Search results for: electrical continuity
1545 Track and Evaluate Cortical Responses Evoked by Electrical Stimulation
Authors: Kyosuke Kamada, Christoph Kapeller, Michael Jordan, Mostafa Mohammadpour, Christy Li, Christoph Guger
Abstract:
Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions.Keywords: CCEP, SOZ, Corpus callosotomy, DTI
Procedia PDF Downloads 671544 Significance of Occupational Safety for Healthcare Professionals
Authors: Nilgün Katrancı, Pınar Göv
Abstract:
The privatization of public services has intensified and extended the delivery of healthcare services at hospitals, which leads to an increase in health and safety risks for healthcare professionals. More efficient and effective delivery of healthcare services can be realized through the provision of occupational safety of healthcare professionals. However, healthcare professionals are exposed to more dangers, accidents, and diseases because of such reasons as present working conditions, hospital infections, lack of ergonomic design, medication, wastes, excessive work load, negligent attitudes of workers, violence, psychological risks, etc. Unsafe working conditions cause fear, injury and wearing impacts in healthcare professionals in many countries. Thus, it is emphasized that the protection of the health of healthcare professionals is important to have educated, healthy workers and adequate workforce. Occupational health and safety measures applied in health facilities are aimed at protecting workers and providing the safety of services and facilities. All activities to be undertaken at hospitals with regard to occupational safety in accordance with these goals will help to reduce costs and provide continuous services. At the same time, a safe working environment will increase worker satisfaction and motivation, sense of institutional belonging and indirectly patient safety and satisfaction. In addition, the control and correction of occupational safety activities are also as important as the implementation. Occupational health and safety practices in the facilities will also lead to positive developments for national economy and society. This study emphasizes that approaching occupational safety practices for healthcare professionals in a sensitive manner is important for enabling healthcare professionals to do more productive works in terms of physical, social and psychological aspects, maintaining the continuity of healthcare services and social and economic contributions.Keywords: health facilities, healthcare professional, occupational health, occupational safety
Procedia PDF Downloads 3851543 Vulnerability and Risk Assessment, and Preparedness to Natural Disasters of Schools in Southern Leyte, Philippines
Authors: Lorifel Hinay
Abstract:
Natural disasters have increased in frequency and severity in the Philippines over the years resulting to detrimental impacts in school properties and lives of learners. The topography of the Province of Southern Leyte is a hotspot for inevitable natural disaster-causing hazards that could affect schools, cripple the educational system and cause environmental, cultural and social detrimental impacts making Disaster Risk Reduction and Management (DRRM) an indispensable platform to keep learners safe, secure and resilient. This study determined the schools’ vulnerability and risk assessment to earthquake, landslide, flood, storm surge and tsunami hazards, and its relationship to status in disaster preparedness. Descriptive-correlational research design was used where the respondents were School DRRM Coordinators/School Administrators and Municipal DRRM Officers. It was found that schools’ vulnerability and risk were high in landslide, medium in earthquake, and low in flood, storm surge and tsunami. Though schools were moderately prepared in disasters across all hazards, they were less accomplished in group organization and property security. Less planning preparation and less implementation of DRRM measures were observed in schools highly at risk of earthquake and landslide. Also, schools vulnerable to landslide and flood have very high property security. Topography and location greatly contributed to schools’ vulnerability to hazards, thus, a school-based disaster preparedness plan is hoped to help ensure that hazard-exposed schools can build a culture of safety, disaster resiliency and education continuity.Keywords: disaster risk reduction and management, earthquake, flood, landslide, storm surge, tsunami
Procedia PDF Downloads 1311542 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1061541 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties
Authors: Hsyi-En Cheng, Ying-Yi Liou
Abstract:
Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide
Procedia PDF Downloads 2421540 Predictors of Survival of Therapeutic Hypothermia Based on Analysis of a Consecutive American Inner City Population over 4 Years
Authors: Jorge Martinez, Brandon Roberts, Holly Payton Toca
Abstract:
Background: Therapeutic hypothermia (TH) is the international standard of care for all comatose patients after cardiac arrest, but criticism focuses on poor outcomes. We sought to develop criteria to identify American urban patients more likely to benefit from TH. Methods: Retrospective chart review of 107 consecutive adults undergoing TH in downtown New Orleans from 2010-2014 yielded records for 99 patients with all 44 survivors or families contacted up to four years. Results: 69 males and 38 females with a mean age of 60.2 showed 63 dead (58%) and 44 survivors (42%). Presenting cardiac rhythm was divided into shockable (Pulseless Ventricular Tachycardia, Ventricular Fibrillation) and non-shockable (Pulseless Electrical Activity, Asystole). Presenting in shockable rhythms with ROSC <20 minutes were 21 patients with 15 (71%) survivors (p=.001). Time >20 minutes until ROSC in shockable rhythms had 5 patients with 3 survivors (78%, p=0.001). Presenting in non-shockable rhythms with ROSC <20 minutes were 54 patients with 18 survivors (33%, p=.001). ROSC >20 minutes in non-shockable rhythms had 19 patients with 2 survivors (8%, p=.001). Survivors of shockable rhythms showed 19 (100%) living post TH. 15 survivors (79%, n=19, p=.001) had CPC score 1 or 2 with 4 survivors (21%, n=19) having a CPC score of 3. A total of 25 survived non-shockable rhythm. Acute survival of patients with non-shockable rhythm showed 18 expired <72 hours (72%, n=25) with long-term survival of 4 patients (5%, n=74) and CPC scores of 1 or 2 (p=.001). Interestingly, patients with time to ROSC <20 minutes exhibiting more than one loss of sustained ROSC showed 100% mortality (p=.001). Patients presenting with shockable >20 minutes ROSC had overall survival of 70% (p=.001), but those undergoing >3 cardiac rhythm changes had 100% mortality (p=.001). Conclusion: Patients presenting with shockable rhythms undergoing TH had overall acute survival of 70% followed by long-term survival of 100% after 4 years. In contrast, patients presenting with non-shockable rhythm had long-term survival of 5%. TH is not recommended for patients presenting with non-shockable rhythm and requiring greater than 20 minutes for restoration of ROSC.Keywords: cardiac rhythm changes, Pulseless Electrical Activity (PEA), Therapeutic Hypothermia (TH)
Procedia PDF Downloads 2111539 Numerical investigation of Hydrodynamic and Parietal Heat Transfer to Bingham Fluid Agitated in a Vessel by Helical Ribbon Impeller
Authors: Mounir Baccar, Amel Gammoudi, Abdelhak Ayadi
Abstract:
The efficient mixing of highly viscous fluids is required for many industries such as food, polymers or paints production. The homogeneity is a challenging operation for this fluids type since they operate at low Reynolds number to reduce the required power of the used impellers. Particularly, close-clearance impellers, mainly helical ribbons, are chosen for highly viscous fluids agitated in laminar regime which is currently heated through vessel wall. Indeed, they are characterized by high shear strains closer to the vessel wall, which causes a disturbing thermal boundary layer and ensures the homogenization of the bulk volume by axial and radial vortices. The hydrodynamic and thermal behaviors of Newtonian fluids in vessels agitated by helical ribbon impellers, has been mostly studied by many researchers. However, rarely researchers investigated numerically the agitation of yield stress fluid by means of helical ribbon impellers. This paper aims to study the effect of the Double Helical Ribbon (DHR) stirrers on both the hydrodynamic and the thermal behaviors of yield stress fluids treated in a cylindrical vessel by means of numerical simulation approach. For this purpose, continuity, momentum, and thermal equations were solved by means of 3D finite volume technique. The effect of Oldroyd (Od) and Reynolds (Re) numbers on the power (Po) and Nusselt (Nu) numbers for the mentioned stirrer type have been studied. Also, the velocity and thermal fields, the dissipation function and the apparent viscosity have been presented in different (r-z) and (r-θ) planes.Keywords: Bingham fluid, Hydrodynamic and thermal behavior, helical ribbon, mixing, numerical modelling
Procedia PDF Downloads 3061538 The Relationship of Creativity and Innovation in Artistic Work and Their Importance in Improving the Artistic Organizational Performance
Authors: Houyem Kotti
Abstract:
The development in societies requires that these societies are continuously changing in various aspects, a change that requires continuous adaptation to the data of the technical age. In order for the individual to perform his/her duty or task in a perfect way, it is necessary to provide all the basic requirements and necessities to increase the efficiency and effectiveness of the personnel working to accomplish their tasks, requirements, and work successfully. The success of the industries and organizations are linked to the need to create individuals in the creative and innovative field. Formation process is considered an economic development and social prosperity, and to improve the quantity and quality of artistic work. Therefore, creativity and innovation play an important role in improving the performance of the artistic organization as it is one of the variables affecting the organization's ability to grow and invest. In order to provide better services to their customers, especially in the face of competition and traditional