Search results for: molecular descriptors
1316 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 2221315 Molecular Detection of Staphylococcus aureus in the Pork Chain Supply and the Potential Anti-Staphylococcal Activity of Natural Compounds
Authors: Valeria Velasco, Ana M. Bonilla, José L. Vergara, Alcides Lofa, Jorge Campos, Pedro Rojas-García
Abstract:
Staphylococcus aureus is both commensal bacterium and opportunistic pathogen that can cause different diseases in humans and can rapidly develop antimicrobial resistance. Since this bacterium has the ability to colonize the nares and skin of humans and animals, there is a risk of contamination of food in different steps of the food chain supply. Emerging strains have been detected in food-producing animals and meat, such as methicillin-resistant S. aureus (MRSA). The aim of this study was to determine the prevalence and oxacillin susceptibility of S. aureus in the pork chain supply in Chile and to suggest some natural antimicrobials for control. A total of 487 samples were collected from pigs (n=332), carcasses (n=85), and retail pork meat (n=70). Presumptive S. aureus colonies were isolated by selective enrichment and culture media. The confirmation was carried out by biochemical testing (Api® Staph) and molecular technique PCR (detection of nuc and mecA genes, associated with S. aureus and methicillin resistance, respectively). The oxacillin (β-lactam antibiotic that replaced methicillin) susceptibility was assessed by minimum inhibitory concentration (MIC) using the Epsilometer test (Etest). A preliminary assay was carried out to test thymol, carvacrol, oregano essential oil (Origanum vulgare L.), Maqui or Chilean wineberry extract (Aristotelia chilensis (Mol.) Stuntz) as anti-staphylococcal agents using the disc diffusion method at different concentrations. The overall prevalence of S. aureus in the pork chain supply reached 33.9%. A higher prevalence of S. aureus was determined in carcasses (56.5%) than in pigs (28.3%) and pork meat (32.9%) (P ≤ 0.05). The prevalence of S. aureus in pigs sampled at farms (40.6%) was higher than in pigs sampled at slaughterhouses (23.3%) (P ≤ 0.05). The contamination of no packaged meat with S. aureus (43.1%) was higher than in packaged meat (5.3%) (P ≤ 0.05). The mecA gene was not detected in S. aureus strains isolated in this study. Two S. aureus strains exhibited oxacillin resistance (MIC ≥ 4µg/mL). Anti-staphylococcal activity was detected in solutions of thymol, carvacrol, and oregano essential oil at all concentrations tested. No anti-staphylococcal activity was detected in Maqui extract. Finally, S. aureus is present in the pork chain supply in Chile. Although the mecA gene was not detected, oxacillin resistance was found in S. aureus and could be attributed to another resistance mechanism. Thymol, carvacrol, and oregano essential oil could be used as anti-staphylococcal agents at low concentrations. Research project Fondecyt No. 11140379.Keywords: antimicrobials, mecA gen, nuc gen, oxacillin susceptibility, pork meat
Procedia PDF Downloads 2271314 Bioconversion of Orange Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation
Authors: N. Hachemi, A. Nouani, A. Benchabane
Abstract:
The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. a polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa . Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.Keywords: bioconversion, orange wastes, optimization, pectinase
Procedia PDF Downloads 3801313 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex
Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda
Abstract:
Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis
Procedia PDF Downloads 1991312 Epidemiology, Clinical, Immune, and Molecular Profiles of Microsporidiosis and Cryptosporidiosis among HIV/AIDS patients
Authors: Roger WUMBA
Abstract:
The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV) symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients. In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women) with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl–Neelsen stainings, real-time polymerase chain reaction (PCR), immunofluorescence indirect monoclonal antibody, nested PCR-restriction fragment length polymorphism, and PCR amplification and sequencing. Odds ratio (OR) and 95% confidence intervals were used to quantify the risk. Of the 242 HIV patients, 7.8%, 0.4%, 5.4%, 0.4%, 2%, 10.6%, and 2.8% had Enterocytozoon bieneusi, Encephalitozoon intestinalis, Cryptosporidium spp., Isospora belli, pathogenic intestinal protozoa, nonpathogenic intestinal