Search results for: features comparison
7788 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1327787 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 4527786 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 427785 Designing an Effective Accountability Model for Islamic Azad University Using the Qualitative Approach of Grounded Theory
Authors: Davoud Maleki, Neda Zamani
Abstract:
The present study aims at exploring the effective accountability model of Islamic Azad University using a qualitative approach of grounded theory. The data of this study were obtained from semi-structured interviews with 25 professors and scholars in Islamic Azad University of Tehran who were selected by theoretical sampling method. In the data analysis, the stepwise method and Strauss and Corbin analytical methods (1992) were used. After identification of the main component (balanced response to stakeholders’ needs) and using it to bring the categories together, expressions and ideas representing the relationships between the main and subcomponents, and finally, the revealed components were categorized into six dimensions of the paradigm model, with the relationships among them, including causal conditions (7 components), main component (balanced response to stakeholders’ needs), strategies (5 components), environmental conditions (5 components), intervention features (4 components), and consequences (3 components). Research findings show an exploratory model for describing the relationships between causal conditions, main components, accountability strategies, environmental conditions, university environmental features, and that consequences.Keywords: accountability, effectiveness, Islamic Azad University, grounded theory
Procedia PDF Downloads 877784 Comparison of Accumulated Stress Based Pore Pressure Model and Plasticity Model in 1D Site Response Analysis
Authors: Saeedullah J. Mandokhail, Shamsher Sadiq, Meer H. Khan
Abstract:
This paper presents the comparison of excess pore water pressure ratio (ru) predicted by using accumulated stress based pore pressure model and plasticity model. One dimensional effective stress site response analyses were performed on a 30 m deep sand column (consists of a liquefiable layer in between non-liquefiable layers) using accumulated stress based pore pressure model in Deepsoil and PDMY2 (PressureDependentMultiYield02) model in Opensees. Three Input motions with different peak ground acceleration (PGA) levels of 0.357 g, 0.124 g, and 0.11 g were used in this study. The developed excess pore pressure ratio predicted by the above two models were compared and analyzed along the depth. The time history of the ru at mid of the liquefiable layer and non-liquefiable layer were also compared. The comparisons show that the two models predict mostly similar ru values. The predicted ru is also consistent with the PGA level of the input motions.Keywords: effective stress, excess pore pressure ratio, pore pressure model, site response analysis
Procedia PDF Downloads 2287783 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL
Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara
Abstract:
PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.Keywords: cognition, database, PostgreSQL, text-editor, visual-editor
Procedia PDF Downloads 2847782 Wood Decay Fungal Strains Useful for Bio-Composite Material Production
Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino
Abstract:
Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi
Procedia PDF Downloads 1417781 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 927780 Comprehensive Review of Ultralightweight Security Protocols
Authors: Prashansa Singh, Manjot Kaur, Rohit Bajaj
Abstract:
The proliferation of wireless sensor networks and Internet of Things (IoT) devices in the quickly changing digital landscape has highlighted the urgent need for strong security solutions that can handle these systems’ limited resources. A key solution to this problem is the emergence of ultralightweight security protocols, which provide strong security features while respecting the strict computational, energy, and memory constraints imposed on these kinds of devices. This in-depth analysis explores the field of ultralightweight security protocols, offering a thorough examination of their evolution, salient features, and the particular security issues they resolve. We carefully examine and contrast different protocols, pointing out their advantages and disadvantages as well as the compromises between resource limitations and security resilience. We also study these protocols’ application domains, including the Internet of Things, RFID systems, and wireless sensor networks, to name a few. In addition, the review highlights recent developments and advancements in the field, pointing out new trends and possible avenues for future research. This paper aims to be a useful resource for researchers, practitioners, and developers, guiding the design and implementation of safe, effective, and scalable systems in the Internet of Things era by providing a comprehensive overview of ultralightweight security protocols.Keywords: wireless sensor network, machine-to-machine, MQTT broker, server, ultralightweight, TCP/IP
