Search results for: partial least square regression
4867 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement
Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh
Abstract:
The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.Keywords: glass waste, strength properties, cement mortar, environmental friendly
Procedia PDF Downloads 624866 Comparison of Anterolateral Thigh Flap with or without Acellular Dermal Matrix in Repair of Hypopharyngeal Squamous Cell Carcinoma Defect: A Retrospective Study
Authors: Yaya Gao, Bing Zhong, Yafeng Liu, Fei Chen
Abstract:
Aim: The purpose of this study was to explore the difference between acellular dermal matrix (ADM) combined with anterolateral thigh (ALT) flap and ALT flap alone. Methods: HSCC patients were treated and divided into group A (ALT) and group B (ALT+ADM) between January 2014 and December 2018. We compared and analyzed the intraoperative information and postoperative outcomes of the patients. Results: There were 21 and 17 patients in group A and group B, respectively. The operation time, blood loss, defect size and anastomotic vessel selection showed no significant difference between two groups. The postoperative complications, including wound bleeding (n=0 vs. 1, p=0.459), wound dehiscence (n=0 vs. 1, p=0.459), wound infection (n=5vs.3, p=0.709), pharyngeal fistula (n=5vs.4, p=1.000) and hypoproteinemia (n=11 vs. 12, p=0.326) were comparable between the groups. Dysphagia at 6 months (number of liquid diets=0vs. 0; number of partial tube feedings=1vs. 1; number of total tube feedings=1vs. 0, p=0.655) also showed no significant differences. However, significant differences was observed in dysphagia at 12 months (number of liquid diets=0vs. 0; number of partial tube feedings=3 vs. 1; number of total tube feedings=10vs. 1, p=0.006). Conclusion: For HSCC patients, the use of the ALT flap combined ADM, compared to ALT treatment, showed better swallowing function at 12 months. The ALT flap combined ADM may serve as a safe and feasible alternative for selected HSCC patients.Keywords: hypopharyngeal squamous cell carcinoma, anterolateral thigh free flap, acellular dermal matrix, reconstruction, dysphagia
Procedia PDF Downloads 774865 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 2474864 Utilization of “Adlai” (Coix lacryma-jobi L) Flour as Wheat Flour Extender in Selected Baked Products in the Philippines
Authors: Rolando B. Llave Jr.
Abstract:
In many countries, wheat flour is used an essential component in production/preparation of bread and other baked products considered to have a significant role in man’s diet. Partial replacement of wheat flour with other flours (composite flour) in preparation of the said products is seen as a solution to the scarcity of wheat flour (in non-wheat producing countries), and improved nourishment. In composite flour, other flours may come from cereals, legumes, root crops, and those that are rich in starch. Many countries utilize whatever is locally available. “Adlai” or Job’s tears is a tall cereal plant that belongs to the same family of grass as wheat, rice, and corn. In some countries, it is used as an ingredient in producing many dishes and alcoholic and non-alcoholic beverages. As part of the Food Staple Self-Sufficiency Program (FSSP) of the Department of Agriculture (DA) in the Philippines, “adlai” is being promoted as alternative food source for the Filipinos. In this study, the grits coming from the seeds of “adlai” were turned into flour. The resulting flour was then used as partial replacement for wheat flour in selected baked products namely “pan de sal” (salt bread), cupcakes and cookies. The supplementation of “adlai” flour ranged 20%-45% with 20%-35% for “pan de sal”; 30%-45% for cupcakes; and 25% - 40% for cookies. The study was composed of four (4) phases. Phase I was product formulation studies. Phase II included the acceptability test/sensory evaluation of the baked products where the statistical analysis of the data gathered followed. Phase III was the computation of the theoretical protein content of the most acceptable “pan de sal”, cupcake and cookie, and lastly, in Phase IV, cost benefit was analyzed, specifically in terms of the direct material cost.Keywords: “adlai”, composite flour, supplementation, sensory evaluation
