Search results for: susceptibility weighted
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1062

Search results for: susceptibility weighted

132 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions

Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.

Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation

Procedia PDF Downloads 265
131 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
130 Bacteriological Spectrum and Resistance Patterns of Common Clinical Isolates from Infections in Cancer Patients

Authors: Vivek Bhat, Rohini Kelkar, Sanjay Biswas

Abstract:

Introduction: Cancer patients are at increased risk of bacterial infections. This may due to the disease process itself, the effect of chemotherapeutic drugs or invasive procedures such as catheterization. A wide variety of bacteria including some emerging pathogens are increasingly being reported from these patients. The incidence of multidrug-resistant organisms particularly in the Gram negative group is also increasing, with higher resistance rates seen to cephalosporins, β-lactam/β-lactam inhibitor combinations, and the carbapenems. This study documents the bacteriological spectrum of infections and their resistance patterns in cancer patients. Methods: This study includes all bacterial isolates recovered from infections cancer patients over a period of 18 months. Samples included Blood cultures, Pus/wound swabs, urine, tissue biopsies, body fluids, catheter tips and respiratory specimens such as sputum and bronchoalveolar lavage (BAL). All samples were processed in the microbiology laboratory as per standard laboratory protocols. Organisms were identified to species level and antimicrobial susceptibility testing was performed manually by the disc diffusion technique or in the Vitek-2 (Biomereux, France) instrument. Interpretations were as per Clinical laboratory Standards Institute (CLSI) guidelines. Results: A total of 1150 bacterial isolates were cultured from 884 test samples during the study period. Of these 227 were Gram-positive and 923 were Gram-negative organisms. Staphylococcus aureus (99 isolates) was the commonest Gram-positive isolate followed by Enterococcus (79) and Gr A Streptococcus (30). Among the Gram negatives, E. coli (304), Pseudomonas aeruginosa (201) and Klebsiella pneumoniae (190) were the most common. Of the Staphylococcus aureus isolates 27.2% were methicillin resistant. Only 5.06% enterococci were vancomycin resistant. High rates of resistance to cefotaxime and ciprofloxacin were seen amongst E. coli (84.8% & 83.55%) and Klebsiella pneumoniae (71 & 62.1%) respectively. Resistance to carbapenems (meropenem) was high at 70% in Acinetobacter spp.; however all isolates were sensitive to colistin. Among the aminoglycosides, amikacin retained good efficacy against Escherichia coli (82.9%) and Pseudomonas aeruginosa (78.1%). Occasional isolates of emerging pathogens such as Chryseobacterium indologens, Roseomonas, and Achromobacter xyloxidans were also recovered. Conclusion: The common infections in cancer patients include respiratory, wound, tract infections and sepsis. The commonest isolates include Staphylococcus aureus, Enterococci, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. There is a high level of resistance to the commonly used antibiotics among Gram-negative organisms.

Keywords: bacteria, resistance, infection, cancer

Procedia PDF Downloads 299
129 Seasonal Short-Term Effect of Air Pollution on Cardiovascular Mortality in Belgium

Authors: Natalia Bustos Sierra, Katrien Tersago

Abstract:

It is currently proven that both extremes of temperature are associated with increased mortality and that air pollution is associated with temperature. This relationship is complex, and in countries with important seasonal variations in weather such as Belgium, some effects can appear as non-significant when the analysis is done over the entire year. We, therefore, analyzed the effect of short-term outdoor air pollution exposure on cardiovascular mortality during the warmer and colder months separately. We used daily cardiovascular deaths from acute cardiovascular diagnostics according to the International Classification of Diseases, 10th Revision (ICD-10: I20-I24, I44-I49, I50, I60-I66) during the period 2008-2013. The environmental data were population-weighted concentrations of particulates with an aerodynamic diameter less than 10 µm (PM₁₀) and less than 2.5 µm (PM₂.₅) (daily average), nitrogen dioxide (NO₂) (daily maximum of the hourly average) and ozone (O₃) (daily maximum of the 8-hour running mean). A Generalized linear model was applied adjusting for the confounding effect of season, temperature, dew point temperature, the day of the week, public holidays and the incidence of influenza-like illness (ILI) per 100,000 inhabitants. The relative risks (RR) were calculated for an increase of one interquartile range (IQR) of the air pollutant (μg/m³). These were presented for the four hottest months (June, July, August, September) and coldest months (November, December, January, February) in Belgium. We applied both individual lag model and unconstrained distributed lag model methods. The cumulative effect of a four-day exposure (day of exposure and three consecutive days) was calculated from the unconstrained distributed lag model. The IQR for PM₁₀, PM₂.₅, NO₂, and O₃ were respectively 8.2, 6.9, 12.9 and 25.5 µg/m³ during warm months and 18.8, 17.6, 18.4 and 27.8 µg/m³ during cold months. The association with CV mortality was statistically significant for the four pollutants during warm months and only for NO₂ during cold months. During the warm months, the cumulative effect of an IQR increase of ozone for the age groups 25-64, 65-84 and 85+ was 1.066 (95%CI: 1.002-1.135), 1.041 (1.008-1.075) and 1.036 (1.013-1.058) respectively. The cumulative effect of an IQR increase of NO₂ for the age group 65-84 was 1.066 (1.020-1.114) during warm months and 1.096 (1.030-1.166) during cold months. The cumulative effect of an IQR increase of PM₁₀ during warm months reached 1.046 (1.011-1.082) and 1.038 (1.015-1.063) for the age groups 65-84 and 85+ respectively. Similar results were observed for PM₂.₅. The short-term effect of air pollution on cardiovascular mortality is greater during warm months for lower pollutant concentrations compared to cold months. Spending more time outside during warm months increases population exposure to air pollution and can, therefore, be a confounding factor for this association. Age can also affect the length of time spent outdoors and the type of physical activity exercised. This study supports the deleterious effect of air pollution on cardiovascular mortality (CV) which varies according to season and age groups in Belgium. Public health measures should, therefore, be adapted to seasonality.