Procedia PDF Downloads 847779 Features of Calculating Structures for Frequent Weak Earthquakes
Authors: M. S. Belashov, A. V. Benin, Lin Hong, Sh. Sh. Nazarova, O. B. Sabirova, A. M. Uzdin, Lin Hong
Abstract:
The features of calculating structures for the action of weak earthquakes are analyzed. Earthquakes with a recurrence of 30 years and 50 years are considered. In the first case, the structure is to operate normally without damage after the earthquake. In the second case, damages are allowed that do not affect the possibility of the structure operation. Three issues are emphasized: setting elastic and damping characteristics of reinforced concrete, formalization of limit states, and combinations of loads. The dependence of damping on the reinforcement coefficient is estimated. When evaluating limit states, in addition to calculations for crack resistance and strength, a human factor, i.e., the possibility of panic among people, was considered. To avoid it, it is proposed to limit a floor-by-floor speed level in certain octave ranges. Proposals have been developed for estimating the coefficients of the combination of various loads with the seismic one. As an example, coefficients of combinations of seismic and ice loads are estimated. It is shown that for strong actions, the combination coefficients for different regions turn out to be close, while for weak actions, they may differ.Keywords: weak earthquake, frequent earthquake, damage, limit state, reinforcement, crack resistance, strength resistance, a floor-by-floor velocity, combination coefficients
Procedia PDF Downloads 917778 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers
Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin
Abstract:
Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.Keywords: anxiety, emotional valence, childhood, lexical access
Procedia PDF Downloads 2887777 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns
Procedia PDF Downloads 3157776 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 1287775 A Comparison of Short- and Long-Haul Vacation Tourists on Evaluation of Attractiveness: The Case of Hong Kong
Authors: Zhaoyu Chen
Abstract:
In this study, an attempt was made to find reasons why tourists go to particular attractions. Tourists may be either motivated by the attractions or simply make the choice to satisfy their needs and desires. Based on the attractions in Hong Kong, this research was conducted to explore the attraction-related concepts to discuss how the attraction system works. Due to the limited studies on exploring the attractiveness of attractions through tourist movement patterns, the study aims to evaluate such indicators to determine whether tourists are motivated by attractiveness or their own needs. The investigation is conducted through the comparison of different source markets - Mainland China, short haul markets (excluding Mainland China) and long haul markets. The latest finding of Departing Visitor Survey (DVS) implemented by the Hong Kong Tourism Board (HKTB) is employed for the analysis. Various tourist movement patterns are drawn from the practical data. The managerial implication to destination management organizations (DMOs) is suggested to better allocate attractions according to the needs of tourists.Keywords: attractions, attraction system, Hong Kong, tourist movement patterns
Procedia PDF Downloads 5157774 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement
Procedia PDF Downloads 957773 Provisions for Risk in Islamic Banking and Finance in Comparison to the Conventional Banks in Malaysia
Authors: Rashid Masoud Ali Al-Mazrui, Ramadhani Mashaka Shabani
Abstract:
Islamic banks and financial institutions are exposed to the same risks as conventional banking. These risks include the rate return risk, credit or market risk, liquidity risk, and operational risk among others. However, being a financial institution that operates Islamic banking and finance operations, there is additional risk associated with its operations different from conventional finance, such as displacing commercial risk. They face Shari'ah compliance risks because of their failure to follow Shari'ah principles. To have proper mitigation and risk management, banks should have proper risk management policies to mitigate risks. This paper aims to study the risk management taken by Islamic banks in comparison with conventional banks. Also, the study evaluates the provisions for risk management taken by selected Islamic banks and conventional banks. The study employs qualitative analysis using secondary data by applying a content analysis approach with a sample size of 4 Islamic banks and four conventional banks ranging from 2010 to 2020. We find that these banks all use the same technique, except for the associated risk. The extra ways are used, but only for additional risks that are available to Islamic banking and finance.Keywords: emerging risk, risk management, Islamic banking, conventional bank