methods of work, and in an environment that discourages and hinders creativity and impairs any process of development, change or creative behavior. The research methodology that will be performed for this study is described as qualitative by conducting several interviews with artistic people, experts in the artistic field and reviewing the related literature to collect the necessary and required qualitative data from secondary sources such as statistical reports, previous research studies, etc. In this research, we will attempt to clarify the relationship between innovation and its importance in the artistic organization, the conditions of achieving innovation and its constraints, barriers, and challenges. The creativity and innovation and their impacts on the performance of artistic organizations, explaining this mechanism, so as to ensure continuity of these organizations and keeping pace with developments in the global economic environment.Keywords: artistic work, creativity and innovation, artistic organization, performance
Procedia PDF Downloads 2471537 The Redundant Kana: A Pragmatic Reading
Authors: Manal Mohammed Hisham Said Najjar
Abstract:
The Arab Grammarians shed light on the redundant kana (was) and gave it a considerable attention. However, their considerations and interpretations pertaining to using this verb varied: is it used to determine tense? Or used for further emphasis or for another function? Does it have a syntactic function? Morphologically, could it be used in other forms than the past? In addition, Arab Grammarians discussed the possibility of using kana to locate itself in between the syntactic constructs of a sentence, a phrase, or a collocation. Others questioned its position whether it is in initial or final. This study found out that the redundant kana (was) is cited in Quran and was used by the Arabs in their speech and poetry. This redundant kana, whether used in initial position or in a final position, or in between the constructs of a sentence, a phrase, or a collocation, implies pragmatic meanings intended by the speaker or the poet to serve different functions, such as to indicate the past tense, to provide emphasis, and to refer to the continuity of the effect and meaning of a verb or adjective. The study concludes that this verb kana can be utilized in different contexts to achieve a specific effect as did the old Arabs who used it to add specific shades of meanings. Kana as a redundant word could be added to further highlight the meaning aimed at in a specific utterance. In addition, this verb can be used in both the past and the present morphological form; and its availability in an utterance could be functional and could not be. In other words, the study found out that the redundant kana can be used in various positions in an utterance, initial, final, or in between a syntactic structure, provided that this use is pragmatically functional. In conclusion, this paper seeks to invite the scholars of the Arabic language to coin a new term which is the “pragmatic kana” to replace the term “kana alzae’da (redundant kana)” which might mean that its use is redundant and void of significance – a fact that is illogical due to its recurrent use in the Holy Quran. NOTE: Please take this study not the other one (sent by mistake) and titled kana alnaqisaKeywords: redundan, kana, grammarians, quran
Procedia PDF Downloads 1301536 Chemical Composition and Biological Properties of Algerian Honeys
Authors: Ouchemoukh Salim, Amessis-Ouchemoukh Nadia, Guenaoui Nawel, Moumeni Lynda, Zaidi Hicham, Otmani Amar, Sadou Dyhia
Abstract:
Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values.Keywords: honey, physico-chemical parameters, bioactive compounds, biological properties
Procedia PDF Downloads 551535 Impact of Covid-19 on Digital Transformation
Authors: Tebogo Sethibe, Jabulile Mabuza
Abstract:
The COVID-19 pandemic has been commonly referred to as a ‘black swan event’; it has changed the world, from how people live, learn, work and socialise. It is believed that the pandemic has fast-tracked the adoption of technology in many organisations to ensure business continuity and business sustainability; broadly said, the pandemic has fast-tracked digital transformation (DT) in different organisations. This paper aims to study the impact of the COVID-19 pandemic on DT in organisations in South Africa by focusing on the changes in IT capabilities in the DT framework. The research design is qualitative. The data collection was through semi-structured interviews with information communication technology (ICT) leaders representing different organisations in South Africa. The data were analysed using the thematic analysis process. The results from the study show that, in terms of ICT in the organisation, the pandemic had a direct and positive impact on ICT strategy and ICT operations. In terms of IT capability transformation, the pandemic resulted in the optimisation and expansion of existing IT capabilities in the organisation and the building of new IT capabilities to meet emerging business needs. In terms of the focus of activities during the pandemic, there seems to be a split in organisations between the primary focus