Search results for: Thermal Properties
1799 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction
Authors: Huashan Tai, Chien-Hui Lung
Abstract:
Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.Keywords: biomass energy, orange, torrefaction
Procedia PDF Downloads 2881798 Fractal Nature of Granular Mixtures of Different Concretes Formulated with Different Methods of Formulation
Authors: Fatima Achouri, Kaddour Chouicha, Abdelwahab Khatir
Abstract:
It is clear that concrete of quality must be made with selected materials chosen in optimum proportions that remain after implementation, a minimum of voids in the material produced. The different methods of formulations what we use, are based for the most part on a granular curve which describes an ‘optimal granularity’. Many authors have engaged in fundamental research on granular arrangements. A comparison of mathematical models reproducing these granular arrangements with experimental measurements of compactness have to verify that the minimum porosity P according to the following extent granular exactly a power law. So the best compactness in the finite medium are obtained with power laws, such as Furnas, Fuller or Talbot, each preferring a particular setting between 0.20 and 0.50. These considerations converge on the assumption that the optimal granularity Caquot approximates by a power law. By analogy, it can then be analyzed as a granular structure of fractal-type since the properties that characterize the internal similarity fractal objects are reflected also by a power law. Optimized mixtures may be described as a series of installments falling granular stuff to better the tank on a regular hierarchical distribution which would give at different scales, by cascading effects, the same structure to the mix. Likely this model may be appropriate for the entire extent of the size distribution of the components, since the cement particles (and silica fume) correctly deflocculated, micrometric dimensions, to chippings sometimes several tens of millimeters. As part of this research, the aim is to give an illustration of the application of fractal analysis to characterize the granular concrete mixtures optimized for a so-called fractal dimension where different concretes were studying that we proved a fractal structure of their granular mixtures regardless of the method of formulation or the type of concrete.Keywords: concrete formulation, fractal character, granular packing, method of formulation
Procedia PDF Downloads 2581797 Precoding-Assisted Frequency Division Multiple Access Transmission Scheme: A Cyclic Prefixes- Available Modulation-Based Filter Bank Multi-Carrier Technique
Authors: Ying Wang, Jianhong Xiang, Yu Zhong
Abstract:
The offset Quadrature Amplitude Modulation-based Filter Bank Multi-Carrier (FBMC) system provides superior spectral properties over Orthogonal Frequency Division Multiplexing. However, seriously affected by imaginary interference, its performances are hampered in many areas. In this paper, we propose a Precoding-Assisted Frequency Division Multiple Access (PA-FDMA) modulation scheme. By spreading FBMC symbols into the frequency domain and transmitting them with a precoding matrix, the impact of imaginary interference can be eliminated. Specifically, we first generate the coding pre-solution matrix with a nonuniform Fast Fourier Transform and pick the best columns by introducing auxiliary factors. Secondly, according to the column indexes, we obtain the precoding matrix for one symbol and impose scaling factors to ensure that the power is approximately constant throughout the transmission time. Finally, we map the precoding matrix of one symbol to multiple symbols and transmit multiple data frames, thus achieving frequency-division multiple access. Additionally, observing the interference between adjacent frames, we mitigate them by adding frequency Cyclic Prefixes (CP) and evaluating them with a signal-to-interference ratio. Note that PA-FDMA can be considered a CP-available FBMC technique because the underlying strategy is FBMC. Simulation results show that the proposed scheme has better performance compared to Single Carrier Frequency Division Multiple Access (SC-FDMA), etc.Keywords: PA-FDMA, SC-FDMA, FBMC, non-uniform fast fourier transform
Procedia PDF Downloads 621796 The Weavability of Waste Plants and Their Application in Fashion and Textile Design
Authors: Jichi Wu
Abstract:
The dwindling of resources requires a more sustainable design. New technology could bring new materials and processing techniques to the fashion industry and push it to a more sustainable future. Thus this paper explores cutting-edge researches on the life-cycle of closed-loop products and aims to find innovative ways to recycle and upcycle. For such a goal, the author investigated how low utilization plants and leftover fiber could be turned into ecological textiles in fashion. Through examining the physical and chemical properties (cellulose content/ fiber form) of ecological textiles to explore their wearability, this paper analyzed the prospect of bio-fabrics (weavable plants) in body-oriented fashion design and their potential in sustainable fashion and textile design. By extracting cellulose from 9 different types or sections of plants, the author intends to find an appropriate method (such as ion solution extraction) to mostly increase the weavability of plants, so raw materials could be more effectively changed into fabrics. All first-hand experiment data were carefully collected and then analyzed under the guidance of related theories. The result of the analysis was recorded in detail and presented in an understandable way. Various research methods are adopted through this project, including field trip and experiments to make comparisons and recycle materials. Cross-discipline cooperation is also conducted for related knowledge and theories. From this, experiment data will be collected, analyzed, and interpreted into a description and visualization results. Based on the above conclusions, it is possible to apply weavable plant fibres to develop new textile and fashion.Keywords: wearable bio-textile, sustainability, economy, ecology, technology, weavability, fashion design
