Search results for: database annotation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1716

Search results for: database annotation

786 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
785 Energy Consumption and Economic Growth: Testimony of Selected Sub-Saharan Africa Countries

Authors: Alfred Quarcoo

Abstract:

The main purpose of this paper is to examine the causal relationship between energy consumption and economic growth in Sub-Saharan Africa using panel data techniques. An annual data on energy consumption and Economic Growth (proxied by real gross domestic product per capita) spanning from 1990 to 2016 from the World bank index database was used. The results of the Augmented Dickey–Fuller unit root test shows that the series for all countries are not stationary at levels. However, the log of economic growth in Benin and Congo become stationary after taking the differences of the data, and log of energy consumption become stationary for all countries and Log of economic growth in Kenya and Zimbabwe were found to be stationary after taking the second differences of the panel series. The findings of the Johansen cointegration test demonstrate that the variables Log of Energy Consumption and Log of economic growth are not co-integrated for the cases of Kenya and Zimbabwe, so no long-run relationship between the variables were established in any country. The Granger causality test indicates that there is a unidirectional causality running from energy use to economic growth in Kenya and no causal linkage between Energy consumption and economic growth in Benin, Congo and Zimbabwe.

Keywords: Cointegration, Granger Causality, Sub-Sahara Africa, World Bank Development Indicators

Procedia PDF Downloads 52
784 Optimizing SCADA/RTU Control System Alarms for Gas Wells

Authors: Mohammed Ali Faqeeh

Abstract:

SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages.

Keywords: SCADA, RTU Communication, alarm management system, SCADA alarms, Modbus, DNP protocol

Procedia PDF Downloads 166
783 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
782 Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet

Authors: Michael K. Adu, Boniface K. Alese, Olumide S. Ogunnusi

Abstract:

This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer’s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent’s application. Downloading software contents from developer’s database as in the traditional method requires a continuously open connection between the client and the developer’s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent.

Keywords: software products, software developer, internet, activation code, mobile agent

Procedia PDF Downloads 311
781 Semiautomatic Calculation of Ejection Fraction Using Echocardiographic Image Processing

Authors: Diana Pombo, Maria Loaiza, Mauricio Quijano, Alberto Cadena, Juan Pablo Tello

Abstract:

In this paper, we present a semi-automatic tool for calculating ejection fraction from an echocardiographic video signal which is derived from a database in DICOM format, of Clinica de la Costa - Barranquilla. Described in this paper are each of the steps and methods used to find the respective calculation that includes acquisition and formation of the test samples, processing and finally the calculation of the parameters to obtain the ejection fraction. Two imaging segmentation methods were compared following a methodological framework that is similar only in the initial stages of processing (process of filtering and image enhancement) and differ in the end when algorithms are implemented (Active Contour and Region Growing Algorithms). The results were compared with the measurements obtained by two different medical specialists in cardiology who calculated the ejection fraction of the study samples using the traditional method, which consists of drawing the region of interest directly from the computer using echocardiography equipment and a simple equation to calculate the desired value. The results showed that if the quality of video samples are good (i.e., after the pre-processing there is evidence of an improvement in the contrast), the values provided by the tool are substantially close to those reported by physicians; also the correlation between physicians does not vary significantly.

Keywords: echocardiography, DICOM, processing, segmentation, EDV, ESV, ejection fraction

Procedia PDF Downloads 426
780 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method

Authors: Marzieh Jafarzadeh, Fatemeh Rezaee

Abstract:

Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.

Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow

Procedia PDF Downloads 213
779 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 446
778 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
777 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 19
776 English Vowel Duration Affected by Voicing Contrast: A Cross Linguistic Examination of L2 English Production and Perception by Asian Learners of English

Authors: Nguyen Van Anh Le, Mafuyu Kitahara

Abstract:

In several languages, it is widely acknowledged that vowels are longer before voiced consonants than before voiceless ones such as English. However, in Mandarin Chinese, Vietnamese, Japanese, and Korean, the distribution of voiced-voiceless stop contrasts and long-short vowel differences are vastly different from English. The purpose of this study is to determine whether these targeted learners' L2 English production and perception change in terms of vowel duration as a function of stop voicing. The production measurements in the database of Asian learners revealed a distinct effect than the one observed in native speakers. There was no evident vowel lengthening patterns. The results of the perceptual experiment with 24 participants indicated that individuals tended to prefer voiceless stops when preceding vowels were shortened, but there was no statistically significant difference between intermediate, upper-intermediate, and advanced-level learners. However, learners demonstrated distinct perceptual patterns for various vowels and stops. The findings have valuable implications for L2 English speech acquisition. Keywords: voiced/voiceless stops, preceding vowel duration, voiced/voiceless perception, L2 English, L1 Mandarin Chinese, L1 Vietnamese, L1 Japanese, L1 Korean

