes during all seasons of the year is used to supply cattle with drinking water and for aquifer recharge. Investigations showed that high concentrations of nitrogen (N), phosphorus (P), biological oxygen demand (BOD), chemical oxygen demand (COD) and salinity discharge to Al Asfar Lake from the D2 drain exist. It is expected that the majority of BOD, COD and N originates from wastewater discharge and leachate from surplus irrigation water which also contribute to the majority of P and salinity. The significant content of nutrients and biological oxygen demand reduces available oxygen in the water. The present project aimed to improve the water quality of the lake using constructed wetland trains which will be built around the lake. Phragmites reeds, which already occur around the lake, will be used.

Keywords: Al Asfar lake, constructed wetland, water quality, water treatment

Procedia PDF Downloads 424
10017 Single Protoplast of Murraya paniculata L. Jack Regenerated Into Plantlets

Authors: Hasan Basri Jumin, Danil Endriand Basri

Abstract:

Isolated protoplast from embryogenic callus of orange Jessamine (Murraya paniculata L. (Jack) cultured and maintained under growth chamber at the temperature +25oC. The parameter observed are the plating efficiency, the number of spherical embryos, heard-shaped embryos-like structure, shoot formation, and plantlets obtained. Treatment was arranged with 0.0, 0.001, 0.01, 0.1 or 1.0 mg 1-1 Naphthalene acetic acid (NAA), and 0, 300, 500 mg 1/l malt extract (ME) and 0.M sorbitol in the medium with 2.5 % sucrose. Interaction between 0.001 mg/l NAA and 500 mg/l was observed the higher percentage of planting efficiency. For embryo development from callus, the media was added to 0.0 mg/l, 0.001 mg/l, 0.01 ,mg/l, 0.1 mg/l, 1.0 mg/l NAA, and 1.0 %, 2.0 %, 3.0 %, 4.0 % sucrose. Media supplemented with 0.01mg/l NAA, and 1.0% sucrose was found to be a suitable medium for the development of spherical somatic embryos. A combination of 0.1 mg/ indole acetic acid (IAA) and 0.1 mg/l zeatin constituted the spherical somatic embryo became heart-shaped embryos-like structure. A combination between GA3 0.1 mg 1/l GA3 and 0.1 mg 1-1 zeatin is looking high, growing the heart-shaped embryos-like structure to form a shoot. Cells were developed into spherical embryos and grew into heart-shaped embryos, and then spherical somatic embryos developed into shoot formation. Sequence from single protoplast to plantlets was obtained by using a low concentration of plant growth regulator and sucrose; This recovery of single protoplast to be completed plantlets is a new technology in plant cell culture, and this could be used in genetic engineering in citrus.

Keywords: heart-shaped-embryos-like-structure, Muraya-paniculata, plant-growth-regulator, spherical- somatic-embryo, single protoplast, glucose

Procedia PDF Downloads 94
10016 Phytochemical Screening and Evaluation of Antimicrobial and Antioxidant Activity of Anethum graveolens L. (Dill) Plant

Authors: Radhika S. Oke, Rebecca S. Thombre

Abstract:

Medicinal plants and herbs have a great history of their utility as remedy for treatment of variety of ailments. Secondary metabolites present in these plants are responsible for their medicinal activity. In the present investigation, phytochemical screening of aqueous and alcoholic leaf extract of Anethum graveolens L. was performed. Total phenolic content and total antioxidant activity of the extracts was quantitatively estimated by Folin-Ciocalteau method and DPPH (1, 1-Diphenyl-2-picryl hydrazyl) method respectively. Qualitative tests suggested that Alkaloids, tannins and phenolic compounds were present in all the extracts of the plant. Aqueous extracts was found to have more phytochemicals as compared to alcoholic extracts. Extract of Anethum graveolens L. was found to contain good amount phenolics and exhibited antioxidant activity. The extracts also demonstrated potent antimicrobial activity against selected gram positive and negative bacteria. The study revealed the potential application of Anethum graveolens L. (Dill) in medicine and health.