Procedia PDF Downloads 8694863 An Inquiry of the Impact of Flood Risk on Housing Market with Enhanced Geographically Weighted Regression
Authors: Lin-Han Chiang Hsieh, Hsiao-Yi Lin
Abstract:
This study aims to determine the impact of the disclosure of flood potential map on housing prices. The disclosure is supposed to mitigate the market failure by reducing information asymmetry. On the other hand, opponents argue that the official disclosure of simulated results will only create unnecessary disturbances on the housing market. This study identifies the impact of the disclosure of the flood potential map by comparing the hedonic price of flood potential before and after the disclosure. The flood potential map used in this study is published by Taipei municipal government in 2015, which is a result of a comprehensive simulation based on geographical, hydrological, and meteorological factors. The residential property sales data of 2013 to 2016 is used in this study, which is collected from the actual sales price registration system by the Department of Land Administration (DLA). The result shows that the impact of flood potential on residential real estate market is statistically significant both before and after the disclosure. But the trend is clearer after the disclosure, suggesting that the disclosure does have an impact on the market. Also, the result shows that the impact of flood potential differs by the severity and frequency of precipitation. The negative impact for a relatively mild, high frequency flood potential is stronger than that for a heavy, low possibility flood potential. The result indicates that home buyers are of more concern to the frequency, than the intensity of flood. Another contribution of this study is in the methodological perspective. The classic hedonic price analysis with OLS regression suffers from two spatial problems: the endogeneity problem caused by omitted spatial-related variables, and the heterogeneity concern to the presumption that regression coefficients are spatially constant. These two problems are seldom considered in a single model. This study tries to deal with the endogeneity and heterogeneity problem together by combining the spatial fixed-effect model and geographically weighted regression (GWR). A series of literature indicates that the hedonic price of certain environmental assets varies spatially by applying GWR. Since the endogeneity problem is usually not considered in typical GWR models, it is arguable that the omitted spatial-related variables might bias the result of GWR models. By combing the spatial fixed-effect model and GWR, this study concludes that the effect of flood potential map is highly sensitive by location, even after controlling for the spatial autocorrelation at the same time. The main policy application of this result is that it is improper to determine the potential benefit of flood prevention policy by simply multiplying the hedonic price of flood risk by the number of houses. The effect of flood prevention might vary dramatically by location.Keywords: flood potential, hedonic price analysis, endogeneity, heterogeneity, geographically-weighted regression
Procedia PDF Downloads 2904862 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity
Authors: Smail Tigani, Mohamed Ouzzif
Abstract:
This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation
Procedia PDF Downloads 4984861 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability
Authors: Sherry Ann Ganase, Sandra Sookram
Abstract:
This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.Keywords: adaptation, Bequia, multiple linear regression, structural equation model
Procedia PDF Downloads 4634860 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 504859 Application of a Confirmatory Composite Model for Assessing the Extent of Agricultural Digitalization: A Case of Proactive Land Acquisition Strategy (PLAS) Farmers in South Africa
Authors: Mazwane S., Makhura M. N., Ginege A.