protozoa, and helminths, respectively. We found five genotypes of E. bieneusi: two older, NIA1 and D, and three new, KIN1, KIN2, and KIN3. Only 0.4% and 1.6% had Cryptosporidium parvum and Cryptosporidium hominis, respectively. Of the patients, 36.4%, 34.3%, 31%, and 39% had asthenia, diarrhea, a CD4 count of ,100 cells/mm³, and no antiretroviral therapy (ART), respectively. The majority of those with opportunistic intestinal parasites and C. hominis, and all with C. parvum and new E. bieneusi genotypes, had diarrhea, low CD4+ counts of ,100 cells/mm³, and no ART. There was a significant association between Entamoeba coli, Kaposi sarcoma, herpes zoster, chronic diarrhea, and asthenia, and the presence of 28 cases with opportunistic intestinal parasites. Rural areas, public toilets, and exposure to farm pigs were the univariate risk factors present in the 28 cases with opportunistic intestinal parasites. In logistic regression analysis, a CD4 count of ,100 cells/mm³ (OR = 4.60; 95% CI 1.70–12.20; P = 0.002), no ART (OR = 5.00; 95% CI 1.90–13.20; P , 0.001), and exposure to surface water (OR = 2.90; 95% CI 1.01–8.40; P = 0.048) were identified as the significant and independent determinants for the presence of opportunistic intestinal parasites. E. bieneusi and Cryptosporidium are becoming more prevalent in Kinshasa, Congo. Based on the findings, we recommend epidemiology surveillance and prevention by means of hygiene, the emphasis of sensitive PCR methods, and treating opportunistic intestinal parasites that may be acquired through fecal–oral transmission, surface water, normal immunity, rural area-based person–person and animal–human nfection, and transmission of HIV. Therapy, including ART and treatment with fumagillin, is needed.Keywords: diarrhea, enterocytozoon bieneusi, cryptosporidium hominis, cryptosporidium parvum, risk factors, africans
Procedia PDF Downloads 1241311 Cytotoxicological Evaluation of a Folate Receptor Targeting Drug Delivery System Based on Cyclodextrins
Authors: Caroline Mendes, Mary McNamara, Orla Howe
Abstract:
For chemotherapy, a drug delivery system should be able to specifically target cancer cells and deliver the therapeutic dose without affecting normal cells. Folate receptors (FR) can be considered key targets since they are commonly over-expressed in cancer cells and they are the molecular marker used in this study. Here, cyclodextrin (CD) has being studied as a vehicle for delivering the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within the CD cavity. In this study, β-CD has been modified using folic acid so as to specifically target the FR molecular marker. Thus, the system studied here for drug delivery consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 9.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 10.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 8.5 for A549 and 132.6 µM ± 12.1 and 288.1 µM ± 16.3 for BEAS-2B. These results demonstrate that MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug.Keywords: cyclodextrins, cancer treatment, drug delivery, folate receptors, reduced folate carriers
Procedia PDF Downloads 3001310 Hosoya Polynomials of Mycielskian Graphs
Authors: Sanju Vaidya, Aihua Li
Abstract:
Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry.Keywords: hosoya polynomial, mycielskian graph, graph vulnerability measure, topological index
Procedia PDF Downloads 691309 [Keynote Talk]: Ultrasound Assisted Synthesis of ZnO of Different Morphologies by Solvent Variation
Authors: Durata Haciu, Berti Manisa, Ozgur Birer
Abstract:
ZnO nanoparticles have been synthesized by ultrasonic irradiation from simple linear alcohols and water/ethanolic mixtures, at 50 oC. By changing the composition of the solvent, the shape could be altered. While no product was obtained from methanolic solutions, in ethanol, sheet like lamellar structures prevail.n-propanol and n-butanol resulted in needle like structures. The morphology of ZnO could be thus tailored in a simple way, by varying the solvent, under ultrasonic irradiation, in a relatively less time consuming method. Variation of the morphology and size of Zn also provides a means for modulating the band-gap. Although the chemical effects of ultrasound do not come from direct interaction with molecular species, the high energy derived from acoustic cavitation creates a unique interaction of energy and matter with great potential for synthesis.Keywords: ultrasound, ZnO, linear alcohols, morphology
Procedia PDF Downloads 2411308 Electrochemical Radiofrequency Scanning Tunneling Microscopy Measurements for Fingerprinting Single Electron Transfer Processes