Keywords: air pollution, cardiovascular, mortality, season

Procedia PDF Downloads 165
128 Cognition in Crisis: Unravelling the Link Between COVID-19 and Cognitive-Linguistic Impairments

Authors: Celine Davis

Abstract:

The novel coronavirus 2019 (COVID-19) is an infectious disease caused by the virus SARS-CoV-2, which has detrimental respiratory, cardiovascular, and neurological effects impacting over one million lives in the United States. New researches has emerged indicating long-term neurologic consequences in those who survive COVID-19 infections, including more than seven million Americans and another 27 million people worldwide. These consequences include attentional deficits, memory impairments, executive function deficits and aphasia-like symptoms which fall within the purview of speech-language pathology. The National Health Interview Survey (NHIS) is a comprehensive annual survey conducted by the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control and Prevention (CDC) in the United States. The NHIS is one of the most significant sources of health-related data in the country and has been conducted since 1957. The longitudinal nature of the study allows for analysis of trends in various variables over the years, which can be essential for understanding societal changes and making treatment recommendations. This current study will utilize NHIS data from 2020-2022 which contained interview questions specifically related to COVID-19. Adult cases of individuals between the ages of 18-50 diagnosed with COVID-19 in the United States during 2020-2022 will be identified using the National Health Interview Survey (NHIS). Multiple regression analysis of self-reported data confirming COVID-19 infection status and challenges with concentration, communication, and memory will be performed. Latent class analysis will be utilized to identify subgroups in the population to indicate whether certain demographic groups have higher susceptibility to cognitive-linguistic deficits associated with COVID-19. Completion of this study will reveal whether there is an association between confirmed COVID-19 diagnosis and heightened incidence of cognitive deficits and subsequent implications, if any, on activities of daily living. This study is distinct in its aim to utilize national survey data to explore the relationship between confirmed COVID-19 diagnosis and the prevalence of cognitive-communication deficits with a secondary focus on resulting activity limitations. To the best of the author’s knowledge, this will be the first large-scale epidemiological study investigating the associations between cognitive-linguistic deficits, COVID-19 and implications on activities of daily living in the United States population. These findings will highlight the need for targeted interventions and support services to address the cognitive-communication needs of individuals recovering from COVID-19, thereby enhancing their overall well-being and functional outcomes.

Keywords: cognition, COVID-19, language, limitations, memory, NHIS

Procedia PDF Downloads 53
127 Association between TNF-α and Its Receptor TNFRSF1B Polymorphism with Pulmonary Tuberculosis in Tomsk, Russia Federation

Authors: K. A. Gladkova, N. P. Babushkina, E. Y. Bragina

Abstract:

Purpose: Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the major public health problems worldwide. It is clear that the immune response to M. tuberculosis infection is a relationship between inflammatory and anti-inflammatory responses in which Tumour Necrosis Factor-α (TNF-α) plays key roles as a pro-inflammatory cytokine. TNF-α involved in various cell immune responses via binding to its two types of membrane-bound receptors, TNFRSF1A and TNFRSF1B. Importantly, some variants of the TNFRSF1B gene have been considered as possible markers of host susceptibility to TB. However, the possible impact of such TNF-α and its receptor genes polymorphism on TB cases in Tomsk is missing. Thus, the purpose of our study was to investigate polymorphism of TNF-α (rs1800629) and its receptor TNFRSF1B (rs652625 and rs525891) genes in population of Tomsk and to evaluate their possible association with the development of pulmonary TB. Materials and Methods: The population distribution features of genes polymorphisms were investigated and made case-control study based on group of people from Tomsk. Human blood was collected during routine patients examination at Tomsk Regional TB Dispensary. Altogether, 234 TB-positive patients (80 women, 154 men, average age is 28 years old) and 205 health-controls (153 women, 52 men, average age is 47 years old) were investigated. DNA was extracted from blood plasma by phenol-chloroform method. Genotyping was carried out by a single-nucleotide-specific real-time PCR assay. Results: First, interpopulational comparison was carried out between healthy individuals from Tomsk and available data from the 1000 Genomes project. It was found that polymorphism rs1800629 region demonstrated that Tomsk population was significantly different from Japanese (P = 0.0007), but it was similar with the following Europeans subpopulations: Italians (P = 0.052), Finns (P = 0.124) and British (P = 0.910). Polymorphism rs525891 clear demonstrated that group from Tomsk was significantly different from population of South Africa (P = 0.019). However, rs652625 demonstrated significant differences from Asian population: Chinese (P = 0.03) and Japanese (P = 0.004). Next, we have compared healthy individuals versus patients with TB. It was detected that no association between rs1800629, rs652625 polymorphisms, and positive TB cases. Importantly, AT genotype of polymorphism rs525891 was significantly associated with resistance to TB (odds ratio (OR) = 0.61; 95% confidence interval (CI): 0.41-0.9; P < 0.05). Conclusion: To the best of our knowledge, the polymorphism of TNFRSF1B (rs525891) was associated with TB, while genotype AT is protective [OR = 0.61] in Tomsk population. In contrast, no significant correlation was detected between polymorphism TNF-α (rs1800629) and TNFRSF1B (rs652625) genes and alveolar TB cases among population of Tomsk. In conclusion, our data expands the molecular particularities associated with TB. The study was supported by the grant of the Russia for Basic Research #15-04-05852.

Keywords: polymorphism, tuberculosis, TNF-α, TNFRSF1B gene

Procedia PDF Downloads 180
126 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India

Authors: Bharti Singh, Shri K. Singh

Abstract:

Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.

Keywords: child nutrition, India, NFHS, women’s empowerment

Procedia PDF Downloads 33
125 Geographical Information System and Multi-Criteria Based Approach to Locate Suitable Sites for Industries to Minimize Agriculture Land Use Changes in Bangladesh

Authors: Nazia Muhsin, Tofael Ahamed, Ryozo Noguchi, Tomohiro Takigawa

Abstract:

One of the most challenging issues to achieve sustainable development on food security is land use changes. The crisis of lands for agricultural production mainly arises from the unplanned transformation of agricultural lands to infrastructure development i.e. urbanization and industrialization. Land use without sustainability assessment could have impact on the food security and environmental protections. Bangladesh, as the densely populated country with limited arable lands is now facing challenges to meet sustainable food security. Agricultural lands are using for economic growth by establishing industries. The industries are spreading from urban areas to the suburban areas and using the agricultural lands. To minimize the agricultural land losses for unplanned industrialization, compact economic zones should be find out in a scientific approach. Therefore, the purpose of the study was to find out suitable sites for industrial growth by land suitability analysis (LSA) by using Geographical Information System (GIS) and multi-criteria analysis (MCA). The goal of the study was to emphases both agricultural lands and industries for sustainable development in land use. The study also attempted to analysis the agricultural land use changes in a suburban area by statistical data of agricultural lands and primary data of the existing industries of the study place. The criteria were selected as proximity to major roads, and proximity to local roads, distant to rivers, waterbodies, settlements, flood-flow zones, agricultural lands for the LSA. The spatial dataset for the criteria were collected from the respective departments of Bangladesh. In addition, the elevation spatial dataset were used from the SRTM (Shuttle Radar Topography Mission) data source. The criteria were further analyzed with factors and constraints in ArcGIS®. Expert’s opinion were applied for weighting the criteria according to the analytical hierarchy process (AHP), a multi-criteria technique. The decision rule was set by using ‘weighted overlay’ tool to aggregate the factors and constraints with the weights of the criteria. The LSA found only 5% of land was most suitable for industrial sites and few compact lands for industrial zones. The developed LSA are expected to help policy makers of land use and urban developers to ensure the sustainability of land uses and agricultural production.

