Search results for: mortar/ natural mineral fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7526

Search results for: mortar/ natural mineral fiber

6626 Synthesis of Cationic Bleach Activator for Textile Industry

Authors: Pelin Altay, Ahmed El-Shafei, Peter J. Hauser, Nevin Cigdem Gursoy

Abstract:

Exceedingly high temperatures are used (around 95 °C) to perform hydrogen peroxide bleaching of cotton fabrics in textile industry, which results in high energy consumption and also gives rise to significant fiber damage. Activated bleach systems have the potential to produce more efficient bleaching through increased oxidation rates with reducing energy cost, saving time and causing less fiber damage as compared to conventional hot peroxide bleaching. In this study, a cationic bleach activator was synthesized using caprolactam as a leaving group and triethylamine as a cationic group to establish an activated peroxide system for low temperature bleaching. Cationic bleach activator was characterized by FTIR, 1H NMR and mass spectrometry. The bleaching performance of the prototype cationic bleach activator was evaluated and optimizing the bleach recipe was performed.

Keywords: bleach activator, cotton bleaching, hydrogen peroxide bleaching, low temperature bleaching

Procedia PDF Downloads 247
6625 Proposal for Sustainable Construction of a New College Hostel Building

Authors: Reshma Raskar-Phule, Abhay Shinde, Manesh Konkani, Rohit Nighot, Shrirang Mahajan, Viraj Thorat

Abstract:

Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC.

Keywords: sustainable development, construction materials, IGBC, hostel building

Procedia PDF Downloads 96
6624 Quality Characteristics of Cured Dried Camel Meat Formulated with Different Medicinal Plants as Natural Preservatives

Authors: H. S. Aljabeili, E. A. Abd El-Hady, M. M. Abd El-Razik, M. Abd Elgadir

Abstract:

The aim of the study is determining the quality characteristics of produced curing and dried camel meat contained some medicinal plants of thyme, rosemary, clove and ginger as natural preservatives. Camel meat samples were sliced and divided into five batches, one batch recorded as control sample was treated by the curing mixture (2.5%) contained the following ingredients: black pepper 1 gm, cumin 0.4 gm, spices mixture 0.5 gm, dried onion 3 gm, dried garlic 0.5 gm and salt 2 gm. To evaluate the effect of different natural preservatives sources of thyme, rosemary, clove and ginger, 3.0% of the aforementioned natural preservatives was mixed with the aforementioned curing mixture and used for curing the four batches of sliced camel meat. After curing process, cured sliced camel meat (control and treated with the natural preservatives) were conducting to drying process at 35 ± 3 °C for 36 h in a drying cabinet. The quality characteristics of prepared dried camel meat were evaluated such as chemical composition, microbiological characteristics and sensory characteristics. Based on the microbiological and sensory characteristics, it could be suggested that the selected medicinal plants specially thyme and rosemary could be used as natural preservatives for preparing semi dry camel meat without negative effects.

Keywords: curing, dried camel meat, medicinal plants, natural preservatives, quality characteristics

Procedia PDF Downloads 208
6623 In Vitro Assessment of True Digestibility and Rumen Parameters of Forage-Based Sheep Diet, Supplemented with Dietary Fossil Shell Flour

Authors: Olusegun O. Ikusika, Conference T. Mpendulo

Abstract:

The abundance of fossil shell flour (FSF) globally has increased interest in its use as a natural feed additive in livestock diets. Therefore, identifying its optimum inclusion levels in livestock production is essential for animal productivity. This study investigated the effects of various fossil shell flour (FSF) inclusion levels on in vitro digestibility, relative feed values, and rumen parameters of Dohne-Merino wethers. Twenty-four fistulated wethers with an average body weight of 20 ± 1•5 kg in a complete randomized design of four treatments having six wethers per treatment were used. They were fed a basal diet without fossil shell flour (control, 0%) or with the addition of 2% FSF (T2), 4% FSF(T3), and 6% FSF (T4) of diet DM for 35 days, excluding 14 days adaptation period. The results showed that increasing FSF levels had no effect on ruminal T0C or pH, but Ammonia-N increased (P<0.01) with increasing FSF. The total molar concentrations of volatile fatty acids (VFA) decreased (P<0.05) with increasing levels of FSF. Acetic: propionic ratio decreased except at the 4 % inclusion level. IVTDDM, IVTDNDF and IVTDADF decreased up till 4% FSF inclusion but tended to increase (P = 0.06) at 6% inclusion. Relative feed values of the diets tended to increase (P=0.07) by adding fossil shell flour. In conclusion, adding FSF to the diets of Dohne-Merino wether up to 6% FSF inclusion rates did not improve IVTDDM (In vitro true digestibility dry matter), IVTDNDF (In vitro true digestibility neutral detergent fiber), and IVTDADF (In vitro true digestibility acid detergent fiber). However, a small increment of rumen nitrogen with no adverse effects on the rumen parameters was observed. The relative feed value (RFV) moved the feed from good to premium when supplemented. Therefore, FSF supplementation could improve feed value and maintain a normal range of rumen parameters for the effective functionality of the rumen.

Keywords: fossil shell flour, rumen parameters, in vitro digestibility, feed quality, dohne-merino sheep

Procedia PDF Downloads 75
6622 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles

Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost

Abstract:

This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.

Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants

Procedia PDF Downloads 163
6621 Nutritional Evaluation and the Importance of Traditional Vegetables That Sustain the Indigenous People of Malaysia

Authors: Rachel Thomas Tharmabalan

Abstract:

The growing unease over the matter of food security in the world is the result of a maturing realization that the genetic base of most human caloric intake from plants is dangerously narrow. Malaysia’s tropical rainforests have the potential to contribute to diet diversification and provide a source of nutrient-rich food as the Orang Asli communities in Malaysia have relied almost entirely on the jungle for food, fodder, medicine and fuel antithetical to what is happening today. This segregation of the Orang Asli from traditional lands and resources leads to severe loss of knowledge of biodiversity. In order to preserve these wild edibles, four different types of vegetables that are frequently consumed by the Orang Asli which consists of Rebu, Meranti, Saya and Pama were selected. These vegetables were then analysed to determine its proximate and mineral content to help ascertain claims and reaffirm the impact it can play in ensuring food and nutrition security, in addition to combating chronic diseases. From the results obtained, the Meranti had the highest crude fiber, iron and calcium content. Other minerals such as potassium, magnesium and copper were also found in varying content. These wild edibles could also contribute to education and bring awareness to younger generations as well as urban populations to start consuming more of these in their daily life as it could prevent various chronic diseases in Malaysia.

Keywords: food and nutrition security, Orang Asli, underutilized plants, wild edible food systems

Procedia PDF Downloads 139
6620 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 98
6619 Impact of Urbanization on Natural Drainage Pattern in District of Larkana, Sindh Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi

Abstract:

During past few years, several floods have adversely affected the areas along lower Indus River. Besides other climate related anomalies, rapidly increasing urbanization and blockage of natural drains due to siltation or encroachments are two other critical causes that may be responsible for these disasters. Due to flat topography of river Indus plains and blockage of natural waterways, drainage of storm water takes time adversely affecting the crop health and soil properties of the area. Government of Sindh is taking a keen interest in revival of natural drainage network in the province and has initiated this work under Sindh Irrigation and Drainage Authority. In this paper, geospatial techniques are used to analyze landuse/land-cover changes of Larkana district over the past three decades (1980-present) and their impact on natural drainage system. Satellite derived Digital Elevation Model (DEM) and topographic sheets (recent and 1950) are used to delineate natural drainage pattern of the district. The urban landuse map developed in this study is further overlaid on drainage line layer to identify the critical areas where the natural floodwater flows are being inhibited by urbanization. Rainfall and flow data are utilized to identify areas of heavy flow, whereas, satellite data including Landsat 7 and Google Earth are used to map previous floods extent and landuse/cover of the study area. Alternatives to natural drainage systems are also suggested wherever possible. The output maps of natural drainage pattern can be used to develop a decision support system for urban planners, Sindh development authorities and flood mitigation and management agencies.