Keywords: Anethum graveolens L., antioxidant, antimicrobial activity, medicine and health

Procedia PDF Downloads 490
10015 Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants

Authors: Naira Sahakyan, Margarit Petrosyan, Armen Trchounian

Abstract:

One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of Ajuga genevensis with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (Bacillus subtilis A1WT; B. mesentericus WDCM 1873; Staphylococcus aureus WDCM 5233; Staph. citreus WT) and gram-negative (Escherichia coli WKPM M-17; Salmonella typhimurium TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against E. coli corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of A. genevensis intact plant extract. A. genevensis intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of A. genevensis callus culture extracts. Obtained data indicate that callus culture of A. genevensis can be used as an alternative source of biologically active substances.

Keywords: Ajuga genevensis, antibacterial activity, antioxidant activity, callus cultures

Procedia PDF Downloads 286
10014 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

Authors: D. Visuwan, B. Phruksaphanrat

Abstract:

In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It is found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyse and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyse and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout.

Keywords: layout, electronic manufacturing service plant, computer simulation, cellular manufacturing system

Procedia PDF Downloads 289
10013 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach

Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla

Abstract:

Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.

Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis

Procedia PDF Downloads 217
10012 Online Self-Help Metacognitive Therapy for OCD: A Case Series

Authors: C. Pearcy, C. Rees

Abstract:

Cognitive behavioural therapy (CBT) and exposure and response prevention (ERP) are currently the most efficacious treatments for Obsessive-compulsive disorder (OCD). Many clients, however, remain symptomatic following treatment. As a result, refusal of treatment, withdrawal from treatment, and partial adherence to treatment are common amongst ERP. Such limitations have caused few professionals to actually engage in ERP therapy, which has warranted the exploration of alternative treatments. This study evaluated an online self-help treatment program for OCD (the OCD Doctor Online); a 4-week Metacognitive Therapy (MCT) program which has implemented strategies from Wells’ Metacognitive model of OCD. The aim of the present study was to investigate whether an online self-help treatment using MCT would reduce symptoms of OCD, reduce unhelpful metacognitions and improve quality of life. Treatment effectiveness was assessed using a case series methodology in 3 consecutively referred individuals. At post-treatment, all participants showed reductions in unhelpful metacognitive beliefs (MCQ-30) and improvements in quality of life (Q-LES-Q), which were maintained through to 4 week follow-up. Two of the three participants showed reductions in OCD symptomology (OCI-R), which were further reduced at 4-week follow-up. The present study suggests that internet-based self-help treatment may be an effective means of delivering MCT to adults with OCD.

Keywords: internet-based, metacognitive therapy, obsessive-compulsive disorder, self-help

Procedia PDF Downloads 419
10011 Growth of Albizia in vitro: Endophytic Fungi as Plant Growth Promote of Albizia

Authors: Reine Suci Wulandari, Rosa Suryantini

Abstract:

Albizia (Paraserianthes falcataria) is a woody plant species that has a high economic value and multifunctional. Albizia is important timber, medicinal plants and can also be used as a plant to rehabilitate critical lands. The demand value of Albizia is increased so that the large quantities and high quality of seeds are required. In vitro propagation techniques are seed propagation that can produce more seeds and quality in a short time. In vitro cultures require growth regulators that can be obtained from biological agents such as endophytic fungi. Endophytic fungi are micro fungi that colonize live plant tissue without producing symptoms or other negative effects on host plants and increase plant growth. The purposes of this research were to isolate and identify endophytic fungi isolated from the root of Albizia and to study the effect of endophytic fungus on the growth of Albizia in vitro. The methods were root isolation, endophytic fungal identification, and inoculation of endophytic fungi to Albizia plants in vitro. Endophytic fungus isolates were grown on PDA media before being inoculated with Albizia sprouts. Incubation is done for 4 (four) weeks. The observed growth parameters were live explant percentage, percentage of explant shoot, and percentage of explant rooted. The results of the research showed that 6 (six) endophytic fungal isolates obtained from the root of Albizia, namely Aspergillus sp., Verticillium sp, Penicillium sp., Trichoderma sp., Fusarium sp., and Acremonium sp. Statistical analysis found that Trichoderma sp. and Fusarium sp. affect in vitro growth of Albizia. Endophytic fungi from the results of this research were potential as plant growth promoting. It can be applied to increase productivity either through increased plant growth and increased endurance of Albizia seedlings to pests and diseases.