Authors: Abhishek Kumar, Mohamed Awadein, Georg Gramse, Luyang Song, He Sun, Wolfgang Schofberger, Stefan Müllegger
Abstract:
Electron transfer is a crucial part of chemical reactions which drive everyday processes. With the help of an electro-chemical radio frequency scanning tunneling microscopy (EC-RF-STM) setup, we are observing single electron mediated oxidation-reduction processes in molecules like ferrocene and transition metal corroles. Combining the techniques of scanning microwave microscopy and cyclic voltammetry allows us to monitor such processes with attoampere sensitivity. A systematic study of such phenomena would be critical to understanding the nano-scale behavior of catalysts, molecular sensors, and batteries relevant to the development of novel material and energy applications.Keywords: radiofrequency, STM, cyclic voltammetry, ferrocene
Procedia PDF Downloads 4781307 Synthesis and Evaluation of Heterogeneous Nano-Catalyst: Cr Loaded in to MCM-41
Authors: A. Salemi Golezania, A. Sharifi Fateha
Abstract:
In this study a nano-composite catalyst was synthesized by incorporation of chromium into the framework of MCM-41 as a base catalyst. Mesoporous silica molecular sieves MCM-41 were synthesized under Hydrothermal Continues pH Adjusting Path Way. Then, MCM-41 was impregnated by chromium nitrate aqueous solution for several times under water aspiration. Raw powder was cured by heat treatment in vacuum furnace at 500°C. Phase formation, morphology and gas absorption properties of resulted materials were characterized by XRD, TEM and BET analysis, respectively. The results showed that high quality hexagonal meso structure as a matrix and Cr as a second phase has been formed with a narrow size pore diameter distribution and high surface area in Cr/MCM-41 nano-composite structure. The specific surface and total volume of porosity of the synthesized nanocomposite are obtained 931m^2/gr and 1.12 cm^3/gr, respectively.Keywords: nano-catalyst, MCM-41, Cr/MCM-41, Marine Science and Engineering
Procedia PDF Downloads 3851306 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules
Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid
Abstract:
Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.Keywords: biological systems, DNA multiplier, large storage, parallel processing
Procedia PDF Downloads 2121305 How Acupuncture Improve Migraine: A Literature Review
Authors: Hsiang-Chun Lai, Hsien-Yin Liao, Yi-Wen Lin
Abstract:
Migraine is a primary headache disorder which presented as recurrent and moderate to severe headaches and affects nearly fifteen percent of people’s daily life. In East Asia, acupuncture is a common treatment for migraine prevention. Acupuncture can modulate migraine through both peripheral and central mechanism and decrease the allodynia process. Molecular pathway suggests that acupuncture relief migraine by regulating neurotransmitters/neuromodulators. This process was also proven by neural imaging. Acupuncture decrease the headache frequency and intensity compared to routine care. We also review the most common chosen acupoints to treat migraine and its treatment protocol. As a result, we suggested that acupuncture can serve as an option to migraine treatment and prevention. However, more studies are needed to establish the mechanism and therapeutic roles of acupuncture in treating migraine.Keywords: acupuncture, allodynia, headache, migraine
Procedia PDF Downloads 2631304 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies
Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari
Abstract:
Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy
Procedia PDF Downloads 1721303 Exploratory Characterization of Antibacterial Efficacy of Synthesized Nanoparticles on Staphylococcus Isolates from Hospital Specimens in Saudi Arabia
Authors: Reham K. Sebaih, Afaf I. Shehata , Awatif A. Hindi, Tarek Gheith, Amal A. Hazzani Anas Al-Orjan
Abstract:
Staphylococci spp are ubiquitous gram-positive bacteria is often associated with infections, especially nosocomial infections, and antibiotic resistanceStudy pathogenic bacteria and its use as a tool in the technology of Nano biology and molecular genetics research of the latest research trends of modern characterization and definition of different multiresistant of bacteria including Staphylococci. The Staphylococci are widespread all over the world and particularly in Saudi Arabia The present work study was conducted to evaluate the effect of five different types of nanoparticles (biosynthesized zinc oxide, Spherical and rod of each silver and gold nanoparticles) and their antibacterial impact on the Staphylococcus species. Ninety-six isolates of Staphylococcus species. Staphylococcus aureus, Staphylococcus epidermidis, MRSA were collected from different sources during the period between March 2011G to June 2011G. All isolates were isolated from inpatients and outpatients departments at Royal Commission Hospital in Yanbu Industrial, Saudi Arabia. High percentage isolation from males(55%) than females (45%). Staphylococcus epidermidis from males was (47%), (28%), and(25%). For Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA. Isolates from females were Staphylococcus aureus with higher percent of (47%), (30%), and (23%) for MRSA, Staphylococcus epidermidis. Staphylococcus aureus from wound swab were the highest percent (51.42%) followed by vaginal swab (25.71%). Staphylococcus epidermidis were founded with higher percentage in blood (37.14%) and wound swab (34.21%) respectively related to other. The highest percentage of methicillin-resistant Staphylococcus aureus (MRSA)(80.77%) were isolated from wound swab, while those from nostrils were (19.23%). Staphylococcus species were isolates in highest percentage from hospital Emergency department with Staphylococcus aureus (59.37%), Methicillin-resistant Staphylococcus aureus (MRSA) (28.13%)and Staphylococcus epidermidis (12.5%) respectively. Evaluate the antibacterial property of Zinc oxide, Silver, and Gold nanoparticles as an alternative to conventional antibacterial agents Staphylococci isolates from hospital sources we screened them. Gold and Silver rods Nanoparticles to be sensitive to all isolates of Staphylococcus species. Zinc oxide Nanoparticles gave sensitivity impact range(52%) and (48%). The Gold and Silver spherical nanoparticles did not showed any effect on Staphylococci species. Zinc Oxide Nanoparticles gave bactericidal impact (25%) and bacteriostatic impact (75%) for of Staphylococci species. Detecting the association of nanoparticles with Staphylococci isolates imaging by scanning electron microscope (SEM) of some bacteriostatic isolates for Zinc Oxide nanoparticles on Staphylococcus aureus, Staphylococcus epidermidis and Methicillin resistant Staphylococcus aureus(MRSA), showed some Overlapping Bacterial cells with lower their number and appearing some appendages with deformities in external shape. Molecular analysis was applied by Multiplex polymerase chain reaction (PCR) used for the identification of genes within Staphylococcal pathogens. A multiplex polymerase chain reaction (PCR) method has been developed using six primer pairs to detect different genes using 50bp and 100bp DNA ladder marker. The range of Molecular gene typing ranging between 93 bp to 326 bp for Staphylococcus aureus and Methicillin resistant Staphylococcus aureus by TSST-1,mecA,femA and eta, while the bands border were from 546 bp to 682 bp for Staphylococcus epidermidis using icaAB and atlE. Sixteen isolation of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the femA gene at 132bp,this allowed the using of this gene as an internal positive control, fifteen isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for mecA gene at163bp.This gene was responsible for antibiotic resistant Methicillin, Two isolates of Staphylococcus aureus and Methicillin resistant Staphylococcus aureus were positive for the TSST-1 gene at326bp which is responsible for toxic shock syndrome in some Staphylococcus species, None were positive for eta gene at 102bpto that was responsible for Exfoliative toxins. Six isolates of Staphylococcus epidermidis were positive for atlE gene at 682 bp which is responsible for the initial adherence, three isolates of Staphylococcus epidermidis were positive for icaAB gene at 546bp that are responsible for mediates the formation of the biofilm. In conclusion, this study demonstrates the ability of the detection of the genes to discriminate between infecting Staphylococcus strains and considered biological tests, they may potentiate the clinical criteria used for the diagnosis of septicemia or catheter-related infections.Keywords: multiplex polymerase chain reaction, toxic shock syndrome, Staphylococcus aureus, nosocomial infections
Procedia PDF Downloads 3361302 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels
Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert
Abstract:
Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate
Procedia PDF Downloads 1781301 Ultrasonic Studies of Polyurea Elastomer Composites with Inorganic Nanoparticles
Authors: V. Samulionis, J. Banys, A. Sánchez-Ferrer