Keywords: voiced/voiceless stops, preceding vowel duration, voiced/voiceless perception, L2 english

Procedia PDF Downloads 103
775 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 280
774 Producing Outdoor Design Conditions based on the Dependency between Meteorological Elements: Copula Approach

Authors: Zhichao Jiao, Craig Farnham, Jihui Yuan, Kazuo Emura

Abstract:

It is common to use the outdoor design weather data to select the air-conditioning capacity in the building design stage. The outdoor design weather data are usually comprised of multiple meteorological elements for a 24-hour period separately, but the dependency between the elements is not well considered, which may cause an overestimation of selecting air-conditioning capacity. Considering the dependency between the air temperature and global solar radiation, we used the copula approach to model the joint distributions of those two weather elements and suggest a new method of selecting more credible outdoor design conditions based on the specific simultaneous occurrence probability of air temperature and global solar radiation. In this paper, the 10-year period hourly weather data from 2001 to 2010 in Osaka, Japan, was used to analyze the dependency structure and joint distribution, the result shows that the Joe-Frank copula fit for almost all hourly data. According to calculating the simultaneous occurrence probability and the common exceeding probability of air temperature and global solar radiation, the results have shown that the maximum difference in design air temperature and global solar radiation of the day is about 2 degrees Celsius and 30W/m2, respectively.

Keywords: energy conservation, design weather database, HVAC, copula approach

Procedia PDF Downloads 267
773 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users was in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively

Keywords: timetable, schedule, management system, online

Procedia PDF Downloads 237
772 Nuclear Terrorism Decision Making: A Comparative Study of South Asian Nuclear Weapons States

Authors: Muhammad Jawad Hashmi

Abstract:

The idea of nuclear terrorism is as old as nuclear weapons but the global concerns of likelihood of nuclear terrorism are uncertain. Post 9/11 trends manifest that terrorists are believers of massive causalities. Innovation in terrorist’s tactics, sophisticated weaponry, vulnerability, theft and smuggling of nuclear/radiological material, connections between terrorists, black market and rough regimes are signaling seriousness of upcoming challenges as well as global trends of “terror-transnationalism.” Furthermore, the International-Atomic-Energy-Agency’s database recorded 2734 incidents regarding misuse, unauthorized possession, trafficking of nuclear material etc. Since, this data also includes incidents from south Asia, so, there is every possibility to claim that such illicit activities may increase in future, mainly due to expansion of nuclear industry in South Asia. Moreover, due to such mishaps the region is vulnerable to threats of nuclear terrorism. This is also a reason that the region is in limelight along with issues such as rapidly growing nuclear arsenals, nuclear safety and security, terrorism and political instability. With this backdrop, this study is aimed to investigate the prevailing threats and challenges in South Asia vis a vis nuclear safety and security. A comparative analysis of the overall capabilities would be done to identify the areas of cooperation to eliminate the probability of nuclear/radiological terrorism in the region.

Keywords: nuclear terrorism, safety, security, South Asia, india, Pakistan

Procedia PDF Downloads 356
771 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 414
770 Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management

Authors: Clara Inés Pardo Martínez

Abstract:

In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city.

Keywords: Bogotá, recycling, solid waste management, SWOT analysis

Procedia PDF Downloads 403
769 Frequency of Nosocomial Infections in a Tertiary Hospital in Isfahan, Iran

Authors: Zahra Tolou-Ghamari

Abstract:

Objective: Health care associated with multiresistant pathogens is rising globally. It is well known that nosocomial infections increase hospital stay, morbidity, mortality, and disability. Therefore, the aim of this study was to define the occurrence of nosocomial infections in a tertiary hospital in Isfahan/Iran. Materials and Methods: The data were extracted from the official database of hospital nosocomial infections records that included 9152 vertical rows. For each patient, the reported infections were coded by number as UTI-SUTI; Code 55, VAE-PVAP; Code 56, BSI-LCBI Code 19, SSI-DIP; Code 14, and so on. For continuous variables, mean ± standard deviation and for categorical variables, the frequency was used. Results: The study population was 5542 patients, comprised of males (n=3282) and females (n=2260). With a minimum of 15 and a maximum of 99, the mean age in 5313 patients was 58.5 ± 19.1 years old. The highest reported nosocomial infections (n= 77%) were associated with the ages 30-80 years old. Sites of nosocomial infections in 87% were as: VAE-PVAP; 27.3%, VAE-IVAC; 7.7, UTI-SUTI; 29.5%, BSI-LCBI; 12.9%, SSI-DIP; 9.5% and other individual infection (13%) with the main pathogens klebsiella pneumonia, acinetobacter baumannii and staphylococcus. Conclusions: For an efficient surveillance system, adopting pharmacotherapy used antibiotics in terms of monotherapy or polypharmacy control policy, in addition to advanced infection control programs at regional and national levels in Iran recommended.