being on ‘digital IT’ or ‘traditional IT’. Overall, the findings of the study show that the pandemic had a positive and significant impact on DT in organisations. However, a definitive conclusion on this would require expanding the scope of the research to all the components of a comprehensive DT framework. This study is significant because it is one of the first studies to investigate the impact of the COVID-19 pandemic on organisations, on ICT in the organisation, on IT capability transformation and, to a greater extent, DT. The findings from the study show that in response to the pandemic, there is a need for: (i) agility in organisations; (ii) organisations to execute on their existing strategy; (iii) the future-proofing of IT capabilities; (iv) the adoption of a hybrid working model; and for (v) organisations to take risks and embrace new ideas.Keywords: digital transformation, COVID-19, bimodal-IT, digital transformation framework
Procedia PDF Downloads 1781534 Determination of Temperature Dependent Characteristic Material Properties of Commercial Thermoelectric Modules
Authors: Ahmet Koyuncu, Abdullah Berkan Erdogmus, Orkun Dogu, Sinan Uygur
Abstract:
Thermoelectric modules are integrated to electronic components to keep their temperature in specific values in electronic cooling applications. They can be used in different ambient temperatures. The cold side temperatures of thermoelectric modules depend on their hot side temperatures, operation currents, and heat loads. Performance curves of thermoelectric modules are given at most two different hot surface temperatures in product catalogs. Characteristic properties are required to select appropriate thermoelectric modules in thermal design phase of projects. Generally, manufacturers do not provide characteristic material property values of thermoelectric modules to customers for confidentiality. Common commercial software applied like ANSYS ICEPAK, FloEFD, etc., include thermoelectric modules in their libraries. Therefore, they can be easily used to predict the effect of thermoelectric usage in thermal design. Some software requires only the performance values in different temperatures. However, others like ICEPAK require three temperature-dependent equations for material properties (Seebeck coefficient (α), electrical resistivity (β), and thermal conductivity (γ)). Since the number and the variety of thermoelectric modules are limited in this software, definitions of characteristic material properties of thermoelectric modules could be required. In this manuscript, the method of derivation of characteristic material properties from the datasheet of thermoelectric modules is presented. Material characteristics were estimated from two different performance curves by experimentally and numerically in this study. Numerical calculations are accomplished in ICEPAK by using a thermoelectric module exists in the ICEPAK library. A new experimental setup was established to perform experimental study. Because of similar results of numerical and experimental studies, it can be said that proposed equations are approved. This approximation can be suggested for the analysis includes different type or brand of TEC modules.Keywords: electrical resistivity, material characteristics, thermal conductivity, thermoelectric coolers, seebeck coefficient
Procedia PDF Downloads 1791533 Biorisk Management Education for Undergraduates Studying Clinical Microbiology at University in Japan
Authors: Shuji Fujimoto, Fumiko Kojima, Mika Shigematsu
Abstract:
Biorisk management (Biosafety/Biosecurity) is required for anyone working in a clinical laboratory (including medical/clinical research laboratories) where infectious agents and potentially hazardous biological materials are examined/stored. Proper education and training based on international standards of biorisk management should be provided not only as a part of laboratory safety program in work place but also as a part of introductory training at educational institutions for continuity and to elevate overall baseline of the biorisk management. We reported results of the pilot study of biorisk management education for graduate students majored in laboratory diagnostics previously. However, postgraduate education is still late in their profession and the participants’ interview also revealed importance and demands of earlier biorisk management education for undergraduates. The aim of this study is to identify the need for biosafety/biosecurity education and training program which is designed for undergraduate students who are entering the profession in clinical microbiology. We modified the previous program to include more basic topics and explanations (risk management, principles of safe clinical lab practices, personal protective equipment, disinfection, disposal of biological substances) and provided incorporating in the routine educational system for faculty of medical sciences in Kyushu University. The results of the pre and post examinations showed that the knowledge of the students on biorisk control had developed effectively as a proof of effectiveness of the program even in the undergraduate students. Our study indicates that administrating the basic biorisk management program in the earlier stage of learning will add positive impact to the understanding of biosafety to the health professional education.Keywords: biorisk management, biosafety, biosecurity, clinical microbiology, education for undergraduates