Keywords: geospatial techniques, satellite data, natural drainage, flood, urbanization

Procedia PDF Downloads 488
6618 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems

Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify

Abstract:

Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.

Keywords: natural gas, power recovery, reduction stations, turboexpander systems

Procedia PDF Downloads 301
6617 Morphology of Cartographic Words: A Perspective from Chinese Characters

Authors: Xinyu Gong, Zhilin Li, Xintao Liu

Abstract:

Maps are a means of communication. Cartographic language involves established theories of natural language for understanding maps. “Cartographic words’, or “map symbols”, are crucial elements of cartographic language. Personalized mapping is increasingly popular, with growing demands for customized map-making by the general public. Automated symbol-making and customization play a key role in personalized mapping. However, formal representations for the automated construction of map symbols are still lacking. In natural language, the process of word and sentence construction can be formalized. Through the analogy between natural language and graphical language, formal representations of natural language construction can be used as a reference for constructing cartographic language. We selected Chinese character structures (i.e., S

Keywords: personalized mapping, Chinese character, cartographic language, map symbols

Procedia PDF Downloads 154
6616 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 405
6615 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers

Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim

Abstract:

Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.

Keywords: columns, confinement, ductility, FRP, numerical

Procedia PDF Downloads 433
6614 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles

Authors: I. Graur, V. Bria, C. Muntenita

Abstract:

Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.

Keywords: epoxy, friction coefficient, organic powder, pine needles

Procedia PDF Downloads 156
6613 An Application of Self-Health Risk Assessment among Populations Living in The Vicinity of a Fiber-Cement Roofing Factory

Authors: Phayong Thepaksorn

Abstract:

The objective of this study was to assess whether living in proximity to a roofing fiber cement factory in southern Thailand was associated with physical, mental, social, and spiritual health domains measured in a self-reported health risk assessment (HRA) questionnaire. A cross-sectional study was conducted among community members divided into two groups: near population (living within 0-2 km of factory) and far population (living within 2-5 km of factory)(N=198). A greater proportion of those living far from the factory (65.34%) reported physical health problems than the near group (51.04 %)(p=0.032). This study has demonstrated that the near population group had higher proportion of participants with positive ratings on mental assessment (30.34%) and social health impacts (28.42%) than far population group (10.59% and 16.67 %, respectively) (p<0.001). The near population group (29.79%) had similar proportion of participants with positive ratings in spiritual health impacts compared with far population group (27.08%). Among females, but not males, this study demonstrated that a higher proportion of the near population had a positive summative score for the self-HRA, which included all four health domain, compared to the far population (p <0.001 for females; p=0.154 for males). In conclusion, this self-HRA of physical, mental, social, and spiritual health domains reflected the risk perceptions of populations living in the vicinity of the roofing fiber cement factory. This type of tool can bring attention to population concerns and complaints in the factory’s surrounding community. Our findings may contribute to future development of self-HRA for HIA development procedure in Thailand.

Keywords: cement dust, health impact assessment, risk assessment, walk-though survey

Procedia PDF Downloads 357
6612 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques

Authors: Javad Yarmahmoudi, Alireza Mirzaee

Abstract:

Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.

Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT

Procedia PDF Downloads 309
6611 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 329
6610 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 242
6609 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 179
6608 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 372
6607 Fabrication and Mechanical Characterization of Sugarcane Bagasse Fiber-Reinforced Polypropylene Based Composites: Effect of Gamma Radiation

Authors: Kamrun N. Keya, Nasrin A. Kona, Ruhul A. Khan

Abstract:

Sugarcane bagasse (SCB)-reinforced Polypropylene (PP) Based matrix composites (25-45 wt% fiber) were fabricated by a compression molding technique. The SCB surface was chemically modified using 5%-10% sodium hydroxide (NaOH), and after that, mechanical properties, water uptake, and soil degradation of the composites were investigated. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and elongation at break (Eb%) of the 30wt% composites were found to be 35.6 MPa, 10.2 GPa, 56 MPa, 5.6 GPa, and 11%, respectively. The SCB/PP based composites were treated with irradiated under gamma radiation (the source strength 50 kCi Cobalt-60) of various doses (2.5 kGy to 10 kGy). The effect of gamma radiation on the composites was also investigated, and it found that the effect of 5.0 kGy (i.e. units for radiation measurement is 'gray', kGy=kilogray ) gamma dose showed better mechanical properties than other doses. The results revealed that the combination of the chemical modification of the SCB fibers and irradiation of the composites were more effective in compatibility improvement than chemical modification alone. After flexural testing, fracture sides of the untreated and treated both composites were studied by scanning electron microscope (SEM). SEM results of the treated SCB/PP based composites showed better fiber-matrix adhesion than untreated SCB/PP based composites. However, it was found that the treated SCB/PP composite has better mechanical strength, durability, and more receptivity than untreated SCB/PP based composite.

Keywords: sugarcane bagasse (SCB), polypropylene (PP), mechanical properties, scanning electron microscope (SEM), gamma radiation, water uptake tests and soil degradation

Procedia PDF Downloads 123
6606 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 259
6605 Immunostimulant from Biodiversity to Enhance Shrimp Survival against Vibriosis

Authors: Frank Alexis, Jenny Antonia Rodriguez Leon, Cristobal Leonardo Dominguez Borbor, Mery Rosario Ramirez Munoz

Abstract:

The shrimp industry has increased in the last years to the point of becoming one of the most dynamic industries. However, the appearance of diseases that significantly affect the production of shrimps has been an obstacle for the shrimp industry. We hypothesized that natural fibers from biodiversity can stimulate the immune system to prevent shrimp diseases like vibriosis. In this project, we extracted the fibers from vegetal sources in Ecuador and characterized them using common techniques like XRD, SEM, and then we tested the effect of fibers as immunostimulants for shrimps in-vitro and in-vivo using small aquarium and large pools. Our results demonstrate that vegetal fibers can significantly increase the survival of shrimps. Moreover, the production of shrimps in a large pool was significantly increased. Lastly, the test of color and taste successfully surpass the control group of shrimps not treated with fiber food supplements.

Keywords: fibers, immunostimulant, shrimp, vibriosis

Procedia PDF Downloads 141
6604 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 62
6603 Skid-mounted Gathering System Hydrate Control And Process Simulation Optimization

Authors: Di Han, Lingfeng Li, Peixue Zhang, Yuzhuo Zhang

Abstract:

Since natural gas extracted from the wellhead of a gas well, after passing through the throttle valve, causes a rapid decrease in temperature along with a decrease in pressure, which creates conditions for hydrate generation. In order to solve the problem of hydrate generation in the process of wellhead gathering, effective measures should be taken to prevent hydrate generation. In this paper, we firstly introduce the principle of natural gas throttling temperature drop and the theoretical basis of hydrate inhibitor injection calculation, and then use HYSYS software to simulate and calculate the three processes and determine the key process parameters. The hydrate control process applicable to the skid design of natural gas wellhead gathering skids was determined by comparing the hydrate control effect, energy consumption of key equipment and process adaptability.

Keywords: natural gas, hydrate control, skid design, HYSYS

Procedia PDF Downloads 65
6602 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre

Authors: Ng Mei Han, Nu'man Abdul Hadi

Abstract:

Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.

Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre

Procedia PDF Downloads 68
6601 Comparison of the Effect of Feldspathic Porcelain and Zirconia on Natural Tooth Wear

Authors: Ammar Neshati, Elham Hamidi Shishavan

Abstract:

Background and Aim: Enamel wear is among the main disadvantages of ceramic restorations. Recently, use of full zirconia crowns without dental porcelain has been suggested. The aim of this study was to compare the effect of feldspathic porcelain and zirconia on the wear of natural teeth. Materials and Methods: In this experimental study, 22 zirconia specimens were fabricated; out of which, 11 specimens were polished and used as zirconia specimens while the remaining 11 were used to fabricate porcelain specimens. A total of 22 natural human teeth were also collected. The natural teeth were photographed by a stereomicroscope in a fixed position and the distance from the cusp tip to a reference point was measured. Next, 11 teeth opposed zirconia and the remaining 11 opposed porcelain specimens in a chewing simulator and subjected to 120,000 masticatory cycles. The teeth were photographed again and the greatest difference between the before and after values was recorded. Results: The mean (± standard deviation) wear rate was 153.8±95.68 and 306.3±127.74, in the zirconia and porcelain groups, respectively; and the two groups had a statistically significant difference in this respect (P=0.007). Conclusion: The mean wear was significantly lower in teeth opposing zirconia than in those opposing feldspathic porcelain.

Keywords: natural tooth wear, feldspathic porcelain, zirconia, effect

Procedia PDF Downloads 389
6600 Assessment of Al/Fe Humus, pH, and P Retention to Differentiate Andisols under Different Cultivation, Karanganyar, Central Java, Indonesia

Authors: Miseri Roeslan Afany, Nur Ainun Pulungan

Abstract:

The unique characteristics of Andisol differentiate them from other soils. These characteristics become a guideline in determining management and usage with regards to agriculture. Especially in the tropical area, Andisols may have fast mineral alteration due to intensive water movement in the soils. Four soil chemical tests were conducted for evaluating soils in the study area. Al/Fe humus, allophane, pH, and P retention were used to differentiate Andisols under different practices. Non-cultivation practice (e.g. natural forest) and cultivation practices (e.g. horticulture systems and intensive farming systems) are compared in this study. We applied Blackmore method for P retention analysis. The aims of this study are: (i) to analyze the specific behavior of Al/Fe humus, pH, and allophane towards P retention in order (ii) to evaluate the effect of cultivation practices on their behavior changes among Andisols, and (iii) to gain the sustainable agriculture through proposing an appropriate soil managements in the study area. 5 observation sites were selected, and 75 soil sampling were analyzed in this study. The results show that the cultivation decreases P retention in all sampling sites. There is a declining from ±90% to ±50% of P retention in the natural forest where shifts into cultivated land. The average of P retention under 15 years of cultivation down into 63%, whereas, the average of P retention more than 15 years of cultivation down into 54%. Many factors affect the retention of P in the soil such as: (1) type and amount of clay, (2) allophone and/or imogolit, (3) Al/Fe humus, (4) soil pH, (5) type and amount of organic material, (6) Exchangeable bases (Ca, Mg, Na, K), (7) forms and solubility of Al/Fe. To achieve the sustainable agriculture in the study area, conventional agriculture practices should be preserved and intensive fertilizing practices should be applied in order to increase the soil pH, to maintain the organic matter of andisols, to maintain microba activities, and to release Al/Fe humus complex, and thus increase available P in the soils.

Keywords: Andisols, cultivation, P retention, sustainable agriculture

Procedia PDF Downloads 263
6599 Investigating the Effect of Artificial Intelligence on the Improvement of Green Supply Chain in Industry

Authors: Sepinoud Hamedi

Abstract:

Over the past few decades, companies have appeared developing concerns in connection to the natural affect of their fabricating exercises. Green supply chain administration has been considered by the producers as a attainable choice to decrease the natural affect of operations whereas at the same time moving forward their operational execution. Contemporaneously the coming of digitalization and globalization within the supply chain space has driven to a developing acknowledgment of the importance of data preparing methodologies, such as enormous information analytics and fake insights innovations, in improving and optimizing supply chain execution. Also, supply chain collaboration in part intervenes the relationship between manufactured innovation and supply chain execution Ponders appear that the use of BDA-AI advances includes a significant impact on natural handle integration and green supply chain collaboration conjointly underlines that both natural handle integration and green supply chain collaboration have a critical affect on natural execution. Correspondingly savvy supply chain contributes to green execution through overseeing green connections and setting up green operations.

Keywords: green supply chain, artificial intelligence, manufacturers, technology, environmental

Procedia PDF Downloads 51
6598 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips

Authors: Wei Chen

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 62
6597 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching

Procedia PDF Downloads 275