Search results for: factor models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11554

Search results for: factor models

10654 The Evolution of Domestic Terrorism: Global Contemporary Models

Authors: Bret Brooks

Abstract:

As the international community has focused their attention in recent times on international and transnational terrorism, many nations have ignored their own domestic terrorist groups. Domestic terrorism has significantly evolved over the last 15 years and as such nation states must adequately understand their own individual issues as well as the broader worldwide perspective. Contemporary models show that obtaining peace with domestic groups is not only the end goal, but also very obtainable. By evaluating modern examples and incorporating successful strategies, countries around the world have the ability to bring about a diplomatic resolution to domestic extremism and domestic terrorism.

Keywords: domestic, evolution, peace, terrorism

Procedia PDF Downloads 520
10653 Electrical Analysis of Corn Oil as an Alternative to Mineral Oil in Power Transformers

Authors: E. Taslak, C. Kocatepe, O. Arıkan, C. F. Kumru

Abstract:

In insulation and cooling of power transformers various liquids are used. Mineral oils have wide availability and low cost. However, they have a poor biodegradability potential and lower fire point in comparison with other insulating liquids. Use of a liquid having high biodegradability is important due to environmental consideration. This paper investigates edible corn oil as an alternative to mineral oil. Various properties of mineral and corn oil like breakdown voltage, dissipation factor, relative dielectric constant, power loss and resistivity were measured according to different standards.

Keywords: breakdown voltage, corn oil, dissipation factor, mineral oil, power loss, relative dielectric constant, resistivity

Procedia PDF Downloads 578
10652 Self-Disclosure and Suicide

Authors: Netta Horesh Reinman

Abstract:

The inability to communicate feelings and thoughts to people close to oneself may be an important risk factor for suicidal behavior. This inability has been operationalized in the concept of “self-disclosure.” The purpose of this paper was to evaluate the correlation of self-disclosure with suicidal behavior in adolescents. Eighty consecutive admissions to an adolescent psychiatric inpatient unit were evaluated. Thirty-four were suicide attempters, 18 were suicidal ideators, and 18 were non-suicidal. Assessment measures included the Child Suicide Potential Scale, the Suicide Intent Scale, the Suicide Ideation Scale, and the Self-Disclosure Scale. The results show that low self-disclosure levels are associated with suicidal thinking, suicide attempts and suicidal attitudes. Thus, low self-disclosure may well be a risk factor worthy of further evaluation in the attempt to understand adolescent suicidal behavior.

Keywords: self disclosure, suicide, adolescents, treatment

Procedia PDF Downloads 122
10651 The Genuine Happiness Scale: Preliminary Results

Authors: Myriam Rudaz, Thomas Ledermann, Frank D. Fincham

Abstract:

We provide initial findings on the development and validation of the Genuine Happiness Scale (GHS). Based on the Buddhist view of happiness, genuine happiness can be described as an unlimited, everlasting inner joy and peace that gives a person the inner resources to deal with whatever comes his or her way in life. The sample consisted of 678 young adults, with 432 adults participating twice, approximately six weeks apart. Exploratory and confirmatory factor analysis supported a unidimensional factor structure of the GHS. Hierarchical regression analysis revealed that caring for bliss, mindfulness, and compassion predicted genuine happiness longitudinally above and beyond genuine happiness at baseline. We discuss the usefulness of the GHS as an outcome measure for evaluating mindfulness- and compassion-based intervention programs.

Keywords: happiness, bliss, well-being, caring for bliss, mindfulness, compassion

Procedia PDF Downloads 118
10650 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models

Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan

Abstract:

This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.

Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk

Procedia PDF Downloads 99
10649 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 250
10648 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis

Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah

Abstract:

3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.

Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling

Procedia PDF Downloads 135
10647 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan

Authors: Fawad Ali

Abstract:

Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.

Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer

Procedia PDF Downloads 70
10646 The Museum of Museums: A Mobile Augmented Reality Application

Authors: Qian Jin

Abstract:

Museums have been using interactive technology to spark visitor interest and improve understanding. These technologies can play a crucial role in helping visitors understand more about an exhibition site by using multimedia to provide information. Google Arts and Culture and Smartify are two very successful digital heritage products. They used mobile augmented reality to visualise the museum's 3D models and heritage images but did not include 3D models of the collection and audio information. In this research, service-oriented mobile augmented reality application was developed for users to access collections from multiple museums(including V and A, the British Museum, and British Library). The third-party API (Application Programming Interface) is requested to collect metadata (including images, 3D models, videos, and text) of three museums' collections. The acquired content is then visualized in AR environments. This product will help users who cannot visit the museum offline due to various reasons (inconvenience of transportation, physical disability, time schedule).