Procedia PDF Downloads 2111532 Nursing Documentation of Patients' Information at Selected Primary Health Care Facilities in Limpopo Province, South Africa: Implications for Professional Practice
Authors: Maria Sonto Maputle, Rhulani C. Shihundla, Rachel T. Lebese
Abstract:
Background: Patients’ information must be complete and accurately documented in order to foster quality and continuity of care. The multidisciplinary health care members use patients’ documentation to communicate about health status, preventive health services, treatment, planning and delivery of care. The purpose of this study was to determine the practice of nursing documentation of patients’ information at selected Primary Health Care (PHC) facilities in Vhembe District, Limpopo Province, South Africa. Methods: The research approach adopted was qualitative while exploratory and descriptive design was used. The study was conducted at selected PHC facilities. Population included twelve professional nurses. Non-probability purposive sampling method was used to sample professional nurses who were willing to participate in the study. The criteria included participants’ whose daily work and activities, involved creating, keeping and updating nursing documentation of patients’ information. Qualitative data collection was through unstructured in-depth interviews until no new information emerged. Data were analysed through open–coding of, Tesch’s eight steps method. Results: Following data analysis, it was found that professional nurses’ had knowledge deficit related to insufficient training on updates and rendering multiple services daily had negative impact on accurate documentation of patients’ information. Conclusion: The study recommended standardization of registers, books and forms used at PHC facilities, and reorganization of PHC services into open day system.Keywords: documentation, knowledge, patient care, patient’s information, training
Procedia PDF Downloads 1901531 Ground Track Assessment Using Electrical Resistivity Tomography Application
Authors: Noryani Natasha Yahaya, Anas Ibrahim, Juraidah Ahmad, Azura Ahmad, Mohd Ikmal Fazlan Rosli, Zailan Ramli, Muhd Sidek Muhd Norhasri
Abstract:
The subgrade formation is an important element of the railway structure which holds overall track stability. Conventional track maintenance involves many substructure component replacements, as well as track re-ballasting on a regular basis is partially contributed to the embankment's long-term settlement problem. For subgrade long-term stability analysis, the geophysical method is commonly being used to diagnose those hidden sources/mechanisms of track deterioration problems that the normal visual method is unable to detect. Electrical resistivity tomography (ERT) is one of the applicable geophysical tools that are helpful in railway subgrade inspection/track monitoring due to its flexibility and reliability of the analysis. The ERT was conducted at KM 23.0 of Pinang Tunggal track to investigate the subgrade of railway track through the characterization/mapping on track formation profiling which was directly generated using 2D analysis of Res2dinv software. The profiles will allow examination of the presence and spatial extent of a significant subgrade layer and screening of any poor contact of soil boundary. Based on the finding, there is a mix/interpretation/intermixing of an interlayer between the sub-ballast and the sand. Although the embankment track considered here is at no immediate risk of settlement effect or any failure, the regular monitoring of track’s location will allow early correction maintenance if necessary. The developed data of track formation clearly shows the similarity of the side view with the assessed track. The data visualization in the 2D section of the track embankment agreed well with the initial assumption based on the main element structure general side view.Keywords: ground track, assessment, resistivity, geophysical railway, method
Procedia PDF Downloads 1551530 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research
Authors: Adane Kassa Shikur
Abstract:
Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience
Procedia PDF Downloads 951529 Motherhood and Its Essence among Zimbabwean Migrant Women in Australia
Authors: Pranee Liamputtong
Abstract:
Childlessness in non-Western societies has wide-ranging social implications and profoundly affects the gender identity and well-being of women. The aspirations of women in these societies are shaped by various sociocultural expectations, encompassing social norms and their own social standing. Currently, there is limited knowledge regarding the perceptions and experiences of Zimbabwean migrant women living in Australia regarding childlessness and motherhood. This paper explores the cultural perspective on children in Zimbabwean society and investigates the personal and social consequences of infertility, as well as the cultural expectations of motherhood among Zimbabwean migrant women residing in Australia. The perceptions and experiences of this migrant community are of utmost importance in order to prevent misunderstandings about the core essence of motherhood among Zimbabwean women. Ultimately, this will lead to the provision of sensitive and culturally appropriate healthcare and social support for migrants in Australia's multicultural society. The study adopts a constructivist paradigm and employs qualitative methods, including in-depth interviews, drawings, and photo elicitation, involving 15 Zimbabwean women. Thematic analysis was employed to analyze the data. In Zimbabwean culture, the ability to bear a child holds significant meaning for women. Children not only ensure the continuity of society but also provide social security, as parents rely on their children for care in old age. Childlessness jeopardizes a woman's social status and carries social repercussions that have a profound impact on their gender identity and well-being. Cultural expectations of motherhood place the sole responsibility for the emotional and physical care of children on the mother. Despite residing in Australia, the procreative value has not diminished for Zimbabwean women. Raising awareness of the procreative needs of Zimbabwean women in a culturally sensitive manner would enhance the emotional well-being of these women.Keywords: motherhood, culture, migrant women, Zimbabwe, Australia
Procedia PDF Downloads 871528 Well Log Sequences Stratigraphy and Potential Reservoirs of Wells KF-1and KF-2; Kribi Oil Field, Douala-Kribi-Campo Basin, Cameroon
Authors: Nkwanyang L. Takem, Christopher M. Agyingi
Abstract:
Background and aim: An integrated interpretation of wireline logs and lithology of two selected wells (KF-1 and KF-2) of Kribi oil field within the southeastern offshore Douala/Kribi Campo Basin was carried out for sequence stratigraphic analysis of sediments penetrated by the wells. Methods: The stratigraphic units within the wells were subdivided into depositional sequences using characteristic well log patterns that were deposited between Tertiary Miocene to lower Cretaceous. Results: Nine (9) and eight (8) depositional sequences were identified respectively for KF-1 and KF-2. The sequences comprise LST (progradational packages), TSTs (retrogradational packages) and HSTs (aggradational packages), which reflect depositional systems deposited during different phases of base-level changes. The (LST) consists of Basin Floor Fans (BFF), Slope Fans and Channel Sands deposited when sea level was low and accommodation space lower than rate of sediment influx. TST consists of retrogradational marine shales deposited during high relative sea levels and when accommodation space was higher than rate of sediment influx. HST consisted of shoreface sands displaying mostly aggradational to progradational stacking patterns. Conclusion: The rapid facies changes between successive systems tracts provide potential stratigraphic traps. Reservoir stratification and continuity vary greatly between systems tracts and this enhanced development of stratigraphic traps in the area. Basin floor fans comprise sandstone of good reservoir quality, thus huge accumulation of HC can be trapped in this reservoirs.Keywords: Douala-Kribi-Campo Basin, reservoirs, sequence strastigraphyy, system tracks
Procedia PDF Downloads 5681527 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers
Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer
Abstract:
Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger
Procedia PDF Downloads 3991526 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals
Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao
Abstract:
Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).Keywords: nanocomposites, polymers, EMI shielding, thermal imaging
Procedia PDF Downloads 1061525 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage
Authors: Meng H. Lean, Wei-Ping L. Chu
Abstract:
The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport
Procedia PDF Downloads 3541524 Application of Electrical Resistivity Surveys on Constraining Causes of Highway Pavement Failure along Ajaokuta-Anyigba Road, North Central Nigeria
Authors: Moroof, O. Oloruntola, Sunday Oladele, Daniel, O. Obasaju, Victor, O Ojekunle, Olateju, O. Bayewu, Ganiyu, O. Mosuro
Abstract:
Integrated geophysical methods involving Vertical Electrical Sounding (VES) and 2D resistivity survey were deployed to gain an insight into the influence of the two varying rock types (mica-schist and granite gneiss) underlying the road alignment to the incessant highway failure along Ajaokuta-Anyigba, North-central Nigeria. The highway serves as a link-road for the single largest cement factory in Africa (Dangote Cement Factory) and two major ceramic industries to the capital (Abuja) via Lokoja. 