Procedia PDF Downloads 1461795 Sociology of Muslim Endowments (Waqf) in Indian Kashmir: A Thesis Report
Authors: Adfer Rashid Shah
Abstract:
This study brings an introduction to the concept of waqf and explores the institution of waqf in the valley of Kashmir. Waqfs (pl. Auqaf) are Islamic endowments which can be movable or immovable property by Muslims for the welfare of the poor and the upkeep of the mosques, shrines, imambaras, madrassas, orphanages, etc,. The study was undertaken to venture into the sociology of these endowments and see the dynamics and role of waqf institution in the welfare of masses especially the deserving populace of the state of Jamu and Kashmir. The Jammu and Kashmir Muslim Waqf Board (JKMWB) is a significant religio-social organization for it possesses the largest assets after the State government and has an immense potential and ownership in terms of huge properties besides having rich and perpetual cash and kind donations, gold, silver and other commodities from the believers. It is certainly the perpetual wealth of faith. Therefore this study besides exploring the waqf institution, sociologically probed into the social, religious and philanthropic interventions of the Wakf Board besides studying the waqf of education (both religious and general). Also, a passing reference on personalized Auqaf, local waqf committees particularly shia Auqaf was also made. As far methodology employed, the study was purely a qualitative study using various sociological perspectives like functionalism, grounded theory besides a range other concepts to see the total role of waqf that it has been playing for the people’s welfare in the valley of Kashmir since its establishment in 1940’s. The overall discussion revealed the social dynamics of waqf institution in Kashmir valley is increasing its social interventions and making difference in the lives of many deserving Muslims within its capacities.Keywords: waqf, wakf board, religious waqf, philanthropy and education waqf, religious waqf, Kashmir
Procedia PDF Downloads 3181794 Energy Refurbishment of University Building in Cold Italian Climate: Energy Audit and Performance Optimization
Authors: Fabrizio Ascione, Martina Borrelli, Rosa Francesca De Masi, Silvia Ruggiero, Giuseppe Peter Vanoli
Abstract:
The Directive 2010/31/EC 'Directive of the European Parliament and of the Council of 19 may 2010 on the energy performance of buildings' moved the targets of the previous version toward more ambitious targets, for instance by establishing that, by 31 December 2020, all new buildings should demand nearly zero-energy. Moreover, the demonstrative role of public buildings is strongly affirmed so that also the target nearly zero-energy buildings is anticipated, in January 2019. On the other hand, given the very low turn-over rate of buildings (in Europe, it ranges between 1-3%/yearly), each policy that does not consider the renovation of the existing building stock cannot be effective in the short and medium periods. According to this proposal, the study provides a novel, holistic approach to design the refurbishment of educational buildings in colder cities of Mediterranean regions enabling stakeholders to understand the uncertainty to use numerical modelling and the real environmental and economic impacts of adopting some energy efficiency technologies. The case study is a university building of Molise region in the centre of Italy. The proposed approach is based on the application of the cost-optimal methodology as it is shown in the Delegate Regulation 244/2012 and Guidelines of the European Commission, for evaluating the cost-optimal level of energy performance with a macroeconomic approach. This means that the refurbishment scenario should correspond to the configuration that leads to lowest global cost during the estimated economic life-cycle, taking into account not only the investment cost but also the operational costs, linked to energy consumption and polluting emissions. The definition of the reference building has been supported by various in-situ surveys, investigations, evaluations of the indoor comfort. Data collection can be divided into five categories: 1) geometrical features; 2) building envelope audit; 3) technical system and equipment characterization; 4) building use and thermal zones definition; 5) energy building data. For each category, the required measures have been indicated with some suggestions for the identifications of spatial distribution and timing of the measurements. With reference to the case study, the collected data, together with a comparison with energy bills, allowed a proper calibration of a numerical model suitable for the hourly energy simulation by means of EnergyPlus. Around 30 measures/packages of energy, efficiency measure has been taken into account both on the envelope than regarding plant systems. Starting from results, two-point will be examined exhaustively: (i) the importance to use validated models to simulate the present performance of building under investigation; (ii) the environmental benefits and the economic implications of a deep energy refurbishment of the educational building in cold climates.Keywords: energy simulation, modelling calibration, cost-optimal retrofit, university building