Abstract:
Digitalization in South Africa has received considerable attention from policymakers. The support for the development of the digital economy by the South African government has been demonstrated through the enactment of various national policies and strategies. This study sought to develop an index for agricultural digitalization by applying composite confirmatory analysis (CCA). Another aim was to determine the factors that affect the development of digitalization in PLAS farms. Data on the indicators of the three dimensions of digitalization were collected from 300 Proactive Land Acquisition Strategy (PLAS) farms in South Africa using semi-structured questionnaires. Confirmatory composite analysis (CCA) was employed to reduce the items into three digitalization dimensions and ultimately to a digitalization index. Standardized digitalization index scores were extracted and fitted to a linear regression model to determine the factors affecting digitalization development. The results revealed that the model shows practical validity and can be used to measure digitalization development as measures of fit (geodesic distance, standardized root mean square residual, and squared Euclidean distance) were all below their respective 95%quantiles of bootstrap discrepancies (HI95 values). Therefore, digitalization is an emergent variable that can be measured using CCA. The average level of digitalization in PLAS farms was 0.2 and varied significantly across provinces. The factors that significantly influence digitalization development in PLAS land reform farms were age, gender, farm type, network type, and cellular data type. This should enable researchers and policymakers to understand the level of digitalization and patterns of development, as well as correctly attribute digitalization development to the contributing factors.Keywords: agriculture, digitalization, confirmatory composite model, land reform, proactive land acquisition strategy, South Africa
Procedia PDF Downloads 634858 An Assessment of Self-Perceived Health after the Death of a Spouse among the Elderly
Authors: Shu-Hsi Ho
Abstract:
The problems of aging and number of widowed peers gradually rise in Taiwan. It is worth to concern the related issues for elderly after the death of a spouse. Hence, this study is to examine the impact of spousal death on the surviving spouse’s self-perceived health and mental health for the elderly in Taiwan. A cross section data design and ordered logistic regression models are applied to investigate whether marriage is associated significantly to self-perceived health and mental health for the widowed older Taiwanese. The results indicate that widowed marriage shows significant negative effects on self-perceived health and mental health regardless of widows or widowers. Among them, widows might be more likely to show worse mental health than widowers. The belief confirms that marriage provides effective sources to promote self-perceived health and mental health, particularly for females. In addition, since the social welfare system is not perfect in Taiwan, the findings also suggest that family and social support reveal strongly association with the self-perceived health and mental health for the widows and widowers elderly.Keywords: logistic regression models, self-perceived health, widow, widower
Procedia PDF Downloads 4634857 Tectono-Thermal Evolution of Ningwu-Jingle Basin in North China Craton: Constraints from Apatite (U–Th-Sm)/He and Fission Track Thermochronology
Authors: Zhibin Lei, Minghui Yang
Abstract:
Ningwu-Jingle basin is a structural syncline which has undergone a complex tectono-thermal history since Cretaceous. It stretches along the strike of the northern Lvliang Mountains which are the most important mountains in the middle and west of North China Craton. The Mesozoic units make up of the core of Ningwu-Jingle Basin, with pre-Mesozoic units making up of its flanks. The available low-temperature thermochronology implies that Ningwu-Jingle Basin has experienced two stages of uplifting: 94±7Ma to 111±8Ma (Albian to Cenomanian) and 62±4 to 75±5Ma (Danian to Maastrichtian). In order to constrain its tectono-thermal history in the Cenozoic, both apatite (U-Th-Sm)/He and fission track dating analysis are applied on 3 Middle Jurassic and 3 Upper Triassic sandstone samples. The central fission track ages range from 74.4±8.8Ma to 66.0±8.0Ma (Campanian to Maastrichtian) which matches well with previous data. The central He ages range from 20.1±1.2Ma to 49.1±3.0Ma (Ypresian to Burdigalian). Inverse thermal modeling is established based on both apatite fission track data and (U-Th-Sm)/He data. The thermal history obtained reveals that all 6 sandstone samples cross the high-temperature limit of fission track partial annealing zone by the uppermost Cretaceous and that of He partial retention zone by the uppermost Eocene to the early Oligocene. The result indicates that the middle and west of North China Craton is not stable in the Cenozoic.Keywords: apatite fission track thermochronology, apatite (u–th)/he thermochronology, Ningwu-Jingle basin, North China craton, tectono-thermal history