2D Electrical Resistivity survey (Dipole-Dipole Array) and Vertical Electrical Sounding (VES) (Schlumberger array) were employed. Twenty-two (22) 2D profiles were occupied, twenty (20) conducted about 1 m away from the unstable section underlain by mica-schist with profile length each of approximately 100 m. Two (2) profiles were conducted about 1 m away from the stable section with a profile length of 100 m each due to barriers caused by the drainage system and outcropping granite gneiss at the flanks of the road. A spacing of 2 m was used for good image resolution of the near-surface. On each 2D profile, a range of 1-3 VES was conducted; thus, forty-eight (48) soundings were acquired. Partial curve matching and WinResist software were used to obtain the apparent and true resistivity values of the 1D survey, while DiprofWin software was used for processing the 2-D survey. Two exposed lithologic sections caused by abandoned river channels adjacent to two profiles as well as the knowledge of the geology of the area helped to constrain the VES and 2D processing and interpretation. Generally, the resistivity values obtained reflect the parent rock type, degree of weathering, moisture content and competency of the tested area. Resistivity values < 100; 100 – 950; 1000 – 2000 and > 2500 ohms-m were interpreted as clay, weathered layer, partly weathered layer and fresh basement respectively. The VES results and 2-D resistivity structures along the unstable segment showed similar lithologic characteristics and sequences dominated by clayey substratum for depths range of 0 – 42.2 m. The clayey substratum is a product of intensive weathering of the parent rock (mica-schist) and constitutes weak foundation soils, causing highway failure. This failure is further exacerbated by several heavy-duty trucks which ply the section round the clock due to proximity to two major ceramic industries in the state and lack of drainage system. The two profiles on the stable section show 2D structures that are remarkably different from those of the unstable section with very thin topsoils, higher resistivity weathered substratum (indicating the presence of coarse fragments from the parent rock) and shallow depth to the basement (1.0 – 7. 1 m). Also, the presence of drainage and lower volume of heavy-duty trucks are contributors to the pavement stability of this section of the highway. The resistivity surveys effectively delineated two contrasting soil profiles of the subbase/subgrade that reflect variation in the mineralogy of underlying parent rocks.Keywords: clay, geophysical methods, pavement, resistivity
Procedia PDF Downloads 1671523 Analyses of the Constitutional Identity in Hungary: A Case Study on the Concept of Constitutionalism and Legal Continuity in New Fundamental Law of Hungary
Authors: Zsuzsanna Fejes
Abstract:
The aim of this paper is to provide an overview of the legal history of constitutionalism in Hungary, in focus of the democratic transitions in 1989-1990, describing the historical and political background of the changes and presenting the main and most important features of the new democracy, and institutional and legal orders. In Hungary the evolved political, economic and moral crisis prior to the constitutional years 2010-11 had been such a constitutional moment, which led to an opportune and unavoidable change at the same time. The Hungarian constitutional power intended to adopt a new constitution, which was competent to create a common constitutional identity and to express a national unity. The Hungarian Parliament on 18th April 2011 passed the New Fundamental Law. The new Fundamental Law rich in national values meant a new challenge for the academics, lawyers, and political scientists. Not only the classical political science, but also the constitutional law and theory have to struggle with the interpretation of the new declarations about national constitutional values in the Fundamental Law. The main features and structure of the new Fundamental Law will be analysed, and given a detailed interpretation of the Preamble as a declaration of constitutional values. During the examination of the Preamble shall be cleared up the components of Hungarian statehood and national unity, individual and common human rights, the practical and theoretical demand on national sovereignty, and the content and possibilities for the interpretation of the achievements of the historical Constitution. These scopes of problems will be presented during the examination of the text of National Avowal, as a preamble of the Fundamental Law. It is examined whether the Fundamental Law itself could be suitable and sufficient means to citizens of Hungary to express the ideas therein as their own, it will be analysed how could the national and European common traditions, values and principles stated in the Fundamental Law mean maintenance in Hungary’s participation in the European integration.Keywords: common constitutional values, constitutionalism, national identity, national sovereignty, national unity, statehood
Procedia PDF Downloads 2941522 Disparities Versus Similarities; WHO Good Practices for Pharmaceutical Quality Control Laboratories and ISO/IEC 17025:2017: International Standards for Quality Management Systems in Pharmaceutical Laboratories
Authors: Mercy Okezue, Kari Clase, Stephen Byrn, Paddy Shivanand
Abstract:
Medicines regulatory authorities expect pharmaceutical companies and contract research organizations to seek ways to certify that their laboratory control measurements are reliable. Establishing and maintaining laboratory quality standards are essential in ensuring the accuracy of test results. ‘ISO/IEC 17025:2017’ and ‘WHO Good Practices for Pharmaceutical Quality Control Laboratories (GPPQCL)’ are two quality standards commonly employed in developing laboratory quality systems. A review was conducted on the two standards to elaborate on areas on convergence and divergence. The goal was to understand how differences in each standard's requirements may influence laboratories' choices as to which document is easier to adopt for quality systems. A qualitative review method compared similar items in the two standards while mapping out areas where there were specific differences in the requirements of the two documents. The review also provided a detailed description of the clauses and parts covering management and technical requirements in these laboratory standards. The review showed that both documents share requirements for over ten critical areas covering objectives, infrastructure, management systems, and laboratory processes. There were, however, differences in standard expectations where GPPQCL emphasizes system procedures for planning and future budgets that will ensure continuity. Conversely, ISO 17025 was more focused on the risk management approach to establish laboratory quality systems. Elements in the two documents form common standard requirements to assure the validity of laboratory test results that promote mutual recognition. The ISO standard currently has more global patronage than GPPQCL.Keywords: ISO/IEC 17025:2017, laboratory standards, quality control, WHO GPPQCL
Procedia PDF Downloads 1971521 Control Algorithm Design of Single-Phase Inverter For ZnO Breakdown Characteristics Tests
Authors: Kashif Habib, Zeeshan Ayyub
Abstract:
ZnO voltage dependent resistor was widely used as components of the electrical system for over-voltage protection. It has a wide application prospect in superconducting energy-removal, generator de-excitation, overvoltage protection of electrical & electronics equipment. At present, the research for the application of ZnO voltage dependent resistor stop, it uses just in the field of its nonlinear voltage current characteristic and overvoltage protection areas. There is no further study over the over-voltage breakdown characteristics, such as the combustion phenomena and the measure of the voltage/current when it breakdown, and the affect to its surrounding equipment. It is also a blind spot in its application. So, when we do the feature test of ZnO voltage dependent resistor, we need to design a reasonable test power supply, making the terminal voltage keep for sine wave, simulating the real use of PF voltage in power supply conditions. We put forward the solutions of using inverter to generate a controllable power. The paper mainly focuses on the breakdown characteristic test power supply of nonlinear ZnO voltage dependent resistor. According to the current mature switching power supply technology, we proposed power control system using the inverter as the core. The power mainly realize the sin-voltage output on the condition of three-phase PF-AC input, and 3 control modes (RMS, Peak, Average) of the current output. We choose TMS320F2812M as the control part of the hardware platform. It is used to convert the power from three-phase to a controlled single-phase sin-voltage through a rectifier, filter, and inverter. Design controller produce SPWM, to get the controlled voltage source via appropriate multi-loop control strategy, while execute data acquisition and display, system protection, start logic control, etc. The TMS320F2812M is able to complete the multi-loop control quickly and can be a good completion of the inverter output control.Keywords: ZnO, multi-loop control, SPWM, non-linear load
Procedia PDF Downloads 3251520 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies
Authors: Amira Abdelrasoul
Abstract:
This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.Keywords: biomimetic, membrane, synchrotron, permeability, morphology
Procedia PDF Downloads 1011519 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies
Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott
Abstract:
We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury
Procedia PDF Downloads 1451518 C2N2 Adsorption on the Surface of a BN Nanosheet: A DFT Study
Authors: Maziar Noei
Abstract:
Calculation showed that when the nanosheet is doped by Si, the adsorption energy is about -85.62 to -87.43kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanosheet is a suitable adsorbent for cyanogen and can be used in separation processes cyanogen. It seems that nanosheet (BNNS) is a suitable semiconductor after doping. The doped BNNS in the presence of cyanogens (C2N2) an electrical signal is generating directly and, therefore, can potentially be used for cyanogen sensors.Keywords: nanosheet, DFT, cyanogen, sensors
Procedia PDF Downloads 2811517 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 4161516 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking
Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid
Abstract:
The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module
Procedia PDF Downloads 176