Procedia PDF Downloads 1771793 The Development of a Nanofiber Membrane for Outdoor and Activity Related Purposes
Authors: Roman Knizek, Denisa Knizkova
Abstract:
This paper describes the development of a nanofiber membrane for sport and outdoor use at the Technical University of Liberec (TUL) and the following cooperation with a private Czech company which launched this product onto the market. For making this membrane, Polyurethan was electrospun on the Nanospider spinning machine, and a wire string electrode was used. The created nanofiber membrane with a nanofiber diameter of 150 nm was subsequently hydrophobisied using a low vacuum plasma and Fluorocarbon monomer C6 type. After this hydrophobic treatment, the nanofiber membrane contact angle was higher than 125o, and its oleophobicity was 6. The last step was a lamination of this nanofiber membrane with a woven or knitted fabric to create a 3-layer laminate. Gravure printing technology and polyurethane hot-melt adhesive were used. The gravure roller has a mesh of 17. The resulting 3-layer laminate has a water vapor permeability Ret of 1.6 [Pa.m2.W-1] (– measured in compliance with ISO 11092), it is 100% windproof (– measured in compliance with ISO 9237), and the water column is above 10 000 mm (– measured in compliance with ISO 20811). This nanofiber membrane which was developed in the laboratories of the Technical University of Liberec was then produced industrially by a private company. A low vacuum plasma line and a lamination line were needed for industrial production, and the process had to be fine-tuned to achieve the same parameters as those achieved in the TUL laboratories. The result of this work is a newly developed nanofiber membrane which offers much better properties, especially water vapor permeability, than other competitive membranes. It is an example of product development and the consequent fine-tuning for industrial production; it is also an example of the cooperation between a Czech state university and a private company.Keywords: nanofiber membrane, start-up, state university, private company, product
Procedia PDF Downloads 1391792 Effect of UV-B Light Treatment on Nutraceutical Potential of an Indigenous Mushroom Calocybe Indica
Authors: Himanshi Rathore, Shalinee Prasad, Satyawati Sharma, Ajay Singh Yadav
Abstract:
Medicinal mushrooms are acceptable all over the world not only because they have a unique flavour and texture but also due to the presence of great nutritional, nutraceutical and functional properties. High content of physiologically active substances like ergosterol, vitamin D, phenolic compounds, triterpenoids and steroids make these medicinal mushrooms a key source of nutraceuticals. Calocybe indica is a popular medicinal mushroom of India which is known to possess high amount of secondary metabolites including ergosterol (vitamin D2). The ergosterol gets converted to vitamin D in the presence of UV rays by a photochemical reaction. In lieu of the above facts the present study was undertaken to investigate the effect of UV-B light treatment on the vitamin D2 concentration, phenolic content and non volatile compounds in Calocybe indica. For this study, UV-B light source of intensity 5.3w/m2 was used to expose mushrooms for the time period of 0min, 30min, 60min and 90 min. It was found that the vitamin D2 concentration increased with the time duration i.e. 85±0.15 (0 min), 182±1.6 (30 min), 187±0.4 (60 min) and 182 ±0.8 (90 min) μg/g (dry weight). Highest concentration of vitamin D2 was found at 60 min duration. No discoloration in sliced mushrooms was observed during the exposure time. The results revealed that the exposure of mushrooms for a minimum of 30 min duration under UVB source can be a novel, convenient and cheapest way to increase the vitamin D content in mushrooms. This can be one of richest source to fulfil the recommended dietary allowances of vitamin D in our daily diets. The paper provides information on the enhancement of vitamin D content by UV lights and its effects on the non volatile (soluble sugars, free amino acids, 5′-nucleotides and phenolics) compounds will also be presented.Keywords: Calocybe indica, ergosterol, nutraceutical, phenolics
Procedia PDF Downloads 4681791 Pragmatism in Adaptive Reuse of Obsolete Industrial Land in China
Authors: Yong Li
Abstract:
Major cities in China has experienced a shift from production based on manufacturing industry to tertiary industry. How to make a better use of existing obsolete industrial land within urban cores has become a difficult problem for many policymakers. City governments regard old manufacturing industrial land as an important source of land to facilitate the development of the cities. Despite the announcement of policies in promoting that, a large portion of industrial land is still not properly redeveloped and most of them became obsolete. The study uses the project of Xinyi International Club as a case to examine the process of adaptive reuse of obsolete industrial space in Guangzhou, China. It attempts to elucidate the underlying mechanisms by identifying the key forces from both the government and the private sectors in influencing the process. The study found that market forces in transforming industrial space are exerting a strong impact on the existing land use planning system in Chinese cities. Pragmatic relaxation of the formal land use the regulatory framework and government supportive land-use intervention have also been crucial towards achieving successful implementation of the restructuring project and making it a showcase. This study questions whether these extraordinary measures, in particular, the use of temporary land use permit, are sustainable in facilitating the transformation of derelict industrial land, and in informing future industrial land-use restructuring policies. It concludes that, while the land use regulatory system in China is becoming increasingly dynamic and flexible, it remains ill-equipped in responding positively to the market, which is characterized by an increasing bargaining power of the private sector. A comprehensive appraisal of the overall impacts of these adaptive re-uses on society is wanting.Keywords: China, land alteration, obsolete industrial properties, urban planning
Procedia PDF Downloads 1461790 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules
Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas
Abstract:
Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling
Procedia PDF Downloads 2111789 Estimation Model for Concrete Slump Recovery by Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
This paper is aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice, in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%- 1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameter, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.Keywords: estimation model, second superplasticizer dosage, slump loss, slump recovery
Procedia PDF Downloads 1981788 The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study
Authors: Olaide O. Wahab, Lukman O. Olasunkanmi, Krishna K. Govender, Penny P. Govender
Abstract:
The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis.Keywords: aqueous solubility, azo disperse dye, degradation, disperse yellow 119, DMol³, reactivity
Procedia PDF Downloads 2031787 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement
Procedia PDF Downloads 3741786 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying
Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe
Abstract:
Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying
Procedia PDF Downloads 3341785 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures
Authors: Saeed Asiri, Yousuf Z. AL-Zahrani
Abstract:
A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method
Procedia PDF Downloads 2891784 Auto Surgical-Emissive Hand
Authors: Abhit Kumar
Abstract:
The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.Keywords: active robots, algorithm, emission, icy steam, TIC, laser
Procedia PDF Downloads 3561783 The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions
Authors: Yingwei Hou, Tao Liu, Yong Pang
Abstract:
The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency.Keywords: adhesion mechanism, mytilus edulis, mussel plaque, stereo digital image correlation
Procedia PDF Downloads 551782 Numerical Analysis Of Stainless Steel Beam To Column Joints With Bolted Flush End Plates
Authors: Takwiir Tahriim Khan, Tausif Khalid, Mohammad Redwan Ahamed, Md Soebur Rahman
Abstract:
The mutual connection in joints has a significant impact on the safe and cost-effective design of steel structures. Generally, the end plates are welded at the end of the beam and columns are bolted with the end plates. Thus, the moment will be transferred at the interface, which is a critical segment at the connection. 3-D Finite Element Models (FEM) has been developed using ABAQUS 2017 software to predict the yield capacity of the end plate connections. The parameters used in this study are the depth, width, and thickness of the end plate, dimensions of the bolt, sectional and material properties of beams and columns. The influence width, depth, and thicknesses of the end plate connection on yield capacity were investigated through parametric studies. The results showed that, for increasing plate thickness from 0.3 inch to 0.8 inch by an increment of 0.1 inch the yield capacity increased by 2.85% on average, for decreasing the end plate depth from 13 inch to 11 inch the yield capacity increased by 25.4 %, and for decreasing the end plate width from 6.5 inch to 5.75 inch the yield capacity increased by 35.4%. Variation in yield capacity was also found by changing the beam and column section. Besides, the numerical results showed a good agreement with published experimental literature with an average variation of less than 8.3 % in yield capacity. So the study allows for a more effective combination of beam, column, and end plate dimensions.Keywords: steel beam-column joints, finite element analysis, yield moment capacity, parametric study, ABAQUS, bolted joints, flush end plates, moment vs rotation curves
Procedia PDF Downloads 1061781 Development of a Geomechanical Risk Assessment Model for Underground Openings
Authors: Ali Mortazavi
Abstract:
The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering
Procedia PDF Downloads 1431780 Characterization of Oxide Layer Developed during Tribo-Interaction of Zircaloys