Procedia PDF Downloads 2624856 The Intonation of Romanian Greetings: A Sociolinguistics Approach
Authors: Anca-Diana Bibiri, Mihaela Mocanu, Adrian Turculeț
Abstract:
In a language the inventory of greetings is dynamic with frequent input and output, although this is hardly noticed by the speakers. In this register, there are a number of constant, conservative elements that survive different language models (among them, the classic formulae: bună ziua! (good afternoon!), bună seara! (good evening!), noapte bună! (good night!), la revedere! (goodbye!) and a number of items that fail to pass the test of time, according to language use at a time (ciao!, pa!, bai!). The source of innovation depends both of internal factors (contraction, conversion, combination of classic formulae of greetings), and of external ones (borrowings and calques). Their use imposes their frequencies at once, namely the elimination of the use of others. This paper presents a sociolinguistic approach of contemporary Romanian greetings, based on prosodic surveys in two research projects: AMPRom, and SoRoEs. Romanian language presents a rich inventory of questions (especially partial interrogatives questions/WH-Q) which are used as greetings, alone or, more commonly accompanying a proper greeting. The representative of the typical formulae is Ce mai faci? (How are you?), which, unlike its English counterpart How do you do?, has not become a stereotype, but retains an obvious emotional impact, while serving as a mark of sociolinguistic group. The analyzed corpus consists of structures containing greetings recorded in the main Romanian cultural (urban) centers. From the methodological point of view, the acoustic analysis of the recorded data is performed using software tools (GoldWave, Praat), identifying intonation patterns related to three sociolinguistics variables: age, sex and level of education. The intonation patterns of the analyzed statements are at the interface between partial questions and typical greetings.Keywords: acoustic analysis, greetings, Romanian language, sociolinguistics
Procedia PDF Downloads 3374855 Examining the Cognitive Abilities and Financial Literacy Among Street Entrepreneurs: Evidence From North-East, India
Authors: Aayushi Lyngwa, Bimal Kishore Sahoo
Abstract:
The study discusses the relationship between cognitive ability and the level of education attained by the tribal street entrepreneurs on their financial literacy. It is driven by the objective of examining the effect of cognitive ability on financial ability on the one hand and determining the effect of the same on financial literacy on the other. A field experiment was conducted on 203 tribal street vendors in the north-eastern Indian state of Mizoram. This experiment's calculations are conditioned by providing each question scores like math score (cognitive ability), financial score and debt score (financial ability). After that, categories for each of the variables, like math category (math score), financial category (financial score) and debt category (debt score), are generated to run the regression model. Since the dependent variable is ordinal, an ordered logit regression model was applied. The study shows that street vendors' cognitive and financial abilities are highly correlated. It, therefore, confirms that cognitive ability positively affects the financial literacy of street vendors through the increase in attainment of educational levels. It is also found that concerning the type of street vendors, regular street vendors are more likely to have better cognitive abilities than temporary street vendors. Additionally, street vendors with more cognitive and financial abilities gained better monthly profits and performed habits of bookkeeping. The study attempts to draw a particular focus on a set-up which is economically and socially marginalized in the Indian economy. Its finding contributes to understanding financial literacy in an understudied area and provides policy implications through inclusive financial systems solutions in an economy limited to tribal street vendors.Keywords: financial literacy, education, street entrepreneurs, tribals, cognitive ability, financial ability, ordered logit regression.
Procedia PDF Downloads 1104854 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes
Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft
Abstract:
Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization
Procedia PDF Downloads 1624853 The Nexus between Child Marriage and Women Empowerment with Physical Violence in Two Culturally Distinct States of India
Authors: Jayakant Singh, Enu Anand
Abstract:
Background: Child marriage is widely prevalent in India. It is a form of gross human right violation that succumbs a child bride to be subservient to her husband within a marital relation. We investigated the relationship between age at marriage of women and her level of empowerment with physical violence experienced 12 months preceding the survey among young women aged 20-24 in two culturally distinct states- Bihar and Tamil Nadu of India. Methods: We used the information collected from 10514 young married women (20-24 years) at all India level, 373 in Bihar and 523 in Tamil Nadu from the third round of National Family Health Survey. Empowerment index was calculated using different parameters such as mobility, economic independence and decision making power of women using Principal Component Analysis method. Bivariate analysis was performed primarily using chi square for the test of significance. Logistic regression was carried out to assess the effect of age at marriage and empowerment on physical violence. Results: Lower level of women empowerment was significantly associated with physical violence in Tamil Nadu (OR=2.38, p<0.01) whereas child marriage (marriage before age 15) was associated with physical violence in Bihar (OR=3.27, p<0.001). The mean difference in age at marriage between those who experienced physical violence and those who did not experience varied by 7 months in Bihar and 10 months in Tamil Nadu. Conclusion: Culture specific intervention may be a key to reduction of violence against women as the results showed association of different factors contributing to physical violence in Bihar and Tamil Nadu. Marrying at an appropriate age perhaps is protective of abuse because it equips a woman to assert her rights effectively. It calls for an urgent consideration to curb both violence and child marriage with stricter involvement of family, civil society and the government. In the meanwhile physical violence may be recognized as a public health problem and integrate appropriate treatment to the victims within the health care institution.Keywords: child marriage, empowerment, India, physical violence
Procedia PDF Downloads 3124852 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm
Authors: Zachary Huffman, Joana Rocha
Abstract:
Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations
Procedia PDF Downloads 1354851 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019
Authors: Lluís Bermúdez, Isabel Morillo
Abstract:
Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.Keywords: accident reduction, count regression models, road safety, urban traffic
Procedia PDF Downloads 1334850 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 3644849 Thermophysical Properties of Glycine/L-Alanine in 1-Butyl-3-Methylimidazolium Bromide and in 1-Butyl-3-Methylimidazolium Chloride
Authors: Tarnveer Kaur
Abstract:
Amino acids, as fundamental structural units of peptides and proteins, have an important role in biological systems by affecting solubility, denaturation, and activity of biomolecules. A study of these effects on thermophysical properties of model compounds in the presence of electrolytes solutions provides information about solute-solvent and solute-solute interactions on biomolecules. Ionic liquids (ILs) as organic electrolytes and green solvents are composed of an organic cation and an inorganic anion, which are liquid at ambient conditions. In the past decade, extensive investigations showed that the use of ILs as reaction media for processes involving biologically relevant compounds is promising in view of their successful application in kinetic resolution, biocatalysis, biosynthesis, separation, and purification processes. The scope of this information is valuable to explore the interactions of amino acids in ILs. To reach this purpose, apparent molar volumes of glycine/L-alanine in aqueous solutions of 1-butyl-3-methylimidazolium bromide/chloride were determined from precise density measurements at temperatures T = (288.15-318.15) K and at atmospheric pressure. Positive values for all the studied amino acids indicate the dominance of hydrophilic-ionic interactions between amino acids and Ionic liquids. The effect of temperature on volumetric properties of glycine/L-alanine in solutions has been determined from the partial molar expansibility and second-order partial molar expansibility. Further, volumetric interaction parameters and hydration number have been calculated, which have been interpreted in terms of possible solute-solvent interactions.Keywords: ILs, amino acids, volumetric properties, hydration numbers
Procedia PDF Downloads 1684848 Usage the Point Analysis Algorithm (SANN) on Drought Analysis
Authors: Khosro Shafie Motlaghi, Amir Reza Salemian
Abstract:
In arid and semi-arid regions like our country Evapotranspiration is the greatestportion of water resource. Therefor knowlege of its changing and other climate parameters plays an important role for planning, development, and management of water resource. In this search the Trend of long changing of Evapotranspiration (ET0), average temprature, monthly rainfall were tested. To dose, all synoptic station s in iran were divided according to the climate with Domarton climate. The present research was done in semi-arid climate of Iran, and in which 14 synoptic with 30 years period of statistics were investigated with 3 methods of minimum square error, Mann Kendoll, and Vald-Volfoytz Evapotranspiration was calculated by using the method of FAO-Penman. The results of investigation in periods of statistic has shown that the process Evapotranspiration parameter of 24 percent of stations is positive, and for 2 percent is negative, and for 47 percent. It was without any Trend. Similary for 22 percent of stations was positive the Trend of parameter of temperature for 19 percent , the trend was negative and for 64 percent, it was without any Trend. The results of rainfall trend has shown that the amount of rainfall in most stations was not considered as a meaningful trend. The result of Mann-kendoll method similar to minimum square error method. regarding the acquired result was can admit that in future years Some regions will face increase of temperature and Evapotranspiration.Keywords: analysis, algorithm, SANN, ET0
Procedia PDF Downloads 2964847 Understanding the Impact of Climate-Induced Rural-Urban Migration on the Technical Efficiency of Maize Production in Malawi
Authors: Innocent Pangapanga-Phiri, Eric Dada Mungatana
Abstract:
This study estimates the effect of climate-induced rural-urban migrants (RUM) on maize productivity. It uses panel data gathered by the National Statistics Office and the World Bank to understand the effect of RUM on the technical efficiency of maize production in rural Malawi. The study runs the two-stage Tobit regression to isolate the real effect of rural-urban migration on the technical efficiency of maize production. The results show that RUM significantly reduces the technical efficiency of maize production. However, the interaction of RUM and climate-smart agriculture has a positive and significant influence on the technical efficiency of maize production, suggesting the need for re-investing migrants’ remittances in agricultural activities.Keywords: climate-smart agriculture, farm productivity, rural-urban migration, panel stochastic frontier models, two-stage Tobit regression
Procedia PDF Downloads 1334846 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer
Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo
Abstract:
Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer
Procedia PDF Downloads 2084845 Antecedents and Consequents of Organizational Politics: A Select Study of a Central University
Authors: Poonam Mishra, Shiv Kumar Sharma, Sanjeev Swami
Abstract:
Purpose: The Purpose of this paper is to investigate the relationship of percieved organizational politics with three levels of antecedents (i.e., organizational level, work environment level and individual level)and its consequents simultaneously. The study addresses antecedents and consequents of percieved political behavior in the higher education sector of India with specific reference to a central university. Design/ Methodology/ Approach: A conceptual framework and hypotheses were first developed on the basis of review of previous studies on organizational politics. A questionnaire was then developed carrying 66 items related to 8-constructs and demographic characteristics of respondents. Jundegemental sampling was used to select respondents. Primary data is collected through structured questionnaire from 45 faculty members of a central university. The sample constitutes Professors, Associate Professors and Assistant Professors from various departments of the University. To test hypotheses data was analyzed statistically using partial least square-structural equations modeling (PLS-SEM). Findings: Results indicated a strong support for OP’s relationship with three of the four proposed antecedents that are, workforce diversity, relationship conflict and need for power with relationship conflict having the strongest impact. No significant relationship was found between role conflict and perception of organizational politics. The three consequences that is, intention to turnover, job anxiety, and organizational commitment are significantly impacted by perception of organizational politics. Practical Implications– This study will be helpful in motivating future research for improving the quality of higher education in India by reducing the level of antecedents that adds to the level of perception of organizational politics, ultimately resulting in unfavorable outcomes. Originality/value: Although a large number of studies on atecedents and consequents of percieved organizational politics have been reported, little attention has been paid to test all the separate but interdependent relationships simultaneously; in this paper organizational politics will be simultaneously treated as a dependent variable and same will be treated as independent variable in subsequent relationships.Keywords: organizational politics, workforce diversity, relationship conflict, role conflict, need for power, intention to turnover, job anxiety, organizational commitment
Procedia PDF Downloads 4954844 Engaging Employees in Innovation - A Quantitative Study on The Role of Affective Commitment to Change Among Norwegian Employees in Higher Education.