Keywords: infection, nosocomial, ventilator, blood stream, Isfahan, Iran

Procedia PDF Downloads 78
768 The Effect of Public Debt on the Economic Growth and Development in Nigeria

Authors: Uzoma Emmanuel Igboji

Abstract:

This paper examines the influence of public debts (external and internal) on economic growth and development in Nigeria from (1980-2015). The study uses aggregate GDP as a proxy for economic growth, per capital income as a proxy for standard of living and Government expenditure on health as a proxy for human capital development, while Foreign Direct Investment, Unemployment rate, and Oil revenue were used as control variables. The study made use of ex-post facto research design with the data extracted from the Central Bank of Nigeria (CBN) Statistical Bulletin and the World Bank database. It adopted a multiple regression analysis of the ordinary least square (OLS) method with the help of E-View version 3.0. The results revealed that external debt has a negative and insignificant effect on GDP, per capital income and human capital development. The study concluded that external debts were being channeled to meet the recurrent expenditures of the nation’s economy at the expense of productive investment that could stimulate growth and poverty alleviation. It, however, recommended that government should ensure that the bulk of the total borrowings are mostly sourced from within the domestic economy so that the repayment of the principal and interest will serve as a crowd in-effect rather that crowd out-effect which in turn further accelerates the country’s economic growth and development.

Keywords: economic growth, external debt, internal debt, Nigeria

Procedia PDF Downloads 251
767 Juvenile Justice in Maryland: The Evidence Based Approach to Youth with History of Victimization and Trauma

Authors: Gabriela Wasileski, Debra L. Stanley

Abstract:

Maryland efforts to decrease the juvenile criminality and recidivism shifts towards evidence based sentencing. While in theory the evidence based sentencing has an impact on the reduction of juvenile delinquency and drug abuse; the assessment of juveniles’ risk and needs usually lacks crucial information about juvenile’s prior victimization. The Maryland Comprehensive Assessment and Service Planning (MCASP) Initiative is the primary tool for developing and delivering a treatment service plan for juveniles at risk. Even though it consists of evidence-based screening and assessment instruments very little is currently known regarding the effectiveness and the impact of the assessment in general. In keeping with Maryland’s priority to develop successful evidence-based recidivism reduction programs, this study examined results of assessments based on MCASP using a representative sample of the juveniles at risk and their assessment results. Specifically, it examined: (1) the results of the assessments in an electronic database (2) areas of need that are more frequent among delinquent youth in a system/agency, (3) the overall progress of youth in an agency’s care (4) the impact of child victimization and trauma experiences reported in the assessment. The project will identify challenges regarding the use of MCASP in Maryland, and will provide a knowledge base to support future research and practices.

Keywords: Juvenile Justice, assessment of risk and need, victimization and crime, recidivism

Procedia PDF Downloads 318
766 Turbulent Channel Flow Synthesis using Generative Adversarial Networks

Authors: John M. Lyne, K. Andrea Scott

Abstract:

In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.

Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network

Procedia PDF Downloads 206
765 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 56
764 Taylor’s Law and Relationship between Life Expectancy at Birth and Variance in Age at Death in Period Life Table

Authors: David A. Swanson, Lucky M. Tedrow

Abstract:

Taylor’s Law is a widely observed empirical pattern that relates variances to means in sets of non-negative measurements via an approximate power function, which has found application to human mortality. This study adds to this research by showing that Taylor’s Law leads to a model that reasonably describes the relationship between life expectancy at birth (e0, which also is equal to mean age at death in a life table) and variance at age of death in seven World Bank regional life tables measured at two points in time, 1970 and 2000. Using as a benchmark a non-random sample of four Japanese female life tables covering the period from 1950 to 2004, the study finds that the simple linear model provides reasonably accurate estimates of variance in age at death in a life table from e0, where the latter range from 60.9 to 85.59 years. Employing 2017 life tables from the Human Mortality Database, the simple linear model is used to provide estimates of variance at age in death for six countries, three of which have high e0 values and three of which have lower e0 values. The paper provides a substantive interpretation of Taylor’s Law relative to e0 and concludes by arguing that reasonably accurate estimates of variance in age at death in a period life table can be calculated using this approach, which also can be used where e0 itself is estimated rather than generated through the construction of a life table, a useful feature of the model.