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. The present work simulates the contact between the calandria tube and the liquid injection shutdown system (LISS) nozzle. The Calandria tube is the outer covering of the pressure tube. Water flows inside the pressure tube through fuel claddings which produces vibration in the pressure tube along with vibration in the calandria tube. Fretting wear takes place at the point of contact between the calandria tube and the LISS nozzle. Fretting tests were performed under different conditions, such as; varying fretting duration (i.e., 1 to 4 hours), varying frequency (i.e., 5 to 6.5 Hz), and varying amplitude (100 to 400 µm). The formation of the oxide layer was observed during the fretting wear test; as a result, the worn product. The worn surfaces were analyzed with scanning electron microscopy (SEM) to analyze the wear mechanism involved in the fretting test, and Energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy were used to confirm the presence of an oxide layer on the worn surface. The oxide layer becomes more uniform with fretting duration in case of water submerged condition as compared to dry contact condition. The oxide layer is deeply removed at high amplitude due to the change of wear mechanism from adhesion to abrasion, as confirmed by the presence of micro ploughing and micro cutting. Low amplitude fretting favors the formation of the tribo-oxide layer.Keywords: tribo-oxide layer, wear, mechanically mixed layer, zircaloy
Procedia PDF Downloads 821779 Adobe Attenuation Coefficient Determination and Its Comparison with Other Shielding Materials for Energies Found in Common X-Rays Procedures
Authors: Camarena Rodriguez C. S., Portocarrero Bonifaz A., Palma Esparza R., Romero Carlos N. A.
Abstract:
Adobe is a construction material that fulfills the same function as a conventional brick. Widely used since ancient times, it is present in an appreciable percentage of buildings in Latin America. Adobe is a mixture of clay and sand. The interest in the study of the properties of this material arises due to its presence in the infrastructure of hospital´s radiological services, located in places with low economic resources, for the attenuation of radiation. Some materials such as lead and concrete are the most used for shielding and are widely studied in the literature. The present study will determine the mass attenuation coefficient of Adobe. The minimum required thicknesses for the primary and secondary barriers will be estimated for the shielding of radiological facilities where conventional and dental X-rays are performed. For the experimental procedure, an X-ray source emitted direct radiation towards different thicknesses of an Adobe barrier, and a detector was placed on the other side. For this purpose, an UNFORS Xi solid state detector was used, which collected information on the difference of radiation intensity. The initial parameters of the exposure started at 45 kV; and then the tube tension was varied in increments of 5 kV, reaching a maximum of 125 kV. The X-Ray tube was positioned at a distance of 0.5 m from the surface of the Adobe bricks, and the collimation of the radiation beam was set for an area of 0.15 m x 0.15 m. Finally, mathematical methods were applied to determine the mass attenuation coefficient for different energy ranges. In conclusion, the mass attenuation coefficient for Adobe was determined and the approximate thicknesses of the most common Adobe barriers in the hospital buildings were calculated for their later application in the radiological protection.Keywords: Adobe, attenuation coefficient, radiological protection, shielding, x-rays
Procedia PDF Downloads 1561778 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm
Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh
Abstract:
Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease
Procedia PDF Downloads 3411777 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients
Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul
Abstract:
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction
Procedia PDF Downloads 551776 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research
Authors: Chan Kwong Tung
Abstract:
Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching
Procedia PDF Downloads 3421775 Assessing Native Plant Presence and Maintenance Resource Allocations in New Zealand Backyards: A Nationwide Online Questionnaire
Authors: Megan Burfoot, Shanta Budha-Magar, Ali Ghaffarianhoseini, Amirhoseini Ghaffarianhoseini
Abstract:
Domestic backyards offer a valuable opportunity to contribute to biodiversity conservation efforts and promote ecological sustainability by cultivating native plant species. This study focuses on assessing the presence and maintenance of native plants in New Zealand's residential gardens through an online questionnaire. The survey was designed to collect data on the presence of native, exotic, and lawn plants in New Zealand backyards, alongside the allocation of maintenance resources for each category. Targeting a diverse range of residents and property sizes from different regions of New Zealand, this study sought to gain essential insights into practices related to native plant cultivation. Results reveal there is a collective inclination to reduce lawn coverage and introduce a higher abundance of native and exotic species. A thorough analysis of maintenance practices reveals a significant portion of respondents embracing environmentally friendly gardening, characterized by low-intensity fertilizer usage. Homeowners, especially those residing in their properties, demonstrate proactive engagement in backyard maintenance. Native plants were found to require more time, money and fertilizer for maintenance than those of exotic and lawn species. The insights gained from this study can guide targeted efforts to enhance urban biodiversity, making a significant contribution to the preservation and enrichment of New Zealand's unique biodiversity and ecological heritage in urban settings.Keywords: biodiversity, backyards, planting behaviour, backyard maintenance, native planting