Keywords: digital heritage, argument reality, museum, flutter, ARcore

Procedia PDF Downloads 78
10645 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 69
10644 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology

Authors: Weng Jiantao, Wu Yiqun

Abstract:

The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.

Keywords: CFD, island terrain, site selection, construction mechanism

Procedia PDF Downloads 509
10643 Psychometric Characteristics of the Persian Version of the Revised Caregiving Appraisal Scale in Iranian Family Caregivers of Older Adults with Dementia

Authors: Akram Farhadi, Mahshid Froughan, Farahnaz Mohammadi, Maryam Rassouli, Maryam Noroozian, Leila Sadeghmoghaddam

Abstract:

Background: The caregivers’ assessment of their own caregiving is considered the most important concept in exploring their experiences and has a major role in care outcomes. The rising number of people with dementia and their need for care makes family caregiving really important matter to consider and evaluate. Objectives: This study was conducted with the aim to naturalize and validate the Persian version of the Revised Caregiving Appraisal Scale (RCAS) in family caregivers of older adults with dementia. Patients and Method: In this cross-sectional methodological study, the Revised Caregiving Appraisal Scale (RCAS) was translated using International Quality of Life Assessment (IQOLA) protocol, and then a panel of experts examined its face and content validities. To ensure construct validity, the translated Revised Caregiving Appraisal Scale (RCAS) was completed by 236 family caregivers, and factor construct of the scale was assessed with 5 initial factors using confirmatory factor analysis. Internal consistency was found using Cronbach's alpha, and test-retest using intraclass correlation coefficient. Confirmatory factor analysis was performed in LISREL-8.8 software in Windows®. Results: Participating caregivers' mean age was 53.5±13.13 years. Content and face validities of the scale were confirmed according to the views expressed by family caregivers and panel of experts. The confirmatory factor analysis (CFA) results showed appropriate values for all fitness indices (RMSEA=0.046, df/X2=2.428, CFI=0.98, AGFI=0.84, GFI=0.9), and the 5-factor model was confirmed with 27 items. Overall Cronbach's alpha was reported 0.894, and test retest showed overall ICC=0.94. Conclusion: The Persian version of RCAS is a valid and reliable tool for family caregivers' assessment of their caregiving of older adults with dementia, and can be useful in assessing family caregiving interventions.

Keywords: psychometric, family caregivers, reliability and validity, elderly, dementia, self-appraisal

Procedia PDF Downloads 234
10642 On Four Models of a Three Server Queue with Optional Server Vacations

Authors: Kailash C. Madan

Abstract:

We study four models of a three server queueing system with Bernoulli schedule optional server vacations. Customers arriving at the system one by one in a Poisson process are provided identical exponential service by three parallel servers according to a first-come, first served queue discipline. In model A, all three servers may be allowed a vacation at one time, in Model B at the most two of the three servers may be allowed a vacation at one time, in model C at the most one server is allowed a vacation, and in model D no server is allowed a vacation. We study steady the state behavior of the four models and obtain steady state probability generating functions for the queue size at a random point of time for all states of the system. In model D, a known result for a three server queueing system without server vacations is derived.

Keywords: a three server queue, Bernoulli schedule server vacations, queue size distribution at a random epoch, steady state

Procedia PDF Downloads 296
10641 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 466
10640 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite

Authors: A. M. Ahmed, Mona A. Darwish

Abstract:

Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.

Keywords: waste water, nickel, bentonite, adsorption

Procedia PDF Downloads 258
10639 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 231
10638 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 251
10637 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions

Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari

Abstract:

In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.

Keywords: industrial drying, pistachio, quality properties, traditional drying

Procedia PDF Downloads 335
10636 The Transcription Factor HNF4a: A Key Player in Haematological Disorders

Authors: Tareg Belali, Mosleh Abomughaid, Muhanad Alhujaily

Abstract:

HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a.

Keywords: hepatocyte nuclear factor 4 alpha, HNF4a nuclear receptor, steroid hormone receptor family of transcription factors, hematological disorders

Procedia PDF Downloads 96
10635 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
10634 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 330
10633 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method.

Keywords: power quality, direct power control, power ripple, switching table, unity power factor

Procedia PDF Downloads 321
10632 Development of Femoral Head Osteonecrosis Due to Corticosteroids Consumption; Probable Role of OCP: A Case Report

Authors: S. Alireza Mirghasemi, Shervin Rashidinia, Mohammad Saleh Sadeghi, Mohsen Talebizadeh, Narges Rahimi Gabaran, Seyed Shahin Eftekhari, Sara Shahmoradi

Abstract:

Avascular necrosis of femoral head is a pathologic condition that the main cause is decreased blood supply of femoral head. Among predisposing risk factors, chronic use of corticosteroids, alcoholism, smocking and hip traumas have more important role. Also we can mention OCP consumption as a risk factor among less common predisposing factors that lead to AVNF, in this study we introduce another cause of AVNF with a period of treatment with moderate dose of corticosteroids accompanied by OCP as a probable facilitating factor that leads to AVNF.

