Search results for: adiabatic sher band
245 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory
Authors: Peter Thissen
Abstract:
In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction
Procedia PDF Downloads 363244 Hybrid Recovery of Copper and Silver from Photovoltaic Ribbon and Ag finger of End-Of-Life Solar Panels
Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa
Abstract:
Recovery of pure copper and silver from end-of-life photovoltaic panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500°C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from photovoltaic ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.Keywords: electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel
Procedia PDF Downloads 135243 Developing a Health Promotion Program to Prevent and Solve Problem of the Frailty Elderly in the Community
Authors: Kunthida Kulprateepunya, Napat Boontiam, Bunthita Phuasa, Chatsuda Kankayant, Bantoeng Polsawat, Sumran Poontong
Abstract:
Frailty is the thin line between good health and illness. The syndrome is more common in the elderly who transition from strong to weak. (Vulnerability). Fragility can prevent and promote healthy recovery before it goes into disability. This research and development aim to analyze the situation analysis of frailty of the elderly, develop a program, and evaluate the effect of a health promotion program to prevent and solve the problem of frailty among the elderly. The research consisted of 3 phases: 1) analysis of the frailty situation, 2) development of a model, 3) evaluation of the effectiveness of the model. Samples were 328, 122 elderlies using the multi-stage random sampling method. The research instrument was a frailty questionnaire use of the five symptoms, the main characteristics were muscle weakness, slow walking, low physical activity. Fatigue and unintentional weight loss, criteria frailty use more than or equal to three or more symptoms are frailty. Data were analyzed by descriptive and t-test dependent test statistics. The findings showed three parts. First, frailty in the elderly was 23.05 percentage and 56.70% pre-frailty. Second, it was development of a health promotion program to prevent and solve the problem of frailty the elderly with a combination of Nine-Square Exercise, Elastic Band Exercise, Elastic Coconut Shell. Third, evaluation of the effectiveness of the model by comparison of the elderly's get up and go test, the average time before using the program was 14.42 and after using the program was 8.57. It was statistically significant at the .05 level. In conclusion, the findings can used to develop guidelines to promote the health of the frailty elderly.Keywords: elderly, fragile, nine-square exercise, elastic coconut shell
Procedia PDF Downloads 105242 Simplified Stress Gradient Method for Stress-Intensity Factor Determination
Authors: Jeries J. Abou-Hanna
Abstract:
Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.Keywords: fracture mechanics, finite element method, stress intensity factor, stress gradient
Procedia PDF Downloads 135241 Analysis and Performance of European Geostationary Navigation Overlay Service System in North of Algeria for GPS Single Point Positioning
Authors: Tabti Lahouaria, Kahlouche Salem, Benadda Belkacem, Beldjilali Bilal
Abstract:
The European Geostationary Navigation Overlay Service (EGNOS) provides an augmentation signal to GPS (Global Positioning System) single point positioning. Presently EGNOS provides data correction and integrity information using the GPS L1 (1575.42 MHz) frequency band. The main objective of this system is to provide a better real-time positioning precision than using GPS only. They are expected to be used with single-frequency code observations. EGNOS offers navigation performance for an open service (OS), in terms of precision and availability this performance gradually degrades as moving away from the service area. For accurate system performance, the service will become less and less available as the user moves away from the EGNOS service. The improvement in position solution is investigated using the two collocated dual frequency GPS, where no EGNOS Ranging and Integrity Monitoring Station (RIMS) exists. One of the pseudo-range was kept as GPS stand-alone and the other was corrected by EGNOS to estimate the planimetric and altimetric precision for different dates. It is found that precision in position improved significantly in the second due to EGNOS correction. The performance of EGNOS system in the north of Algeria is also investigated in terms of integrity. The results show that the horizontal protection level (HPL) value is below 18.25 meters (95%) and the vertical protection level (VPL) is below 42.22 meters (95 %). These results represent good integrity information transmitted by EGNOS for APV I service. This service is thus compliant with the aviation requirements for Approaches with Vertical Guidance (APV-I), which is characterised by 40 m HAL (horizontal alarm limit) and 50 m VAL (vertical alarm limit).Keywords: EGNOS, GPS, positioning, integrity, protection level
Procedia PDF Downloads 225240 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells
Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai
Abstract:
The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.Keywords: silver nanoparticles, silica, cell viability, morphology
Procedia PDF Downloads 394239 BiLex-Kids: A Bilingual Word Database for Children 5-13 Years Old
Authors: Aris R. Terzopoulos, Georgia Z. Niolaki, Lynne G. Duncan, Mark A. J. Wilson, Antonios Kyparissiadis, Jackie Masterson
Abstract:
As word databases for bilingual children are not available, researchers, educators and textbook writers must rely on monolingual databases. The aim of this study is thus to develop a bilingual word database, BiLex-kids, an online open access developmental word database for 5-13 year old bilingual children who learn Greek as a second language and have English as their dominant one. BiLex-kids is compiled from 120 Greek textbooks used in Greek-English bilingual education in the UK, USA and Australia, and provides word translations in the two languages, pronunciations in Greek, and psycholinguistic variables (e.g. Zipf, Frequency per million, Dispersion, Contextual Diversity, Neighbourhood size). After clearing the textbooks of non-relevant items (e.g. punctuation), algorithms were applied to extract the psycholinguistic indices for all words. As well as one total lexicon, the database produces values for all ages (one lexicon for each age) and for three age bands (one lexicon per age band: 5-8, 9-11, 12-13 years). BiLex-kids provides researchers with accurate figures for a wide range of psycholinguistic variables, making it a useful and reliable research tool for selecting stimuli to examine lexical processing among bilingual children. In addition, it offers children the opportunity to study word spelling, learn translations and listen to pronunciations in their second language. It further benefits educators in selecting age-appropriate words for teaching reading and spelling, while special educational needs teachers will have a resource to control the content of word lists when designing interventions for bilinguals with literacy difficulties.Keywords: bilingual children, psycholinguistics, vocabulary development, word databases
Procedia PDF Downloads 312238 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model
Authors: Guanhua Zhou, Zhongqi Ma
Abstract:
Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices
Procedia PDF Downloads 262237 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control
Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon
Abstract:
Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.Keywords: battery energy storage system, electrical network frequency stability, frequency control unit, PowerFactor
Procedia PDF Downloads 129236 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation
Authors: A. A. Abid
Abstract:
The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed beforeKeywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations
Procedia PDF Downloads 122235 Clouds Influence on Atmospheric Ozone from GOME-2 Satellite Measurements
Authors: S. M. Samkeyat Shohan
Abstract:
This study is mainly focused on the determination and analysis of the photolysis rate of atmospheric, specifically tropospheric, ozone as function of cloud properties through-out the year 2007. The observational basis for ozone concentrations and cloud properties are the measurement data set of the Global Ozone Monitoring Experiment-2 (GOME-2) sensor on board the polar orbiting Metop-A satellite. Two different spectral ranges are used; ozone total column are calculated from the wavelength window 325 – 335 nm, while cloud properties, such as cloud top height (CTH) and cloud optical thick-ness (COT) are derived from the absorption band of molecular oxygen centered at 761 nm. Cloud fraction (CF) is derived from measurements in the ultraviolet, visible and near-infrared range of GOME-2. First, ozone concentrations above clouds are derived from ozone total columns, subtracting the contribution of stratospheric ozone and filtering those satellite measurements which have thin and low clouds. Then, the values of ozone photolysis derived from observations are compared with theoretical modeled results, in the latitudinal belt 5˚N-5˚S and 20˚N - 20˚S, as function of CF and COT. In general, good agreement is found between the data and the model, proving both the quality of the space-borne ozone and cloud properties as well as the modeling theory of ozone photolysis rate. The found discrepancies can, however, amount to approximately 15%. Latitudinal seasonal changes of photolysis rate of ozone are found to be negatively correlated to changes in upper-tropospheric ozone concentrations only in the autumn and summer months within the northern and southern tropical belts, respectively. This fact points to the entangled roles of temperature and nitrogen oxides in the ozone production, which are superimposed on its sole photolysis induced by thick and high clouds in the tropics.Keywords: cloud properties, photolysis rate, stratospheric ozone, tropospheric ozone
Procedia PDF Downloads 211234 Spatial and Geostatistical Analysis of Surficial Soils of the Contiguous United States
Authors: Rachel Hetherington, Chad Deering, Ann Maclean, Snehamoy Chatterjee
Abstract:
The U.S. Geological Survey conducted a soil survey and subsequent mineralogical and geochemical analyses of over 4800 samples taken across the contiguous United States between the years 2007 and 2013. At each location, samples were taken from the top 5 cm, the A-horizon, and the C-horizon. Many studies have looked at the correlation between the mineralogical and geochemical content of soils and influencing factors such as parent lithology, climate, soil type, and age, but it seems little has been done in relation to quantifying and assessing the correlation between elements in the soil on a national scale. GIS was used for the mapping and multivariate interpolation of over 40 major and trace elements for surficial soils (0-5 cm depth). Qualitative analysis of the spatial distribution across the U.S. shows distinct patterns amongst elements both within the same periodic groups and within different periodic groups, and