Keywords: AHP (analytical hierarchy process), GIS (geographic information system), LSA (land suitability analysis), MCA (multi-criteria analysis)

Procedia PDF Downloads 263
124 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 267
123 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 92
122 Spatial Pattern and Predictors of Malaria in Ethiopia: Application of Auto Logistics Spatial Regression

Authors: Melkamu A. Zeru, Yamral M. Warkaw, Aweke A. Mitku, Muluwerk Ayele

Abstract:

Introduction: Malaria is a severe health threat in the World, mainly in Africa. It is the major cause of health problems in which the risk of morbidity and mortality associated with malaria cases are characterized by spatial variations across the county. This study aimed to investigate the spatial patterns and predictors of malaria distribution in Ethiopia. Methods: A weighted sample of 15,239 individuals with rapid diagnosis tests was obtained from the Central Statistical Agency and Ethiopia malaria indicator survey of 2015. Global Moran's I and Moran scatter plots were used in determining the distribution of malaria cases, whereas the local Moran's I statistic was used in identifying exposed areas. In data manipulation, machine learning was used for variable reduction and statistical software R, Stata, and Python were used for data management and analysis. The auto logistics spatial binary regression model was used to investigate the predictors of malaria. Results: The final auto logistics regression model reported that male clients had a positive significant effect on malaria cases as compared to female clients [AOR=2.401, 95 % CI: (2.125 - 2.713)]. The distribution of malaria across the regions was different. The highest incidence of malaria was found in Gambela [AOR=52.55, 95%CI: (40.54-68.12)] followed by Beneshangul [AOR=34.95, 95%CI: (27.159 - 44.963)]. Similarly, individuals in Amhara [AOR=0.243, 95% CI:(0.1950.303],Oromiya[AOR=0.197,95%CI:(0.1580.244)],DireDawa[AOR=0.064,95%CI(0.049-0.082)],AddisAbaba[AOR=0.057,95%CI:(0.044-0.075)], Somali[AOR=0.077,95%CI:(0.059-0.097)], SNNPR[OR=0.329, 95%CI: (0.261- 0.413)] and Harari [AOR=0.256, 95%CI:(0.201 - 0.325)] were less likely to had low incidence of malaria as compared with Tigray. Furthermore, for a one-meter increase in altitude, the odds of a positive rapid diagnostic test (RDT) decrease by 1.6% [AOR = 0.984, 95% CI :( 0.984 - 0.984)]. The use of a shared toilet facility was found as a protective factor for malaria in Ethiopia [AOR=1.671, 95% CI: (1.504 - 1.854)]. The spatial autocorrelation variable changes the constant from AOR = 0.471 for logistic regression to AOR = 0.164 for auto logistics regression. Conclusions: This study found that the incidence of malaria in Ethiopia had a spatial pattern that is associated with socio-economic, demographic, and geographic risk factors. Spatial clustering of malaria cases had occurred in all regions, and the risk of clustering was different across the regions. The risk of malaria was found to be higher for those who live in soil floor-type houses as compared to those who live in cement or ceramics floor type. Similarly, households with thatched, metal and thin, and other roof-type houses have a higher risk of malaria than ceramic tiles roof houses. Moreover, using a protected anti-mosquito net reduced the risk of malaria incidence.

Keywords: malaria, Ethiopia, auto logistics, spatial model, spatial clustering

Procedia PDF Downloads 34
121 A Comparative Approach for Modeling the Toxicity of Metal Mixtures in Two Ecologically Related Three-Spined (Gasterosteus aculeatus L.) And Nine-Spined (Pungitius pungitius L.) Sticklebacks

Authors: Tomas Makaras

Abstract:

Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and become well-established role as model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. Moreover, although many authors in their studies emphasised the similarity between three-spined and nine-spined stickleback in morphological, neuroanatomical and behavioural adaptations to environmental changes, several comparative studies have revealed considerable differences between these species in and their susceptibility and resistance to variousstressors in laboratory experiments. The hypothesis of this study was that three-spined and nine-spined stickleback species will demonstrate apparent differences in response patterns and sensitivity to metal-based chemicals stimuli. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteusaculeatus) and nine-spined sticklebacks (Pungitiuspungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). Based on acute toxicity results, G. aculeatus found to be slightly (1.4-fold) more tolerant of MIX impact than those of P. pungitius specimens. The performed behavioural analysis showed the main effect on the interaction between time, species and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species’ responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitiuscompared to G. aculeatus. While many studies highlight the usefulness and suitability of nine-spined sticklebacks for evolutionary and ecological research, attested by their increasing popularity in these fields, great caution must be exercised when using them as model species in ecotoxicological research to probe metal contamination. Meanwhile, G. aculeatus showed to be a promising bioindicator species in the environmental ecotoxicology field.