Keywords: AVN, corticosteroids consumption, femoral head osteonecrosis, OCP

Procedia PDF Downloads 466
10631 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting

Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam

Abstract:

Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.

Keywords: ANFIS, fuzzy time series, stock forecasting, SVR

Procedia PDF Downloads 247
10630 Comparison of Fundamental Frequency Model and PWM Based Model for UPFC

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

Among all FACTS devices, the unified power flow controller (UPFC) is considered to be the most versatile device. This is due to its capability to control all the transmission system parameters (impedance, voltage magnitude, and phase angle). With the growing interest in UPFC, the attention to develop a mathematical model has increased. Several models were introduced for UPFC in literature for different type of studies in power systems. In this paper a novel comparison study between two dynamic models of UPFC with their proposed control strategies.

Keywords: FACTS, UPFC, dynamic modeling, PWM, fundamental frequency

Procedia PDF Downloads 346
10629 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 298
10628 The Nutritive Value of Fermented Sago Pith (Metroxylon sago Rottb) Enriched with Micro Nutrients for Poultry Feed

Authors: Wizna, Helmi Muis, Hafil Abbas

Abstract:

An experiment was conducted to improve the nutrient value of sago pith (Metroxylon sago Rottb) supplemented with Zn, Sulfur and urea through fermentation by using cellulolytic bacteria (Bacillus amyloliquefaciens) as inoculums. The experiment was determination of the optimum dose combination (dosage of Zn, S and urea) for sago pith fermentation based on nutrient quality and quantity of these fermented products. The study was conducted in experimental method, using the completely randomized design in factorial with 3 treatments consist of: factor A (Dose of urea: A1 = 2.0%, A2 = 3.0%), factor B (Dose of S: B1 = 0.2%, B2 = 0.4%) and factor C (Dose of Zn: C1 = 0.0025%, C2 = 0.005%). Results of study showed that optimum condition for fermentation process of sago pith with B. amyloliquefaciens caused a change of nutrient content was obtained at urea (3%), S (0,2%), and Zn (0,0025%). This fermentation process was able to increase amino acid average, reduce crude fiber content by 67% and increase crude protein by 433%, which made the nutritional value of the product based on dry matter was 18.22% crude protein, 12.42% crude fiber, 2525 Kcal/kg metabolic energy and 65.73% nitrogen retention.

Keywords: fermentation, sago pith, sulfur, Zn, urea, Bacillus amyloliquefaciens

Procedia PDF Downloads 511
10627 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan

Abstract:

In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.

Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor

Procedia PDF Downloads 331
10626 Motivating Factors of Mobile Device Applications toward Learning

Authors: Yen-Mei Lee

Abstract:

Mobile learning (m-learning) has been applied in the education field not only because it is an alternative to web-based learning but also it possesses the ‘anytime, anywhere’ learning features. However, most studies focus on the technology-related issue, such as usability and functionality instead of addressing m-learning from the motivational perspective. Accordingly, the main purpose of the current paper is to integrate critical factors from different motivational theories and related findings to have a better understand the catalysts of an individual’s learning motivation toward m-learning. The main research question for this study is stated as follows: based on different motivational perspectives, what factors of applying mobile devices as medium can facilitate people’s learning motivations? Self-Determination Theory (SDT), Uses and Gratification Theory (UGT), Malone and Lepper’s taxonomy of intrinsic motivation theory, and different types of motivation concepts were discussed in the current paper. In line with the review of relevant studies, three motivating factors with five essential elements are proposed. The first key factor is autonomy. Learning on one’s own path and applying personalized format are two critical elements involved in the factor of autonomy. The second key factor is to apply a build-in instant feedback system during m-learning. The third factor is creating an interaction system, including communication and collaboration spaces. These three factors can enhance people’s learning motivations when applying mobile devices as medium toward learning. To sum up, in the currently proposed paper, with different motivational perspectives to discuss the m-learning is different from previous studies which are simply focused on the technical or functional design. Supported by different motivation theories, researchers can clearly understand how the mobile devices influence people’s leaning motivation. Moreover, instructional designers and educators can base on the proposed factors to build up their unique and efficient m-learning environments.

Keywords: autonomy, learning motivation, mobile learning (m-learning), motivational perspective

Procedia PDF Downloads 181
10625 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92