Keywords: Albizia, endophytic fungi, propagation, in vitro

Procedia PDF Downloads 250
10010 Effect of Botanical and Synthetic Insecticide on Different Insect Pests and Yield of Pea (Pisum sativum)

Authors: Muhammad Saeed, Nazeer Ahmed, Mukhtar Alam, Fazli Subhan, Muhammad Adnan, Fazli Wahid, Hidayat Ullah, Rafiullah

Abstract:

The present experiment evaluated different synthetic insecticides against Jassid (Amrasca devastations) on pea crop at Agriculture Research Institute Tarnab, Peshawar Khyber Pakhtunkhwa. The field was prepared to cultivate okra crop in Randomized Complete Block (RCB) Design having six treatments with four replications. Plant to plant and row to row distance was kept at 15 cm and 30 cm, respectively. Pre and post spray data were recorded randomly from the top, middle and bottom leaves of five selected plants. Five synthetic insecticides, namely Confidor (Proponil), a neonicotinoid insecticide, Chlorpyrifos (chlorinated organophosphate (OP) insecticide), Lazer (dinitroaniline) (Pendimethaline), Imidacloprid (neonicotinoids insecticide) and Thiodan (Endosulfan, organochlorine insecticide), were used against infestation of aphids, pea pod borer, stem fly, leaf minor and pea weevil. Each synthetic insecticide showed significantly more effectiveness than control (untreated plots) but was non-significant among each other. The lowest population density was recorded in the plot treated with synthetic insecticide i.e. Confidor (0.6175 liter.ha-1) (4.24 aphids plant⁻¹) which is followed by Imidacloprid (0.6175 liter.ha⁻¹) (4.64 pea pod borer plant⁻¹), Thiodan (1.729 liter.ha⁻¹) (4.78 leaf minor plant⁻¹), Lazer (2.47 liter.ha-1) (4.91 pea weevil plant⁻¹), Chlorpyrifos (1.86 liter.ha⁻¹) (5.11 stem fly plant⁻¹), respectively while the highest population was recorded from the control plot. It is concluded from the data that the residual effect decreases with time after the application of spray, which may be less dangerous to the environment and human beings and can effectively manage this dread.

Keywords: okra crop, jassids, Confidor, imidacloprid, chlorpyrifos, laser, Thiodan

Procedia PDF Downloads 62
10009 Effect of Abiotic Factors on Population of Red Cotton Bug Dysdercus Koenigii F. (Heteroptera: Pyrrhocoridae) and Its Impact on Cotton Boll Disease

Authors: Haider Karar, Saghir Ahmad, Amjad Ali, Ibrar Ul Haq

Abstract:

The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and red cotton bug (RCB) on cotton boll disease yielded yellowish lint during 2012. The population on RCB along with abiotic factors was recorded during three consecutive years i.e. 2012, 2013, and 2014. Along with population of RCB and abiotic factors, the number of unopened/opened cotton bolls (UOB), percent yellowish lint (YL) and whitish lint (WL) were also recorded. The data revealed that the population per plant of RCB remain 0.50 and 0.34 during years 2012, 2013 but increased during 2014 i.e. 3.21 per plant. The number of UOB were more i.e. 13.43% in 2012 with YL 76.30 and WL 23.70% when average maximum temperature 34.73◦C, minimum temperature 22.83◦C, RH 77.43% and 11.08 mm rainfall. Similarly in 2013 the number of UOB were less i.e. 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60◦C, minimum temperature 23.37◦C, RH 73.01% and 9.95 mm rainfall. During 2014 RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70◦C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So it is concluded that the cotton bolls disease was more during 2012 due to more rainfall and more percent RH. The RCB may be the carrier of boll rot disease pathogen during more rainfall.

Keywords: red cotton bug, cotton, weather factors, years

Procedia PDF Downloads 333
10008 A Real Time Expert System for Decision Support in Nuclear Power Plants

Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru

Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Keywords: emergence procedure, expert system, operator support, PWR nuclear power plant

Procedia PDF Downloads 319
10007 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 68
10006 The Effects of Boronizing Treatment on the Friction and Wear Behavior of 0.35 VfTiC- Ti3SiC2 Composite

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of 0.35 Vf TiC- Ti3 SiC2 composite were investigated. In order to modity the surface properties of Ti3SiC2, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti3SiC2. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti3SiC2 from 6 GPa to 13 GPa. In the pin-on-disc test, i twas found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti3SiC2/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti3SiC2 underAl2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti3SiC2.