Keywords: empirical pattern, mean age at death in a life table, mean age of a stationary population, stationary population

Procedia PDF Downloads 330
763 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 222
762 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 121
761 Regional Competitiveness and Innovation in the Tourism Sector: A Systematic Review and Bibliometric Analysis

Authors: Sérgio J. Teixeira, João J. Ferreira

Abstract:

Tourism frequently gets identified as one of the sectors with the greatest potential for expansion on a global scale and hence conveying the importance of attempting to better understand the regional factors of competitiveness prevailing in this sector. This study’s objective essentially strives to provide a mapping of the scientific publications and the intellectual knowledge therein contained while conveying past research trends and identifying potential future lines of research in the fields of regional competitiveness and tourism innovation. This correspondingly deploys a systematic review of the literature in keeping with the bibliometric approach based upon VOSviewer software, with a particular focus on drafting maps for visualising the underlying intellectual structure. This type of analysis encapsulates the number of articles published and their annual number of citations for the period between 1900 and 2016 as registered by the Web of Science database. The results demonstrate how the intellectual structure on regional competitiveness divides essentially into three major categories: regional competitiveness, tourism innovation, and tourism clusters. Thus, the main contribution of this study arises out of identifying the main research trends in this field and the respective shortcomings and specific needs for future scientific research in the field of regional competitiveness and innovation in tourism.

Keywords: regional competitiveness, tourism cluster, bibliometric studies, tourism innovation, systematic review

Procedia PDF Downloads 234
760 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 248
759 Antibacterial Activity of Salvadora persica Extracts against Oral Cavity Bacteria

Authors: Sulaiman A. Alrumman, Abd El-Latif Hesham

Abstract:

Despite medical progress worldwide, dental caries are still widespread. Miswak is derived from the plant arak (Salvadora persica). It is used by Muslim people as a natural product for the cleansing of teeth, to ensure oral and dental hygiene. This study was designed to evaluate the antimicrobial effects of ethanol, methanol, and ethanol/methanol extracts of miswak against three bacterial pathogens of the oral cavity. The pathogens were isolated from the oral cavity of volunteers/patients and were identified on the basis of 16S rRNA gene amplification data. Sequence comparisons were made with 16S rRNA gene sequences available in the GenBank database. The results of sequence alignment and phylogenetic analysis identified the three pathogens as being Staphylococcus aureus strain KKU-020, Enterococcus faecalis strain KKU-021 and Klebsiella pneumoniae strain KKU-022. All miswak extracts showed powerful antimicrobial activity against the three pathogens. The maximum zone of inhibition (40.67±0.88 mm) was observed against E. faecalis with ethanolic extracts whilst methanolic extracts showed the minimum zone of inhibition (10.33±0.88 mm) against K. pneumonia KKU-022. Based on the significant effects of the miswak extracts against the oral cavity pathogens in our study, we recommend that miswak is to be used as a dental hygiene method to prevent tooth caries.

Keywords: antibacterial, miswak, Salvadora persica, oral cavity pathogens

Procedia PDF Downloads 294
758 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam

Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen

Abstract:

In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.

Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks

Procedia PDF Downloads 210
757 E-Vet Smart Rapid System: Detection of Farm Disease Based on Expert System as Supporting to Epidemic Disesase Control

Authors: Malik Abdul Jabbar Zen, Wiwik Misaco Yuniarti, Azisya Amalia Karimasari, Novita Priandini

Abstract:

Zoonos is as an infectiontransmitted froma nimals to human sand vice versa currently having increased in the last 20 years. The experts/scientists predict that zoonosis will be a threat to the community in the future since it leads on 70% emerging infectious diseases (EID) and the high mortality of 50%-90%. The zoonosis’ spread from animal to human is caused by contaminated food known as foodborne disease. One World One Health, as the conceptual prevention toward zoonosis, requires the crossed disciplines cooperation to accelerate and streamlinethe handling ofanimal-based disease. E-Vet Smart Rapid System is an integrated innovation in the veterinary expertise application is able to facilitate the prevention, treatment, and educationagainst pandemic diseases and zoonosis. This system is constructed by Decision Support System (DSS) method provides a database of knowledge that is expected to facilitate the identification of disease rapidly, precisely, and accurately as well as to identify the deduction. The testingis conducted through a black box test case and questionnaire (N=30) by validity and reliability approach. Based on the black box test case reveals that E-Vet Rapid System is able to deliver the results in accordance with system design, and questionnaire shows that this system is valid (r > 0.361) and has a reliability (α > 0.3610).

Keywords: diagnosis, disease, expert systems, livestock, zoonosis

Procedia PDF Downloads 455