Authors: Barbara Rebecca Mutonyi, Chukwuemeka Echebiri, Terje Slåtten, Gudbrand Lien
Abstract:
The concept of affective commitment to change has been scarcely explored among employees in the higher education literature. The present study addresses this knowledge gap in the literature by examining how various psychological factors, such as psychological empowerment (PsyEmp), and psychological capital (PsyCap), promotes affective commitment to change. As affective commitment to change has been identified by previous studies as an important aspect to implementation behavior, the study examines the correlation of affective commitment to change on employee innovative behavior (EIB) in higher education. The study proposes mediation relationship between PsyEmp, PsyCap, and affective commitment to change. 250 employees in higher education in Norway were sampled for this study. The study employed online survey for data collection, utilizing Stata software to perform Partial least square equation modeling to test the proposed hypotheses of the study. Through bootstrapping, the study was able to test for mediating effects. Findings of the study shows a strong direct relationship between the leadership factor PsyEmp on the individual factor PsyCap ( = 0.453). In addition, the findings of the study reveal that both PsyEmp and PsyCap are related to affective commitment to change ( = 0.28 and = 0.249, respectively). In total, PsyEmp and PsyCap explains about 10% of the variance in the concept of affective commitment to change. Further, the direct effect of effective commitment to change and EIB is also supported ( = 0.183). The three factors, PsyEmp, PsyCap, and affective commitment to change, explains nearly 40% (R2 = 0.39) of the variance found in EIB. The relationship between PsyEmp, PsyCap, and affective commitment to change are mediated through the individual factor PsyCap. In order to effectively promote affective commitment to change among higher education employees, higher education managers should focus on both the leadership factor, PsyEmp, as well as the individual factor, PsyCap, of their employees. In this regard, higher education managers should strengthen employees EIB through providing autonomy, creating a safe environment that encourages innovation thinking and action, and providing employees in higher education opportunities to be involved in changes occurring at work. This contributes to strengthening employees´ affective commitment to change, that further improves their EIB in their work roles as higher education employees. As such, the results of this study implicate the ambidextrous nature of the concepts of affective commitment to change and EIB that should be considered in future studies of innovation in higher education research.Keywords: affective commitment to change, psychological capital, innovative behavior, psychological empowerment, higher education
Procedia PDF Downloads 1164843 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5244842 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia
Authors: Wondmnew Derebe
Abstract:
Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.Keywords: impact, adoption, endogenous switching regression, income, improved
Procedia PDF Downloads 744841 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm
Authors: Ming Su, Ziqiang Mu
Abstract:
This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern
Procedia PDF Downloads 1094840 [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis
Authors: Emery Jr. Coppola
Abstract:
Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization.Keywords: climate change, water conservation, water crisis, water technologies
Procedia PDF Downloads 2354839 Ground Source Ventilation and Solar PV Towards a Zero-Carbon House in Riyadh
Authors: Osamah S. Alanazi, Mohammad G. Kotbi, Mohammed O. AlFadil
Abstract:
While renewable energy technology is developing in Saudi Arabia, and the ambitious 2030 vision encourages the shift towards more efficient and clean energy usage. The research on the application of geothermal resources in residential use for the Saudi Arabian context will contribute towards a more sustainable environment. This paper is a part of an ongoing master's thesis, which its main goal is to investigate the possibility of achieving a zero-carbon house in Riyadh by applying a ground-coupled system into a current sustainable house that uses a grid-tied solar system. The current house was built and designed by King Saud University for the 2018 middle east solar decathlon competition. However, it failed to reach zero-carbon operation due to the high cooling demand. This study will redesign and validate the house using Revit and Carriers Hourly Analysis 'HAP' software with the use of ordinary least square 'OLS' regression. After that, a ground source ventilation system will be designed using the 'GCV Tool' to reduce cooling loads. After the application of the ground source system, the new electrical loads will be compared with the current house. Finally, a simple economic analysis that includes the cost of applying a ground source system will be reported. The findings of this study will indicate the possibility and feasibility of reaching a zero-carbon house in Riyadh, Saudi Arabia, using a ground-coupled ventilation system. While cooling in the residential sector is the dominant energy consumer in the Gulf region, this work will certainly help in moving towards using renewable sources to meet those demands. This paper will be limited to highlight the literature review, the methodology of the research, and the expected outcome.Keywords: renewable energy, zero-carbon houses, sustainable buildings, geothermal energy, solar PV, GCV Tool
Procedia PDF Downloads 1834838 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data
Authors: Arjun G. Koppad
Abstract:
The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.Keywords: forest, biomass, LULC, back scatter, SAR, regression
Procedia PDF Downloads 26