Procedia PDF Downloads 847772 Comparison of Efficient Production of Small Module Gears
Authors: Vaclav Musil, Robert Cep, Sarka Malotova, Jiri Hajnys, Frantisek Spalek
Abstract:
The new designs of satellite gears comprising a number of small gears pose high requirements on the precise production of small module gears. The objective of the experimental activity stated in this article was to compare the conventional rolling gear cutting technology with the modern wire electrical discharge machining (WEDM) technology for the production of small module gear m=0.6 mm (thickness of 2.5 mm and material 30CrMoV9). The WEDM technology lies in copying the profile of gearing from the rendered trajectory which is then transferred to the track of a wire electrode. During the experiment, we focused on the comparison of these production methods. Main measured parameters which significantly influence the lifetime and noise was chosen. The first parameter was to compare the precision of gearing profile in respect to the mathematic model. The second monitored parameter was the roughness and surface topology of the gear tooth side. The experiment demonstrated high accuracy of WEDM technology, but a low quality of machined surface.Keywords: precision of gearing, small module gears, surface topology, WEDM technology
Procedia PDF Downloads 2337771 Compactness and Quality of Life: Applying Regression Analysis on American Cities
Authors: Hsi-Chuan Wang, Hongxi Yin
Abstract:
Compactness has been proposed as a type of sustainable urban form globally. However, the meanings and the measurements might diverse in regarding to the varying interpretation; moreover, since compactness was proposed to eliminate auto culture and urban sprawl in the developed countries, voices have emerged asking to rethink the suitability of compactness in the developing countries – based upon such understanding, Quality of Life (QOL) has been suggested as a good way to show the overall benefit of compactness. In regarding to such background, two subjects were targeted for discussion in this paper: (I) the meaning and feasibility of compactness between the developing and developed countries, and (II) the interaction between compactness and QOL. This paper argues that compactness should not be considered a universal principle for cities of all kind, but rather an ideal concept for urban designer and planner to consider throughout local practices. It firstly reviewed the benefits of both compactness and sprawl to uncover the features behind these urban forms, and later addressed the meaning and difficulty of adopting compactness in both the developing and developed countries. Secondly, arguing compactness to be positioned as a ‘process’ along the transition from the developing countries to the developed ones, this paper applied both cross-sectional and longitudinal analysis to uncover (I) the relationship between compactness and QOL in regarding to 30 American cities and (II) the impact of ‘becoming compact’ on QOL in regarding to 8 identified American Urbanized Areas (UZAs). The findings indicated that higher compactness could link to lower QOL among the compact cities, but with higher QOL among the sprawl cities. In addition, based upon the comparison between 2000 and 2010 on 8 UZAs, their QOL have escalated during the transition from the sprawl areas into the compact ones, but the extent of improvement in QOL could differ greatly among areas. In regarding to our findings, compact development should be proposed as a general guideline leading the contemporary sprawl cities in transition with sustainable urbanism; however, to prevent the externalities from damaging QOL with over-compactness, the compact policy should be flexible to adjust a long-term roadmap for sustainable development.Keywords: compactness, quality of life, sprawl, sustainable urbanism
Procedia PDF Downloads 1687770 Gender Differences in Morphological Predictors of Running Ability: A Comprehensive Analysis of Male and Female Athletes in Cape Coast Metropolis, Ghana
Authors: Stephen Anim, Emmanuel O. Sarpong, Daniel Apaak
Abstract:
This study investigates the relationship between morphological predictors and running ability, emphasizing gender-specific variations among male and female athletes in Cape Coast Metropolis (CCM), Ghana. The dynamic interplay between an athlete's physique and their performance capabilities holds particular relevance in the realm of sports science, influencing training methodologies and talent identification processes. The research aims to contribute comprehensive insights into the morphological determinants of running proficiency, with a specific focus on the local athletic community in Cape Coast Metropolis. Utilizing a correlational research design, a thorough analysis of morphological features, encompassing 22 morphological features including body weight, 6 measurements related to body length, 7 body girth, and knee diameter, and 7 skinfold measurements against 50m dash, among male and female athletes, was conducted. The study involved 420 athletes both male (N=210) and female (N=210) aged 16-22 from 10 Senior High Schools (SHS) in the Cape Coast Metropolis, providing a representative sample of the local athletic community. The collected data were statistically analysed using means and standard deviation, and stepwise multiple regression to determine how morphological variables contribute to and predict running proficiency outcomes. The investigation revealed that athletes from Senior High Schools (SHS) in Cape Coast Metropolis (CCM) exhibit well-developed physiques and sufficient fitness levels suitable for overall athletic performance, taking into account gender differences. Moreover, the findings suggested that approximately 77% of running ability could be attributed to morphological factors, leading to diverse predictive models for male and female athletes within SHS in CCM, Ghana. Consequently, these formulated equations hold promise for predicting running ability among young athletes, particularly in the context of SHS environments.Keywords: body fat, body girth, body length, morphological features, running ability, senior high school
Procedia PDF Downloads 707769 Comparison of Methods for Detecting and Quantifying Amplitude Modulation of Wind Farm Noise
Authors: Phuc D. Nguyen, Kristy L. Hansen, Branko Zajamsek
Abstract:
The existence of special characteristics of wind farm noise such as amplitude modulation (AM) contributes significantly to annoyance, which could ultimately result in sleep disturbance and other adverse health effects for residents living near wind farms. In order to detect and quantify this phenomenon, several methods have been developed which can be separated into three types: time-domain, frequency-domain and hybrid methods. However, due to a lack of systematic validation of these methods, it is still difficult to select the best method for identifying AM. Furthermore, previous comparisons between AM methods have been predominantly qualitative or based on synthesised signals, which are not representative of the actual noise. In this study, a comparison between methods for detecting and quantifying AM has been carried out. The results are based on analysis of real noise data which were measured at a wind farm in South Australia. In order to evaluate the performance of these methods in terms of detecting AM, an approach has been developed to select the most successful method of AM detection. This approach uses a receiver operating characteristic (ROC) curve which is based on detection of AM in audio files by experts.Keywords: amplitude modulation, wind farm noise, ROC curve
Procedia PDF Downloads 1457768 Utilization of Waste Marble Dust as a Viscosity Modifying Agent in Self Compacting Concrete
Authors: Shams Ul Khaliq, Mushtaq Zeb, Fawad Bilal, Faizan Akbar, Syed Aamir Abbas
Abstract:
Self Compacting Concrete as the name implies--is the concrete requiring a very little or no vibration to fill the form homogeneously. Self Compacting Concrete (SCC) is defined by two primary properties: Ability to flow or deform under its own weight (with or without obstructions) and the ability to remain homogeneous while doing so. Flow ability is achieved by utilizing high range water reducing admixtures and segregation resistance is ensured by introducing a chemical viscosity modifying admixture (VMA) or increasing the amount of fines in the concrete. The study explores the use waste marble dust (WMD) to increase the amount of fines and hence achieve self-compatibility in an economical way, suitable for Pakistani construction industry. The study focuses on comparison of fresh properties of SCC containing varying amounts of waste marble dust (WMD) with that containing commercially available viscosity modifying admixture. The comparison is done at different dosages of super plasticizer keeping cement, water, coarse aggregate, and fine aggregate contents constant.Keywords: self compacting concrete, waste marble dust (WMD), flow ability, segregation resistance
Procedia PDF Downloads 3287767 The Comparison of Personality Background of Volunteer and Non-Volunteer Subjects
Authors: Laszlo Dorner
Abstract:
Background: In the last few decades there has been a significant discussion within the researchers of prosocial behavior about to what extent personality characteristics matter in determining the quality and frequency of helping behaviors. Of these community activities the most important is formal volunteering which mainly realises in civil services and organizations. Recently many researches have been showed up regarding the personality factors and motivations behind volunteering). Most of these researches found strong correlation between Agreeableness and Extraversion as global traits and the time spent on volunteering and its frequency as well. Aims of research: In this research we investigate the relation between formal volunteer activities and global traits in a Hungarian volunteer sample. We hypothetise that the results appeared in the previous researches show the same pattern in Hungary as well: volunteering would be related to Agreeableness and Extraversion. We also assume that the time spent on volunteering is related to these traits, since these traits would serve as an indicator of long-term volunteering. Methods: We applied the Hungarian adaptation of Big Five Questionnaire created by Caprara, Barbaranelli és Borgogni. This self-reported questionnaire contains 132 items, and explore 5 main traits examining the person’s most important emotional and motivational features regarding its personality. This research took into account the most important socio-economical factors (age, gender, religiosity, income) which can determine volunteer activities per se. The data is evaluated by SPSS 19.0 Statistical Software. Sample: 92 volunteer (formal, mainly the volunteers of Hungarian Red Cross and Hospice Organizations)and 92 non volunteer person, with matched subsamples by the factors of age, gender and qualification. Results: The volunteer subsample shows higher values of Energy and significantly higher values of Agreeableness and Openness, however, regarding Conscientiousness and Emotional Stability the differences are not significant between the volunteer and non-volunteer subsamples.Keywords: Big Five, comparative analysis, global traits, volunteering
Procedia PDF Downloads 3517766 Fast and Scale-Adaptive Target Tracking via PCA-SIFT
Authors: Yawen Wang, Hongchang Chen, Shaomei Li, Chao Gao, Jiangpeng Zhang
Abstract:
As the main challenge for target tracking is accounting for target scale change and real-time, we combine Mean-Shift and PCA-SIFT algorithm together to solve the problem. We introduce similarity comparison method to determine how the target scale changes, and taking different strategies according to different situation. For target scale getting larger will cause location error, we employ backward tracking to reduce the error. Mean-Shift algorithm has poor performance when tracking scale-changing target due to the fixed bandwidth of its kernel function. In order to overcome this problem, we introduce PCA-SIFT matching. Through key point matching between target and template, that adjusting the scale of tracking window adaptively can be achieved. Because this algorithm is sensitive to wrong match, we introduce RANSAC to reduce mismatch as far as possible. Furthermore target relocating will trigger when number of match is too small. In addition we take comprehensive consideration about target deformation and error accumulation to put forward a new template update method. Experiments on five image sequences and comparison with 6 kinds of other algorithm demonstrate favorable performance of the proposed tracking algorithm.Keywords: target tracking, PCA-SIFT, mean-shift, scale-adaptive
Procedia PDF Downloads 4337765 The Effects of Future Priming on Resource Concern
Authors: Calvin Rong, Regina Agassian, Mindy Engle-Friedman
Abstract:
Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment.Keywords: climate change, future, priming, global warming
Procedia PDF Downloads 2607764 Photoleap: An AI-Powered Photo Editing App with Advanced Features and User Satisfaction Analysis
Authors: Joud Basyouni, Rama Zagzoog, Mashael Al Faleh, Jana Alireza
Abstract:
AI is changing many fields and speeding up tasks that used to take a long time. It used to take too long to edit photos. However, many AI-powered apps make photo editing, automatic effects, and animations much easier than other manual editing apps with no AI. The mobile app Photoleap edits photos and creates digital art using AI. Editing photos with text prompts is also becoming a standard these days with the help of apps like Photoleap. Now, users can change backgrounds, add animations, turn text into images, and create scenes with AI. This project report discusses the photo editing app's history and popularity. Photoleap resembles Photoshop, Canva, Photos, and Pixlr. The report includes survey questions to assess Photoleap user satisfaction. The report describes Photoleap's features and functions with screenshots. Photoleap uses AI well. Charts and graphs show Photoleap user ratings and comments from the survey. This project found that most Photoleap users liked how well it worked, was made, and was easy to use. People liked changing photos and adding backgrounds. Users can create stunning photo animations. A few users dislike the app's animations, AI art, and photo effects. The project report discusses the app's pros and cons and offers improvements.Keywords: artificial intelligence, photoleap, images, background, photo editing