Procedia PDF Downloads 681774 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming
Authors: A. Anbu Raj, V. Mugendiren
Abstract:
Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness
Procedia PDF Downloads 3361773 Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis
Authors: Turan Yaman, Zabit Yener, Ismail Celik
Abstract:
The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity.Keywords: aflatoxicosis, honey, histopathology, malondialdehyde, antioxidant, rat
Procedia PDF Downloads 3331772 Some Analytical Characteristics of Red Raspberry Jams
Authors: Cristina Damian, Eduard Malcek, Ana Leahu, Sorina Ropciuc, Andrei Lobiuc
Abstract:
Given the high rivalry nowadays, the food sector must offer the markets an attractive product, which at the same time has good quality and is safe from health aspects for the consumers. Known for their high content of antioxidant compounds, especially anthocyanins, which proven human health benefits, berries from the Rosaceae family plants have a significantly high level of phytochemicals: phenolic flavonoids, such as anthocyanins, ellagic acid (tannin), quercetin, gallic acid, cyanidin, pelargonidine, catechins, kaempferol and salicylic acid. Colour and bioactive compounds, such as vitamin C and anthocyanins, are important for the attractiveness of berries and their preserved products. The levels of bioactive compounds and sensory properties of the product as it reaches the consumer are dependent on raw material, i.e., berries used, processing, and storage conditions. In this study, four varieties of raspberry jam were analyzed, 3 of them purchased commercially; they were purchased at reasonable prices, precisely to include as large a sample of the consumer population as possible. The fourth assortment was made at home according to the traditional recipe without the addition of sweeteners or preservatives. As for the homemade red raspberry jam, it had a sugar concentration of 64.9%, being the most appreciated of all assortments. The homemade raspberry jam was most appreciated due to the taste and aroma of the product. The SCHWARTAU assortment was chosen in second place by the participants in the study (sensory analysis). The quality/price ratio is also valid this time, finding that a high-quality product will have a higher purchase price. Thus, the study had the role of presenting the preferences of the sample participating in the study by age categories.Keywords: red raspberry, jam, antioxidant, colour, sensory analysis
Procedia PDF Downloads 71771 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel
Authors: E. A. Krasikov
Abstract:
Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.Keywords: annealing, embrittlement, radiation, RPV steel
Procedia PDF Downloads 3391770 The Effect of Shredded Polyurethane Foams on Shear Modulus and Damping Ratio of Sand
Authors: Javad Saeidaskari, Nader Khalafian
Abstract:
The undesirable impact of vibrations induced by road and railway traffic is an important concern in modern world. These vibrations are transmitted through soil and cause disturbances to the residence area and high-tech production facilities alongside the train/traffic lines. In this paper for the first time a new method of soil improvement with vibration absorber material, is used to increase the damping factor, in other word, to reduce the ability of wave transitions in sand. In this study standard Firoozkooh No. 161 sand is used as the host sand. The semi rigid polyurethane (PU) foam which used in this research is one of the common materials for vibration absorbing purposes. Series of cyclic triaxial tests were conducted on remolded samples with identical relative density of 70% of maximum dry density for different volume percentage of shredded PU foam. The frequency of tests was 0.1 Htz with shear strain of 0.37% and 0.75% and also the effective confining pressures during the tests were 100 kPa and 350 kPa. In order to find out the best soil-PU foam mixture, different volume percent of PU foam varying from 10% to 30% were examined. The results show that adding PU foam up to 20%, as its optimum content, causes notable enhancement in damping ratio for both shear strains of 0.37% (52.19% and 69% increase for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (59.56% and 59.11% increase for effective confining pressures of 100 kPa and 350 kPa, respectively). The results related to shear modulus present significant reduction for both shear strains of 0.37% (82.22% and 56.03% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively) and 0.75% (89.32% and 39.9% decrease for effective confining pressures of 100 kPa and 350 kPa, respectively). In conclusion, shredded PU foams effectively affect the dynamic properties of sand and act as vibration absorber in soil.Keywords: polyurethane foam, sand, damping ratio, shear modulus
Procedia PDF Downloads 448