Keywords: acute toxicity, comparative behaviour, metal mixture, swimming activity

Procedia PDF Downloads 162
120 An Approach to Determine the in Transit Vibration to Fresh Produce Using Long Range Radio (LORA) Wireless Transducers

Authors: Indika Fernando, Jiangang Fei, Roger Stanely, Hossein Enshaei

Abstract:

Ever increasing demand for quality fresh produce by the consumers, had increased the gravity on the post-harvest supply chains in multi-fold in the recent years. Mechanical injury to fresh produce was a critical factor for produce wastage, especially with the expansion of supply chains, physically extending to thousands of miles. The impact of vibration damages in transit was identified as a specific area of focus which results in wastage of significant portion of the fresh produce, at times ranging from 10% to 40% in some countries. Several studies were concentrated on quantifying the impact of vibration to fresh produce, and it was a challenge to collect vibration impact data continuously due to the limitations in battery life or the memory capacity in the devices. Therefore, the study samples were limited to a stretch of the transit passage or a limited time of the journey. This may or may not give an accurate understanding of the vibration impacts encountered throughout the transit passage, which limits the accuracy of the results. Consequently, an approach which can extend the capacity and ability of determining vibration signals in the transit passage would contribute to accurately analyze the vibration damage along the post-harvest supply chain. A mechanism was developed to address this challenge, which is capable of measuring the in transit vibration continuously through the transit passage subject to a minimum acceleration threshold (0.1g). A system, consisting six tri-axel vibration transducers installed in different locations inside the cargo (produce) pallets in the truck, transmits vibration signals through LORA (Long Range Radio) technology to a central device installed inside the container. The central device processes and records the vibration signals transmitted by the portable transducers, along with the GPS location. This method enables to utilize power consumption for the portable transducers to maximize the capability of measuring the vibration impacts in the transit passage extending to days in the distribution process. The trial tests conducted using the approach reveals that it is a reliable method to measure and quantify the in transit vibrations along the supply chain. The GPS capability enables to identify the locations in the supply chain where the significant vibration impacts were encountered. This method contributes to determining the causes, susceptibility and intensity of vibration impact damages to fresh produce in the post-harvest supply chain. Extensively, the approach could be used to determine the vibration impacts not limiting to fresh produce, but for products in supply chains, which may extend from few hours to several days in transit.

Keywords: post-harvest, supply chain, wireless transducers, LORA, fresh produce

Procedia PDF Downloads 265
119 Driver of Migration and Appropriate Policy Concern Considering the Southwest Coastal Part of Bangladesh

Authors: Aminul Haque, Quazi Zahangir Hossain, Dilshad Sharmin Chowdhury

Abstract:

The human migration is getting growing concern around the world, and recurrent disasters and climate change impact have great influence on migration. Bangladesh is one of the disaster prone countries that/and has greater susceptibility to stress migration by recurrent disasters and climate change. The study was conducted to investigate the factors that have a strong influence on current migration and changing pattern of life and livelihood means of the southwest coastal part of Bangladesh. Moreover, the study also revealed a strong relationship between disasters and migration and appropriate policy concern. To explore this relation, both qualitative and quantitative methods were applied to a questionnaire survey at household level and simple random sampling technique used in the sampling process along with different secondary data sources for understanding policy concern and practices. The study explores the most influential driver of migration and its relationship with social, economic and environmental drivers. The study denotes that, the environmental driver has a greater effect on the intention of permanent migration (t=1.481, p-value=0.000) at the 1 percent significance level. The significant number of respondents denotes that abrupt pattern of cyclone, flood, salinity intrusion and rainfall are the most significant environmental driver to make a decision on permanent migration. The study also found that the temporary migration pattern has 2-fold increased compared to last ten (10) years. It also appears from the study that environmental factors have a great implication on the changing pattern of the occupation of the study area and it has reported that about 76% of the respondent now in the changing modality of livelihood compare to their traditional practices. The study bares that the migration has foremost impact on children and women by increasing hardship and creating critical social security. The exposure-route of permanent migration is not smooth indeed, these migrations creating urban and conflict in Chittagong hill tracks of Bangladesh. The study denotes that there is not any safeguard of the stress migrant on existing policy and not have any measures for safe migration and resettlement rather considering the emergency response and shelter. The majority of (98%) people believes that migration is not to be the adoption strategies, but contrary to this young group of respondent believes that safe migration could be the adaptation strategy which could bring a positive result compare to the other resilience strategies. On the other hand, the significant number of respondents uttered that appropriate policy measure could be an adaptation strategy for being the formation of a resilient community and reduce the migration by meaningful livelihood options with appropriate protection measure.

Keywords: environmental driver, livelihood, migration, resilience

Procedia PDF Downloads 264
118 A Bottleneck-Aware Power Management Scheme in Heterogeneous Processors for Web Apps

Authors: Inyoung Park, Youngjoo Woo, Euiseong Seo

Abstract:

With the advent of WebGL, Web apps are now able to provide high quality graphics by utilizing the underlying graphic processing units (GPUs). Despite that the Web apps are becoming common and popular, the current power management schemes, which were devised for the conventional native applications, are suboptimal for Web apps because of the additional layer, the Web browser, between OS and application. The Web browser running on a CPU issues GL commands, which are for rendering images to be displayed by the Web app currently running, to the GPU and the GPU processes them. The size and number of issued GL commands determine the processing load of the GPU. While the GPU is processing the GL commands, CPU simultaneously executes the other compute intensive threads. The actual user experience will be determined by either CPU processing or GPU processing depending on which of the two is the more demanded resource. For example, when the GPU work queue is saturated by the outstanding commands, lowering the performance level of the CPU does not affect the user experience because it is already deteriorated by the retarded execution of GPU commands. Consequently, it would be desirable to lower CPU or GPU performance level to save energy when the other resource is saturated and becomes a bottleneck in the execution flow. Based on this observation, we propose a power management scheme that is specialized for the Web app runtime environment. This approach incurs two technical challenges; identification of the bottleneck resource and determination of the appropriate performance level for unsaturated resource. The proposed power management scheme uses the CPU utilization level of the Window Manager to tell which one is the bottleneck if exists. The Window Manager draws the final screen using the processed results delivered from the GPU. Thus, the Window Manager is on the critical path that determines the quality of user experience and purely executed by the CPU. The proposed scheme uses the weighted average of the Window Manager utilization to prevent excessive sensitivity and fluctuation. We classified Web apps into three categories using the analysis results that measure frame-per-second (FPS) changes under diverse CPU/GPU clock combinations. The results showed that the capability of the CPU decides user experience when the Window Manager utilization is above 90% and consequently, the proposed scheme decreases the performance level of CPU by one step. On the contrary, when its utilization is less than 60%, the bottleneck usually lies in the GPU and it is desirable to decrease the performance of GPU. Even the processing unit that is not on critical path, excessive performance drop can occur and that may adversely affect the user experience. Therefore, our scheme lowers the frequency gradually, until it finds an appropriate level by periodically checking the CPU utilization. The proposed scheme reduced the energy consumption by 10.34% on average in comparison to the conventional Linux kernel, and it worsened their FPS by 1.07% only on average.