Abstract:
Inorganic nanoparticles are used for fabrication of various composites based on polymer materials because they exhibit a good homogeneity and solubility of the composite material. Multifunctional materials based on composites of a polymer containing inorganic nanotubes are expected to have a great impact on industrial applications in the future. An emerging family of such composites are polyurea elastomers with inorganic MoS2 nanotubes or MoSI nanowires. Polyurea elastomers are a new kind of materials with higher performance than polyurethanes. The improvement of mechanical, chemical and thermal properties is due to the presence of hydrogen bonds between the urea motives which can be erased at high temperature softening the elastomeric network. Such materials are the combination of amorphous polymers above glass transition and crosslinkers which keep the chains into a single macromolecule. Polyurea exhibits a phase separated structure with rigid urea domains (hard domains) embedded in a matrix of flexible polymer chains (soft domains). The elastic properties of polyurea can be tuned over a broad range by varying the molecular weight of the components, the relative amount of hard and soft domains, and concentration of nanoparticles. Ultrasonic methods as non-destructive techniques can be used for elastomer composites characterization. In this manner, we have studied the temperature dependencies of the longitudinal ultrasonic velocity and ultrasonic attenuation of these new polyurea elastomers and composites with inorganic nanoparticles. It was shown that in these polyurea elastomers large ultrasonic attenuation peak and corresponding velocity dispersion exists at 10 MHz frequency below room temperature and this behaviour is related to glass transition Tg of the soft segments in the polymer matrix. The relaxation parameters and Tg depend on the segmental molecular weight of the polymer chains between crosslinking points, the nature of the crosslinkers in the network and content of MoS2 nanotubes or MoSI nanowires. The increase of ultrasonic velocity in composites modified by nanoparticles has been observed, showing the reinforcement of the elastomer. In semicrystalline polyurea elastomer matrices, above glass transition, the first order phase transition from quasi-crystalline to the amorphous state has been observed. In this case, the sharp ultrasonic velocity and attenuation anomalies were observed near the transition temperature TC. Ultrasonic attenuation maximum related to glass transition was reduced in quasicrystalline polyureas indicating less influence of soft domains below TC. The first order phase transition in semicrystalline polyurea elastomer samples has large temperature hysteresis (> 10 K). The impact of inorganic MoS2 nanotubes resulted in the decrease of the first order phase transition temperature in semicrystalline composites.Keywords: inorganic nanotubes, polyurea elastomer composites, ultrasonic velocity, ultrasonic attenuation
Procedia PDF Downloads 2981300 Degradation of Poly -β- Hydroxybutyrate by Trichoderma asperellum
Authors: Nuha Mansour Alhazmi
Abstract:
Replacement of petro-based plastics by a biodegradable plastic are vastly growing process. Poly-β-hydroxybutyrate (PHB) is a biodegradable biopolymer, synthesized by some bacterial genera. The objective of the current study is to explore the ability of some fungi to biodegrade PHB. The degradation of (PHB) was detected in Petri dish by the formation of a clear zone around the fungal colonies due to the production of depolymerase enzyme which has an interesting role in the PHB degradation process. Among 10 tested fungi, the most active PHB biodegraded fungi were identified as Trichoderma asperellum using morphological and molecular characters. The highest PHB degradation was at 25°C, pH 7.5 after 7 days of incubation for the tested fungi. Finally, the depolymerase enzyme was isolated, purified using column chromatography and characterized. In conclusion, PHB can be biodegraded in solid and liquid medium using depolymerase enzyme from T. asperellum.Keywords: degradation, depolymerase enzyme, PHB, Trichoderma asperellum
Procedia PDF Downloads 1791299 Metachromatic Leukodystrophy: A Case Report
Authors: Mary Rose Eunice S. Gundayao, Manolo M. Fernandez
Abstract:
Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder with an autosomal recessive inheritance pattern. Lysosomal storage disorders are often severe, follow a progressively neurodegenerative path, and may result in multi-organ failure, potentially leading to death within 5 to 6 years in cases of early-onset forms. There are limited data regarding cases of MLD in Filipino children. This is the case of a 2-year-old Filipino girl who presented with progressive neurological deterioration and was diagnosed with metachromatic leukodystrophy by molecular genetic testing. This case report aims to present this patient’s clinical history, neurological findings, diagnosis and novel genetic mutations causing MLD. A concise review of updated literature on MLD will be discussed.Keywords: metachromatic leukodystrophy, ARSA gene, peripheral neuropathy, case report, demyelinating disease
Procedia PDF Downloads 171298 Molecularly Imprinted Polymer and Computational Study of (E)-2-Cyano-3-(Dimethylamino)-N-(2,4-Dioxo-1,2,3,4-Tetrahydropyrimidin-5-Yl)Acrylam-Ide and Its Applications in Industrial Applications
Authors: Asmaa M. Fahim
Abstract:
In this investigation, the (E)-2-cyano-3-(dimethylamino)-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acrylam-ide (4) which used TAM as a template which interacts with Methacrylic Acid (MAA) monomer, in the presence of CH₃CN as progen. The TAM-MMA complex interactions are dependent on stable hydrogen bonding interaction between the carboxylic acid group of TAM(Template) and the hydroxyl group of MMA(methyl methacrylate) with minimal interference of porogen CH₃CN. The physical computational studies were used to optimize their structures and frequency calculations. The binding energies between TAM with different monomers showed the most stable molar ratio of 1:4, which was confirmed through experimental analysis. The optimized polymers were investigated in industrial applications.Keywords: molecular imprinted polymer, computational studies, SEM, spectral analysis, industrial applications
Procedia PDF Downloads 1561297 Essential Oil Analysis of the Aerial Parts of Sideritis incana and Calamitha hispidula
Authors: Smain Amiraa, Hocine Laouerb, Fatima Benchikh-Amiraa, Guido Flaminic
Abstract:
The aerial parts of Sideritis incana and Calamintha hispidula at the flowering stage were submitted to hydrodistillation in a Clevenger–type apparatus for 3 hours and the chemical composition of the essential oil was analyzed by GC coupled to GC-MS. The essential oil contained a total of 99 constituents for S. incana and 31 for C. hispidula representing 95.7% and 99.6 of the total oils, rerspectively. The mains components of S. incana oil were linalool (25.2), cedrol (13.7%), geraniol (7%) and α-terpineol (5.4%). The chemical constituents of the oil from C. hispidula were predominated by pulegone (43.2%), isomenthone (36%), piperitone (3.2%), limonene (2.6%) and 4-terpineol (2.5%). The results revealed that the oil of the plants is characterized by the presence of many important components which could be applied in food, pharmaceutical and perfume industry.Keywords: essential oils, Calamintha hispidula, Sideritis incana, chemical and molecular engineering
Procedia PDF Downloads 2461296 Simple and Effective Method of Lubrication and Wear Protection
Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy
Abstract:
By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology
Procedia PDF Downloads 2601295 Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges
Authors: Doriane Delafosse, Dominique Fontvieille
Abstract:
Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France).Keywords: flocculants-coagulants, polymers, enteric viruses, wastewater sedimentation treatment plant
Procedia PDF Downloads 1231294 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics
Authors: Weikang Gong, Chunhua Li
Abstract:
Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure
Procedia PDF Downloads 1201293 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites
Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria
Abstract:
Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.Keywords: gamma irradiation, graphene oxide, nanocomposites, PVDF
Procedia PDF Downloads 2831292 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM
Procedia PDF Downloads 3971291 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures
Authors: Olesia Mikhailova, Pavel Rovnaník
Abstract:
In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity
Procedia PDF Downloads 2341290 Membrane Spanning DNA Origami Nanopores for Protein Translocation
Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka
Abstract:
Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing
Procedia PDF Downloads 3211289 Relating Interface Properties with Crack Propagation in Composite Laminates
Authors: Tao Qu, Chandra Prakash, Vikas Tomar
Abstract:
The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.Keywords: chitin, composites, interfaces, fracture
Procedia PDF Downloads 3791288 Prevalence and Molecular Characterization of Vibrio parahaemolyticus in Estuarine Fish from Dhaka City Markets
Authors: Fahmida Khalique Nitu
Abstract:
Little is known on the biosafety level of Vibrio parahaemolyticus in estuarine fish in Bangladesh. The purpose of this study was to investigate the prevalence and concentration of V. parahaemolyticus in estuarine fishes using the Polymerase Chain Reaction( PCR) method . The study was conducted on 37 fishes of different species from different types of estuarine fish commonly sold at city markets. Sampling was done on the intestinal tract and gills of each fish. The prevalence of V. parahaemolyticus was found to be 29.72% with higher percentages detected in samples from the gills (89.28%) followed by the intestinal tract (10.71%). The density of Vibrio spp. in the gill of estuarine fishes with an average was 4.4 x103CFU/g and in the intestine samples was 1.5x103 CFU/g. The outcome of the biosafety assessment V. parahaemolyticus in estuarine fish indicates another potential source of food safety issues to consumers.Keywords: biosafety, estuarine, prevalence, Vibrios
Procedia PDF Downloads 2771287 Organic Permeation Properties of Hydrophobic Silica Membranes with Different Functional Groups
Authors: Sadao Araki, Daisuke Gondo, Satoshi Imasaka, Hideki Yamamoto
Abstract:
The separation of organic compounds from aqueous solutions is a key technology for recycling valuable organic compounds and for the treatment of wastewater. The wastewater from chemical plants often contains organic compounds such as ethyl acetate (EA), methylethyl ketone (MEK) and isopropyl alcohol (IPA). In this study, we prepared hydrophobic silica membranes by a sol-gel method. We used phenyltrimethoxysilane (PhTMS), ethyltrimethoxysilan (ETMS), Propyltrimethoxysilane (PrTMS), N-butyltrimethoxysilane (BTMS), N-Hexyltrimethoxysilane (HTMS) as silica sources to introduce each functional groups on the membrane surface. Cetyltrimethyl ammonium bromide (CTAB) was used as a molecular template to create suitable pore that enable the permeation of organic compounds. These membranes with five different functional groups were characterized by SEM, FT-IR, and permporometry. Thicknesses and pore diameters of silica layer for all membrane were about 1.0 μm and about 1 nm, respectively. In other words, functional groups had an insignificant effect on the membrane thicknesses and the formation of the pore by CTAB. We confirmed the effect of functional groups on the flux and separation factor for ethyl acetate (EA), methyl ethyl ketone, acetone and 1-butanol (1-BtOH) /water mixtures. All membranes showed a high flux for ethyl acetate compared with other compounds. In particular, the hydrophobic silica membrane prepared by using BTMS showed 0.75 kg m-2 h-1 of flux for EA. For all membranes, the fluxes of organic compounds showed the large values in the order corresponding to EA > MEK > acetone > 1-BtOH. On the other hand, carbon chain length of functional groups among ETMS, PrTMS, BTMS, PrTMS and HTMS did not have a major effect on the organic flux. Although we confirmed the relationship between organic fluxes and organic molecular diameters or fugacity of organic compounds, these factors had a low correlation with organic fluxes. It is considered that these factors affect the diffusivity. Generally, permeation through membranes is based on the diffusivity and solubility. Therefore, it is deemed that organic fluxes through these hydrophobic membranes are strongly influenced by solubility. We tried to estimate the organic fluxes by Hansen solubility parameter (HSP). HSP, which is based on the cohesion energy per molar volume and is composed of dispersion forces (δd), intermolecular dipole interactions (δp), and hydrogen-bonding interactions (δh), has recently attracted attention as a means for evaluating the resolution and aggregation behavior. Evaluation of solubility for two substances can be represented by using the Ra [(MPa)1/2] value, meaning the distance of HSPs for both of substances. A smaller Ra value means a higher solubility for each substance. On the other hand, it can be estimated that the substances with large Ra value show low solubility. We established the correlation equation, which was based on Ra, of organic flux at low concentrations of organic compounds and at 295-325 K.Keywords: hydrophobic, membrane, Hansen solubility parameter, functional group
Procedia PDF Downloads 376