Keywords: MAX phase, wearing, friction, boronizing

Procedia PDF Downloads 439
10005 Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy

Authors: Ju Hyun Won, Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging

Procedia PDF Downloads 418
10004 Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment

Authors: Nguyen Thi Thanh Truc, Chi-Hyeon Lee, Srinivasa Reddy Mallampati, Byeong-Kyu Lee

Abstract:

This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics.

Keywords: ABS, hydrophilic, heat treatment, froth flotation, contact angle

Procedia PDF Downloads 339
10003 Enhancement of Biomass and Bioactive Compounds in Kale Subjected to UV-A LED Lights

Authors: Jin-Hui Lee, Myung-Min Oh

Abstract:

The application of temporary abiotic stresses before crop harvest is a potential strategy to enhance phytochemical content. The objective of this study was to determine the effect of various UV-A LED lights on the growth and content of bioactive compounds in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were cultivated in a plant factory with artificial lighting (air temperature of 20℃, relative humidity of 60%, photosynthesis photon flux density (PPFD) of 125 µmol·m⁻²·s⁻¹) for 3 weeks. Kale plants were irradiated by four types of UV-A LEDs (peak wavelength; 365, 375, 385, and 395 nm) with 30 W/m² for 7 days. As a result, image chlorophyll fluorescence (Fv/Fm) value of kale leaves was lower as the UV-A LEDs peak wavelength was shorter. Fresh and dry weights of shoots and roots of kale plants were significantly higher in the plants under UV-A than the control at 7 days of treatment. In particular, the growth was significantly increased with a longer peak wavelength of the UV-A LEDs. The results of leaf area and specific leaf weight showed a similar pattern with those of growth characteristics. Chlorophyll content was highest in kale leaves subjected to UV-A LEDs with the peak wavelength of 395 nm at 3 days of treatment compared with the control. Total phenolic contents of UV-A LEDs with the peak wavelength of 395 nm at 5 and 6 days of treatment were 44% and 47% higher than those of the control, respectively. Antioxidant capacity showed almost the same pattern as the results of total phenol content. The activity of phenylalanine ammonia-lyase was approximately 11% and 8% higher in the UV-A LEDs with the peak wavelength of 395 nm compared to the control at 5 and 6 days of treatment, respectively. Our results imply that the UV-A LEDs with relative longer peak wavelength were effective to improve growth as well as the content of bioactive compounds of kale plants.

Keywords: bioactive compounds, growth, Kale, UV-A LEDs

Procedia PDF Downloads 127
10002 Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus

Authors: Nguyen Cao Nguyen, Krasimir I. Ivanov, Penka S. Zapryanova

Abstract:

The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.

Keywords: Phyllanthus amarus, Zinc, Micro and macro elements, foliar fertilizer

Procedia PDF Downloads 133
10001 Produce Large Surface Area Activated Carbon from Biomass for Water Treatment

Authors: Rashad Al-Gaashani

Abstract:

The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 62
10000 Impact of Unconventional Waters on Spirulina Production under Greenhouse Condition in Ouargla

Authors: Afaf Djaghoubi, Mustapha Daddi Bouhoun, Jr., Ali Seggai

Abstract:

The study of the habitat of Spirulina is the key to ensure the smooth running of its culture outside of its natural habitat. Our experimental work in the Ouargla basin which aims to study the Spirulina productivity cultivated under greenhouse in unconventional waters enriched and non-enriched, drainage and wastewater treated were used in the experiment. For this, we proceeded to measure the biomass concentration by the DO625. The high biomass concentration and productivity amount were in treated wastewater enriched with 2.49±1.09 and 0.12±0.57 respectively, while The high amount in drainage water were in medium enriched with 2.19 ± 0.85 g/l and 0.08±0.52 g/l/d respectively. In spite of the enrichment and the good productivity of these waters, the chemical and microbiological qualities remain to study for a better valuation.