Keywords: interactive applications, power management, QoS, Web apps, WebGL

Procedia PDF Downloads 192
117 Undernutrition Among Children Below Five Years of Age in Uganda: A Deep Dive into Space and Time

Authors: Vallence Ngabo Maniragaba

Abstract:

This study aimed at examining the variations of undernutrition among children below 5 years of age in Uganda. The approach of spatial and spatiotemporal analysis helped in identifying cluster patterns, hot spots and emerging hot spots. Data from the 6 Uganda Demographic and Health Surveys spanning from 1990 to 2016 were used with the main outcome variable being undernutrition among children <5 years of age. All data that were relevant to this study were retrieved from the survey datasets and combined with the 214 shape files for the districts of Uganda to enable spatial and spatiotemporal analysis. Spatial maps with the spatial distribution of the prevalence of undernutrition, both in space and time, were generated using ArcGIS Pro version 2.8. Moran’s I, an index of spatial autocorrelation, rules out doubts of spatial randomness in order to identify spatially clustered patterns of hot or cold spot areas. Furthermore, space-time cubes were generated to establish the trend in undernutrition as well as to mirror its variations over time and across Uganda. Moreover, emerging hot spot analysis was done to help identify the patterns of undernutrition over time. The results indicate a heterogeneous distribution of undernutrition across Uganda and the same variations were also evident over time. Moran’s I index confirmed spatial clustered patterns as opposed to random distributions of undernutrition prevalence. Four hot spot areas, namely; the Karamoja, the Sebei, the West Nile and the Toro regions were significantly evident, most of the central parts of Uganda were identified as cold spot clusters, while most of Western Uganda, the Acholi and the Lango regions had no statistically significant spatial patterns by the year 2016. The spatio-temporal analysis identified the Karamoja and Sebei regions as clusters of persistent, consecutive and intensifying hot spots, West Nile region was identified as a sporadic hot spot area while the Toro region was identified with both sporadic and emerging hotspots. In conclusion, undernutrition is a silent pandemic that needs to be handled with both hands. At 31.2 percent, the prevalence is still very high and unpleasant. The distribution across the country is nonuniform with some areas such as the Karamoja, the West Nile, the Sebei and the Toro regions being epicenters of undernutrition in Uganda. Over time, the same areas have experienced and exhibited high undernutrition prevalence. Policymakers, as well as the implementers, should bear in mind the spatial variations across the country and prioritize hot spot areas in order to have efficient, timely and region-specific interventions.

Keywords: undernutrition, spatial autocorrelation, hotspots analysis, geographically weighted regressions, emerging hotspots analysis, under-fives, Uganda

Procedia PDF Downloads 86
116 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City

Authors: Berhanu Keno Terfa

Abstract:

Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.

Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.

Procedia PDF Downloads 35
115 Relationship between Pushing Behavior and Subcortical White Matter Lesion in the Acute Phase after Stroke

Authors: Yuji Fujino, Kazu Amimoto, Kazuhiro Fukata, Masahide Inoue, Hidetoshi Takahashi, Shigeru Makita

Abstract:

Aim: Pusher behavior (PB) is a disorder in which stroke patients shift their body weight toward the affected side of the body (the hemiparetic side) and push away from the non-hemiparetic side. These patients often use further pushing to resist any attempts to correct their position to upright. It is known that the subcortical white matter lesion (SWML) usually correlates of gait or balance function in stroke patients. However, it is unclear whether the SWML influences PB. The purpose of this study was to investigate if the damage of SWML affects the severity of PB on acute stroke patients. Methods: Fourteen PB patients without thalamic or cortical lesions (mean age 73.4 years, 17.5 days from onset) participated in this study. Evaluation of PB was performed according to the Scale for Contraversive Pushing (SCP) for sitting and/or standing. We used modified criteria wherein the SCP subscale scores in each section of the scale were >0. As a clinical measurement, patients were evaluated by the Stroke Impairment Assessment Set (SIAS). For the depiction of SWML, we used T2-weighted fluid-attenuated inversion-recovery imaging. The degree of damage on SWML was assessed using the Fazekas scale. Patients were divided into two groups in the presence of SWML (SWML+ group; Fazekas scale grade 1-3, SWML- group; Fazekas scale grade 0). The independent t-test was used to compare the SCP and SIAS. This retrospective study was approved by the Ethics Committee. Results: In SWML+ group, the SCP was 3.7±1.0 points (mean±SD), the SIAS was 28.0 points (median). In SWML- group, the SCP was 2.0±0.2 points, and the SIAS was 31.5 points. The SCP was significantly higher in SWML+ group than in SWML- group (p<0.05). The SIAS was not significant in both groups (p>0.05). Discussion: It has been considered that the posterior thalamus is the neural structures that process the afferent sensory signals mediating graviceptive information about upright body orientation in humans. Therefore, many studies reported that PB was typically associated with unilateral lesions of the posterior thalamus. However, the result indicates that these extra-thalamic brain areas also contribute to the network controlling upright body posture. Therefore, SMWL might induce dysfunction through malperfusion in distant thalamic or other structurally intact neural structures. This study had a small sample size. Therefore, future studies should be performed with a large number of PB patients. Conclusion: The present study suggests that SWML can be definitely associated with PB. The patients with SWML may be severely incapacitating.

Keywords: pushing behavior, subcortical white matter lesion, acute phase, stroke

Procedia PDF Downloads 245
114 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
113 Factors Influencing the Uptake of Vaccinations amongst Pregnant Women Following the COVID-19 Pandemic

Authors: Jo Parsons, Cath Grimley, Debra Bick, Sarah Hillman, Louise Clarke, Helen Atherton

Abstract:

The problem: Vaccinations are routinely offered to pregnant women in the UK for influenza (flu), pertussis (whooping cough), and COVID-19, yet the uptake of these vaccinations in pregnancy remains low. Pregnant women are at increased risk of hospitalisation, morbidity, and mortality from these preventable illnesses, which can also expose their unborn babies to an increased risk of serious complications, including in utero death. This research aims to explore how pregnant women feel about vaccinations offered during pregnancy (flu, whooping cough, and COVID-19), particularly following the COVID-19 pandemic. It also aims to examine factors influencing women’s decisions about vaccinations during pregnancy and how they feel about their health and vulnerabilities to illness arising from the COVID-19 pandemic. The approach: This is a qualitative study involving semi-structured interviews with pregnant women and midwives in the UK. Interviews with pregnant women explored their views since the COVID-19 pandemic about vaccinations offered during pregnancy and whether the pandemic has influenced perceptions of vulnerability to illness in pregnant women. Interviews with midwives explored vaccination discussions they routinely have with pregnant women and identified some of the barriers to vaccination that pregnant women discuss with them. Pregnant women were recruited via participating hospitals and community groups. Midwives were recruited via participating hospitals and midwife-specific social media groups. All interviews were conducted remotely (using telephone or Microsoft Teams) and analysed using thematic analysis. Findings: 43 pregnant women and 16 midwives were recruited and interviewed. The findings presented will focus on data from pregnant women. Pregnant women reported a wide range of views and vaccination behaviour, and identified several factors influencing their decision whether to accept vaccinations or not. These included internal factors (comprised of beliefs about susceptibility to illness, perceptions of immunity, fear, and feelings of responsibility), other influences (including visibility of illness and external influences such as healthcare professional recommendations), vaccination-related factors (comprised of beliefs about effectiveness and safety of vaccinations, availability and accessibility of vaccinations and preferences for alternative forms of protection to vaccination) and COVID-19 specific factors (including COVID-19 vaccinations and COVID-19 specific influences). Implications: Findings identified some of the factors that affect pregnant women’s decisions when deciding to have a vaccination or not and how these decisions have been influenced by COVID-19. Findings highlight areas where healthcare professional advice needs to focus, such as the provision of information about the increased vulnerability to illnesses during pregnancy and consideration of opportunistic vaccination at hospital appointments to maximise uptake of vaccinations during pregnancy. Findings of this study will inform the development of an intervention to increase vaccination uptake amongst pregnant women.

Keywords: vaccination, pregnancy, qualitative, interviews, COVID-19

Procedia PDF Downloads 96
112 Momentum in the Stock Exchange of Thailand

Authors: Mussa Hussaini, Supasith Chonglerttham

Abstract:

Stocks are usually classified according to their characteristics which are unique enough such that the performance of each category can be differentiated from another. The reasons behind such classifications in the financial market are sometimes financial innovation or it can also be because of finding a premium in a group of stocks with similar features. One of the major classifications in stocks market is called momentum strategy. Based on this strategy stocks are classified according to their past performances into past winners and past losers. Momentum in a stock market refers to the idea that stocks will keep moving in the same direction. In other word, stocks with rising prices (past winners stocks) will continue to rise and those stocks with falling prices (past losers stocks) will continue to fall. The performance of this classification has been well documented in numerous studies in different countries. These studies suggest that past winners tend to outperform past losers in the future. However, academic research in this direction has been limited in countries such as Thailand and to the best of our knowledge, there has been no such study in Thailand after the financial crisis of 1997. The significance of this study stems from the fact that Thailand is an open market and has been encouraging foreign investments as one of the means to enhance employment, promote economic development, and technology transfer and the main equity market in Thailand, the Stock Exchange of Thailand is a crucial channel for Foreign Investment inflow into the country. The equity market size in Thailand increased from $1.72 billion in 1984 to $133.66 billion in 1993, an increase of over 77 times within a decade. The main contribution of this paper is evidence for size category in the context of the equity market in Thailand. Almost all previous studies have focused solely on large stocks or indices. This paper extends the scope beyond large stocks and indices by including small and tiny stocks as well. Further, since there is a distinct absence of detailed academic research on momentum strategy in the Stock Exchange of Thailand after the crisis, this paper also contributes to the extension of existing literature of the study. This research is also of significance for those researchers who would like to compare the performance of this strategy in different countries and markets. In the Stock Exchange of Thailand, we examined the performance of momentum strategy from 2010 to 2014. Returns on portfolios are calculated on monthly basis. Our results on momentum strategy confirm that there is positive momentum profit in large size stocks whereas there is negative momentum profit in small size stocks during the period of 2010 to 2014. Furthermore, the equal weighted average of momentum profit of both small and large size category do not provide any indication of overall momentum profit.

Keywords: momentum strategy, past loser, past winner, stock exchange of Thailand

Procedia PDF Downloads 317
111 Evaluation on the Compliance of Essential Intrapartum Newborn Care among Nurses in Selected Government Hospital in Manila

Authors: Eliza Torrigue, Efrelyn Iellamo

Abstract:

Maternal death is one of the rising health issues in the Philippines. It is alarming to know that in every hour of each day, a mother gives birth to a child who may not live to see the next day. Statistics shows that intrapartum period and third stage of labor are the very crucial periods for the expectant mother, as well as the first six hours of life for the newborn. To address the issue, The Essential Intrapartum Newborn Care (EINC) was developed. Through this, Obstetric Delivery Room (OB-DR) Nurses shall be updated with the evidence-based maternal and newborn care to ensure patient safety, thus, reducing maternal and child mortality. This study aims to describe the compliance of hospitals, especially of OB-DR nurses, to the EINC Protocols. The researcher aims to link the profile variables of the respondents in terms of age, length of service and formal training to their compliance on the EINC Protocols. The outcome of the study is geared towards the development of appropriate training program for OB-DR Nurses assigned in the delivery room of the hospitals based on the study’s results to sustain the EINC standards. A descriptive correlational method was used. The sample consists of 75 Obstetric Delivery Room (OB-DR) Nurses from three government hospitals in the City of Manila namely, Ospital ng Maynila Medical Center, Tondo Medical Center, and Gat Andres Bonifacio Memorial Medical Center. Data were collected using an evaluative checklist. Ranking, weighted mean, Chi-square and Pearson’s R were used to analyze data. The level of compliance to the EINC Protocols by the respondents was evaluated with an overall mean score of 4.768 implying that OB-DR Nurses have a high regard in complying with the step by step procedure of the EINC. Furthermore, data shows that formal training on EINC have a significant relationship with OB-DR Nurses’ level of compliance during cord care, AMTSL, and immediate newborn care until the first ninety minutes to six hours of life. However, the respondents’ age and length of service do not have a significant relationship with the compliance of OB-DR Nurses on EINC Protocols. In the pursuit of decreasing the maternal mortality in the Philippines, EINC Protocols have been widely implemented in the country especially in the government hospitals where most of the deliveries happen. In this study, it was found out that OB-DR Nurses adhere and are highly compliant to the standards in order to assure that optimum level of care is delivered to the mother and newborn. Formal training on EINC, on the other hand, create the most impact on the compliance of nurses. It is therefore recommended that there must be a structured enhancement training program to plan, implement and evaluate the EINC protocols in these government hospitals.