Procedia PDF Downloads 617763 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing
Authors: Jaimin Patel
Abstract:
Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack
Procedia PDF Downloads 2827762 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 257761 Design Approach of the Turbocompressor for Aerospace Industry
Authors: Halil Baris Cit, Mert Durmaz
Abstract:
Subsequent to the design of the compact centrifugal compressor, which is specifically intended to be used in aviation platforms, the process has been evaluated within the context of this study. A trade-off study matrix for future studies has been formed after making comparison between the design and the previous studies taking part in literature. While the power consumption of the designed compressor will be approximately 25 kW, the working fluid will be refrigerant. Properties such as thermodynamic properties and Global Warmin Potential(GWP)-Ozone Depletion Potential(ODP) Values of the fluid have been taken into consideration during the selection process of the refrigerant. Concepts NREC and ANSYS Vista CCD software have been used in the part of conceptual design, and R1233ZD has been selected as the refrigerant. Real-gas Computational Fluid Dynamic(CFD) analysis has been carried out with different cubic equations of state in the ANSYS CFX solver so as to figure out the most suitable solution method. These equations are named as “The Redlich Kwong”, “Soave Redlich Kwong”, “Augnier Redlick Kwong,” and “Peng Robinson.” By being used the mentioned solution equations in the same compressor configuration, analysis also have been carried out with two gases having different characteristics. As a result of the 12 analysis carried out with three different refrigerants—R11, R134A, and R1233zd—and four different solution equations mentioned above, the most accurate solution method has been selected by comparing the densities of the gases at different pressure and temperature points. The results have been analyzed within two titles following to the completion of the design with the selected equation. The first one is a trade-off study matrix presenting a comparison regarding the compact centrifugal compressor operating with the refrigerant to be designed. This comparison is between some dimensionless and dimensional parameters determined before the design and their values in the literature. Second one will show the differences between the actual density and the density in the design software in each real gas analysis method, along with the effects of it on the design.Keywords: turbocompressor, refrigerant, aviation, aerospace compressor
Procedia PDF Downloads 947760 Field-Programmable Gate Arrays Based High-Efficiency Oriented Fast and Rotated Binary Robust Independent Elementary Feature Extraction Method Using Feature Zone Strategy
Authors: Huang Bai-Cheng
Abstract:
When deploying the Oriented Fast and Rotated Binary Robust Independent Elementary Feature (BRIEF) (ORB) extraction algorithm on field-programmable gate arrays (FPGA), the access of global storage for 31×31 pixel patches of the features has become the bottleneck of the system efficiency. Therefore, a feature zone strategy has been proposed. Zones are searched as features are detected. Pixels around the feature zones are extracted from global memory and distributed into patches corresponding to feature coordinates. The proposed FPGA structure is targeted on a Xilinx FPGA development board of Zynq UltraScale+ series, and multiple datasets are tested. Compared with the streaming pixel patch extraction method, the proposed architecture obtains at least two times acceleration consuming extra 3.82% Flip-Flops (FFs) and 7.78% Look-Up Tables (LUTs). Compared with the non-streaming one, the proposed architecture saves 22.3% LUT and 1.82% FF, causing a latency of only 0.2ms and a drop in frame rate for 1. Compared with the related works, the proposed strategy and hardware architecture have the superiority of keeping a balance between FPGA resources and performance.Keywords: feature extraction, real-time, ORB, FPGA implementation
Procedia PDF Downloads 1227759 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures
Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi
Abstract:
Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation
Procedia PDF Downloads 260