Keywords: Algeria, Ouargla, production, Spirulina, unconventional water

Procedia PDF Downloads 284
9999 The Effectiveness of Sulfate Reducing Bacteria in Minimizing Methane and Sludge Production from Palm Oil Mill Effluent (POME)

Authors: K. Abdul Halim, E. L. Yong

Abstract:

Palm oil industry is a major revenue earner in Malaysia, despite the growth of the industry is synonymous with a massive production of agro-industrial wastewater. Through the oil extraction processes, palm oil mill effluent (POME) contributes to the largest liquid wastes generated. Due to the high amount of organic compound, POME can cause inland water pollution if discharged untreated into the water course as well as affect the aquatic ecosystem. For more than 20 years, Malaysia adopted the conventional biological treatment known as lagoon system that apply biological treatment. Besides having difficulties in complying with the standard, a large build up area is needed and retention time is higher. Although anaerobic digester is more favorable, this process comes along with enormous volumes of sludge and methane gas, demanding attention from the mill operators. In order to reduce the sludge production, denitrifiers are to be removed first. Sulfate reducing bacteria has shown the capability to inhibit the growth of methanogens. This is expected to substantially reduce both the sludge and methane production in anaerobic digesters. In this paper, the effectiveness of sulfate reducing bacteria in minimizing sludge and methane will be examined.

Keywords: methane reduction, palm oil mill effluent, sludge minimization, sulfate reducing bacteria, sulfate reduction

Procedia PDF Downloads 419
9998 Plant Genetic Diversity in Home Gardens and Its Contribution to Household Economy in Western Part of Ethiopia

Authors: Bedilu Tafesse

Abstract:

Home gardens are important social and cultural spaces where knowledge related to agricultural practice is transmitted and through which households may improve their income and livelihood. High levels of inter- and intra-specific plant genetic diversity are preserved in home gardens. Plant diversity is threatened by rapid and unplanned urbanization, which increases environmental problems such as heating, pollution, loss of habitats and ecosystem disruption. Tropical home gardens have played a significant role in conserving plant diversity while providing substantial benefits to households. This research aimed to understand the relationship between household characteristics and plant diversity in western Ethiopia home gardens and the contributions of plants to the household economy. Plant diversity and different uses of plants were studied in a random sample of 111 suburban home gardens in the Ilu Ababora, Jima and Wellega suburban area, western Ethiopia, based on complete garden inventories followed by household surveys on socio-economic status during 2012. A total of 261 species of plants were observed, of which 41% were ornamental plants, 36% food plants, and 22% medicinal plants. Of these 16% were sold commercially to produce income. Avocado, bananas, and other fruits produced in excess. Home gardens contributed the equivalent of 7% of total annual household income in terms of food and commercial sales. Multiple regression analysis showed that education, time spent in gardening, land for cultivation, household expenses, primary conservation practices, and uses of special techniques explained 56% of the total plant diversity. Food, medicinal and commercial plant species had significant positive relationships with time spent gardening and land area for gardening. Education and conservation practices significantly affected food and medicinal plant diversity. Special techniques used in gardening showed significant positive relations with ornamental and commercial plants. Reassessments in different suburban and urban home gardens and proper documentation using same methodology is essential to build a firm policy for enhancing plant diversity and related values to households and surroundings.

Keywords: plant genetic diversity, urbanization, suburban home gardens, Ethiopia

Procedia PDF Downloads 290
9997 Regulation of Water Balance of the Plant from the Different Geo-Environmental Locations

Authors: Astghik R. Sukiasyan

Abstract:

Under the drought stress condition, the plants would grow slower. Temperature is one of the most important abiotic factors which suppress the germination processes. However, the processes of transpiration are regulated directly by the cell water, which followed to an increase in volume of vacuoles. During stretching under the influence of water pressure, the cell goes into the state of turgor. In our experiments, lines of the semi-dental sweet maize of Armenian population from various zones of growth under mild and severe drought stress were tested. According to results, the value of the water balance of the plant cells may reflect the ability of plants to adapt to drought stress. It can be assumed that the turgor allows evaluating the number of received dissolved substance in cell.

Keywords: turgor, drought stress, plant growth, Armenian Zea Maize Semidentata

Procedia PDF Downloads 245
9996 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water

Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard

Abstract:

Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.

Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment

Procedia PDF Downloads 106