Keywords: compliance, intrapartum, newborn care, nurses

Procedia PDF Downloads 394
110 Impact of an Educational Intervention on Knowledge, Attitude and Practices of Community Members on Schistosomiasis in Nelson Mandela Bay

Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri

Abstract:

Schistosomiasis, often known as bilharzia, is a parasitic water-borne disease caused by trematode flatworms of the genus Schistosoma. Schistosomiasis infection and prevention have been found to be influenced by a range of socio-cultural risk factors, including human characteristics (e.g., gender, age, education, knowledge, attitude, and practices), as well as environmental and economic elements. Lack of awareness of the disease may also contribute to an individual's tendency to participate in behaviours or activities that heighten their susceptibility to infection. The current study assessed the community knowledge, attitude and practices (KAP) on schistosomiasis and implemented an educational intervention following pre-test interviews. A cross-sectional quasi-experimental research design was used in this quantitative study. Pre- and post-intervention interview format surveys were conducted using a structured questionnaire, targeting individuals aged 18–65 years residing within 5 km of select water bodies. The questionnaire contained 54 close-ended questions about schistosomiasis causes, transmission, and clinical symptoms and the participants were interviewed face-to-face in their homes. Data was captured on Question Pro and analyzed using Microsoft Office Excel 365 (2019) and R (version 4.3.1) software. Overall, 380 individuals completed the pre and post-intervention assessments; 194 and 185 were males (51.1%) and females (48.7%), respectively. A notable 91.3% of participants did not know about schistosomiasis in the pre-intervention phase; however, the mean post-intervention test score (9.4 ± 1.4) for knowledge among participants was higher than the pre-intervention test score (2.2 ± 2.1) indicating a good and improved knowledge of schistosomiasis among the participants. Furthermore, the paired samples t-test results demonstrated that the increase in knowledge levels was statistically significant (p<0.001). Also, the post-intervention improvement of both practice (p<0.001) and attitude (p<0.001) levels was statistically significant. A positive correlation (r=0.23, p<0.001) was found between knowledge and attitude in the pre-intervention stage. Knowledgeable participants had a more positive attitude towards obtaining medical assistance and disease prevention. Moreover, attitudes and practices correlated negatively (r=-0.13, p=0.013) post-intervention; hence, those with positive attitudes did not engage in risky water-related practices, which was the desired outcome. The educational intervention had a favourable impact on the KAP of the study population as the majority were able to recall the disease aetiology, symptoms, transmission pattern, and preventative measures three months post-intervention. Nevertheless, previous research has suggested that participants were unable to recall information about the disease following the intervention. Consequently, research should prioritize behavioural modification strategies that may result in a more persistent outcome in terms of the participants' knowledge, which could ultimately contribute to the development of long-term positive attitudes and practices.

Keywords: educational intervention, knowledge, attitudes and practices, schistosomiasis

Procedia PDF Downloads 18
109 A Multifactorial Algorithm to Automate Screening of Drug-Induced Liver Injury Cases in Clinical and Post-Marketing Settings

Authors: Osman Turkoglu, Alvin Estilo, Ritu Gupta, Liliam Pineda-Salgado, Rajesh Pandey

Abstract:

Background: Hepatotoxicity can be linked to a variety of clinical symptoms and histopathological signs, posing a great challenge in the surveillance of suspected drug-induced liver injury (DILI) cases in the safety database. Additionally, the majority of such cases are rare, idiosyncratic, highly unpredictable, and tend to demonstrate unique individual susceptibility; these qualities, in turn, lend to a pharmacovigilance monitoring process that is often tedious and time-consuming. Objective: Develop a multifactorial algorithm to assist pharmacovigilance physicians in identifying high-risk hepatotoxicity cases associated with DILI from the sponsor’s safety database (Argus). Methods: Multifactorial selection criteria were established using Structured Query Language (SQL) and the TIBCO Spotfire® visualization tool, via a combination of word fragments, wildcard strings, and mathematical constructs, based on Hy’s law criteria and pattern of injury (R-value). These criteria excluded non-eligible cases from monthly line listings mined from the Argus safety database. The capabilities and limitations of these criteria were verified by comparing a manual review of all monthly cases with system-generated monthly listings over six months. Results: On an average, over a period of six months, the algorithm accurately identified 92% of DILI cases meeting established criteria. The automated process easily compared liver enzyme elevations with baseline values, reducing the screening time to under 15 minutes as opposed to multiple hours exhausted using a cognitively laborious, manual process. Limitations of the algorithm include its inability to identify cases associated with non-standard laboratory tests, naming conventions, and/or incomplete/incorrectly entered laboratory values. Conclusions: The newly developed multifactorial algorithm proved to be extremely useful in detecting potential DILI cases, while heightening the vigilance of the drug safety department. Additionally, the application of this algorithm may be useful in identifying a potential signal for DILI in drugs not yet known to cause liver injury (e.g., drugs in the initial phases of development). This algorithm also carries the potential for universal application, due to its product-agnostic data and keyword mining features. Plans for the tool include improving it into a fully automated application, thereby completely eliminating a manual screening process.

Keywords: automation, drug-induced liver injury, pharmacovigilance, post-marketing

Procedia PDF Downloads 152
108 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 237
107 Analyzing the Relationship between Physical Fitness and Academic Achievement in Chinese High School Students

Authors: Juan Li, Hui Tian, Min Wang

Abstract:

In China, under the considerable pressure of 'Gaokao' –the highly competitive college entrance examination, high school teachers and parents often worry that doing physical activity would take away the students’ precious study time and may have a negative impact on the academic grades. There was a tendency to achieve high academic scores at the cost of physical exercise. Therefore, the purpose of this study was to examine the relationship between the physical fitness and academic achievement of Chinese high school students. The participants were 968 grade one (N=457) and grade two students (N=511) with an average age of 16 years from three high schools of different levels in Beijing, China. 479 were boys, and 489 were girls. One of the schools is a top high school in China, another is a key high school in Beijing, and the other is an ordinary high school. All analyses were weighted using SAS 9.4 to ensure the representatives of the sample. The weights were based on 12 strata of schools, sex, and grades. Physical fitness data were collected using the scores of the National Physical Fitness Test, which is an annual official test administered by the Ministry of Education in China. It includes 50m run, sits and reach test, standing long jump, 1000m run (for boys), 800m run (for girls), pull-ups for 1 minute (for boys), and bent-knee sit-ups for 1 minute (for girls). The test is an overall evaluation of the students’ physical health on the major indexes of strength, endurance, flexibility, and cardiorespiratory function. Academic scores were obtained from the three schools with the students’ consent. The statistical analysis was conducted with SPSS 24. Independent-Samples T-test was used to examine the gender group differences. Spearman’s Rho bivariate correlation was adopted to test for associations between physical test results and academic performance. Statistical significance was set at p<.05. The study found that girls obtained higher fitness scores than boys (p=.000). The girls’ physical fitness test scores were positively associated with the total academic grades (rs=.103, p=.029), English (rs=.096, p=.042), physics (rs=.202, p=.000) and chemistry scores (rs=.131, p=.009). No significant relationship was observed in boys. Cardiorespiratory fitness had a positive association with physics (rs=.196, p=.000) and biology scores (rs=.168, p=.023) in girls, and with English score in boys (rs=.104, p=.029). A possible explanation for the greater association between physical fitness and academic achievement in girls rather than boys was that girls showed stronger motivation in achieving high scores in whether academic tests or fitness tests. More driven by the test results, girls probably tended to invest more time and energy in training for the fitness test. Higher fitness levels were associated with an academic benefit among girls generally in Chinese high schools. Therefore, physical fitness needs to be given greater emphasis among Chinese adolescents and gender differences need to be taken into consideration.

Keywords: physical fitness; adolescents; academic achievement; high school

Procedia PDF Downloads 132
106 Flood Vulnerability Zoning for Blue Nile Basin Using Geospatial Techniques

Authors: Melese Wondatir

Abstract:

Flooding ranks among the most destructive natural disasters, impacting millions of individuals globally and resulting in substantial economic, social, and environmental repercussions. This study's objective was to create a comprehensive model that assesses the Nile River basin's susceptibility to flood damage and improves existing flood risk management strategies. Authorities responsible for enacting policies and implementing measures may benefit from this research to acquire essential information about the flood, including its scope and susceptible areas. The identification of severe flood damage locations and efficient mitigation techniques were made possible by the use of geospatial data. Slope, elevation, distance from the river, drainage density, topographic witness index, rainfall intensity, distance from road, NDVI, soil type, and land use type were all used throughout the study to determine the vulnerability of flood damage. Ranking elements according to their significance in predicting flood damage risk was done using the Analytic Hierarchy Process (AHP) and geospatial approaches. The analysis finds that the most important parameters determining the region's vulnerability are distance from the river, topographic witness index, rainfall, and elevation, respectively. The consistency ratio (CR) value obtained in this case is 0.000866 (<0.1), which signifies the acceptance of the derived weights. Furthermore, 10.84m2, 83331.14m2, 476987.15m2, 24247.29m2, and 15.83m2 of the region show varying degrees of vulnerability to flooding—very low, low, medium, high, and very high, respectively. Due to their close proximity to the river, the northern-western regions of the Nile River basin—especially those that are close to Sudanese cities like Khartoum—are more vulnerable to flood damage, according to the research findings. Furthermore, the AUC ROC curve demonstrates that the categorized vulnerability map achieves an accuracy rate of 91.0% based on 117 sample points. By putting into practice strategies to address the topographic witness index, rainfall patterns, elevation fluctuations, and distance from the river, vulnerable settlements in the area can be protected, and the impact of future flood occurrences can be greatly reduced. Furthermore, the research findings highlight the urgent requirement for infrastructure development and effective flood management strategies in the northern and western regions of the Nile River basin, particularly in proximity to major towns such as Khartoum. Overall, the study recommends prioritizing high-risk locations and developing a complete flood risk management plan based on the vulnerability map.

Keywords: analytic hierarchy process, Blue Nile Basin, geospatial techniques, flood vulnerability, multi-criteria decision making

Procedia PDF Downloads 71
105 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt

Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish

Abstract:

Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.

Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt

Procedia PDF Downloads 78
104 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
103 Missed Opportunities for Immunization of under Five Children in Calabar South County Cros River State, Nigeria, the Way Forward

Authors: Celestine Odigwe, Epoke Lincoln, Rhoda-Dara Ephraim

Abstract:

Background; Immunization against the childhood killer diseases is the cardinal strategy for the prevention of these diseases all over the world in under five children, these diseases include; Tuberculosis, Measles, Polio, Tetanus, Diphthria, Pertusis, Yellow Fever, Hepatitis B, Haemophilus Influenza type B. 6.9 million children die before their fifth birthday , 80% of the worlds death in children under 5 years occur in 25 countries most in Africa and Asia and 2 million children can be saved each year with routine immunization Therefore failure to achieve total immunization coverage puts several children at risk. Aim; The aim of the study was to ascertain the prevalence, Investigate the various reasons and causes why several under five children in a suburb of calabar municipal county fail to get the required immunizations as at and when due and possibly the consequences, so that efforts can be re-directed towards the solution of the problems so identified. Methods; the study was a community based cross sectional study. The respondents were the mothers/guardians of the sampled children who were all aged 0-59 months. To be eligible for recruitment into the study, the parent or guardian was required to give an informed consent, reside within the Calabar South County with his/her children aged 0-59 months. We calculated our sample size using the Leslie-Kish formula and we used a two-staged sampling method, first to ballot for the wards to be involved and then to select four of the most populated ones in the wards chosen. Data collection was by interviewer administered structured questionnaire (Appendix I), Data collected was entered and analyzed using Statistical Package for the Social Sciences (SPSS) Version 20. Percentages were calculated and represented using charts and tables Results; The number of children sampled was 159. We found that 150 were fully immunized and 9 were not, the prevalence of missed opportunity was 32% from the study. The reasons for missed opportunities were varied, ranging from false contraindications, logistical problems resulting in very poor access roads to health facilities and poor organization of health centers together with negative health worker attitudes. Some of the consequences of these missed opportunities were increased susceptibility to vaccine preventable diseases, resurgence of the above diseases and increased morbidity and mortality of children aged less than 5 years. Conclusion; We found that ignorance on the part of both parents/guardians and health care staff together with infrastructural inadequacies in the county such as- roads, poor electric power supply for storage of vaccines were hugely responsible for most missed opportunities for immunization. The details of these and suggestions for improvement and the way forward are discussed.

Keywords: missed opportunity, immunization, under five, Calabar south

Procedia PDF Downloads 324