therefore with different behavioural characteristics. Results show the emergence of 4 main patterns of high concentration areas: vertically along the west coast, a C-shape formed through the states around Utah and northern Arizona, a V-shape through the Midwest and connecting to the Appalachians, and along the Appalachians. The Band Collection Statistics tool in GIS was used to quantitatively analyse the geochemical raster datasets and calculate a correlation matrix. Patterns emerged, which were not identified in qualitative analysis, many of which are also amongst elements with very different characteristics. Preliminary results show 41 element pairings with a strong positive correlation ( ≥ 0.75). Both qualitative and quantitative analyses on this scale could increase knowledge on the relationships between element distribution and behaviour in surficial soils of the U.S.Keywords: correlation matrix, geochemical analyses, spatial distribution of elements, surficial soils
Procedia PDF Downloads 126233 Designing Dibenzosilole and Methyl Carbazole Based Donor Materials with Favourable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells
Abstract:
Five new Acceptor-Donor-Acceptor (A-D-A) type small donor molecules (M1-M5) namely; dimethyl cyanoacetate terthiophene di(methylthiophene) dibenzosilole (DMCAO3TBS) (M1), dimelononitrile terthiophene di(methylthiophene) dibenzosilole (DMCNTBS) (M2), dimethyl rhodanine terthiophene di(methylthiophene) dibenzosilole (DMRTBS) (M3), dimelanonitrile terthiophene di(methylthiophene) methyl fluorene (DMCNTF) (M4) and dimethyl rhodanine terthiophene di(methylthiophene) methyl fluorine (DMRTF) (M5) were designed and theoretically explored their electronic, photophysical and geometrical properties via DFT best functional MPW1PW91/6-311G (d,p) level of theory with respect to reference molecules dioctyl cyanoacetate terthiophene di(octylthiophene) dioctylfluorene (DCAO3TF) (Ra) and dioctyl cyanoacetate terthiophene di(octylthiophene) octylcarbazole (DCAO3TCz) (Rb). Among the designed donor molecules (M1-M5), M2 and M4 represented lowest band gap value (2.480 eV and 2.47 eV) with distinctive broad absorption peak at 598 and 601 nm in chloroform due to the presence of stronger electron withdrawing acceptor molecule which pulls the λmax value towards red shift. Theoretically estimated reorganization energies of these molecules recommended excellent property of charge mobility. The designed donor molecules M1-M5, demonstrated lower λe value with reference to their λh, showing that these molecules could be ideal candidates for the transfer of electron with and M2, M4 are best among these as champion molecules with having lowest λe (0.006 D and 0.005 D respectively). Additionally, the Voc of M2 and M4 are 2.01 eV and 1.85 eV respectively with reference respect to PCBM. Thus, our present investigation suggested that our designed donor molecules (M1-M5) are suitable candidates for the solar cell and proposed for high and better performance for the small molecule based solar cell devices.Keywords: dibenzisilol, donor materials, hole mobility, organic solar cells
Procedia PDF Downloads 203232 Understanding the Complexity of Corruption and Anti-Corruption in Indonesia's Mining Industry: Challenges and Opportunities
Authors: Ahmad Khoirul Umam, Iin Mayasari
Abstract:
Indonesia is blessed with rich natural resources and frequently dubbed as the 6th richest country in the world in terms of mining resources, including minerals and coal. Mining can contribute to the socio-economic development by generating state revenue for development, elevating poverty through employment, opening and developing remote areas, putting in basic infrastructure and creating new centres of developments. However, favouritism and rent-seeking behaviour committed by government officials, politicians, and business players in licensing and permit giving in mining and forestry sectors have resisted reforms. Even though Indonesia’s Corruption Eradication Commission (KPK) successfully targeted untouchable actors, public criticism continues to focus on questions of why corruption apparently remains systemic in mining industry in the country? This paper revealed that structural anomalies, as well as legacies of the Soeharto era’s power inequities, have severely inhibited Indonesia’s bureaucratic arrangements that continue to influence adversely the elements of transparency and accountability in mining industry governance. In the more liberalized and decentralized political system, the deficiencies have gradually assisted vested interest groups to band together, thus creating a coalition that can challenge, resist, and contain anti-graft actions. Therefore, Indonesia needs much more serious anti-corruption actions that would require eliminating the monopoly over power, enhancing competition, limiting discretion, and clarifying the rules of business and political competition in the mining sector in the country.Keywords: anti-corruption, public integrity, private integrity, mining industry, democratization
Procedia PDF Downloads 111231 Electrospun Fibers Made from Biopolymers (Cellulose Acetate/Chitosan) for Metals Recovery
Authors: Mauricio Gómez, Esmeralda López, Ian Becar, Jaime Pizarro, Paula A. Zapata
Abstract:
A biodegradable material is developed with adsorptive capacity for metals ion for intended use in mining tailings mitigating the environmental impact with economic retribution, two types of fibers were elaborated by electrospinning: (1) a cellulose acetate (CA) matrix and (2) a cellulose acetate (CA)/chitosan (CH) matrix evaluating the effect of CH in CA on its physicochemical properties. Through diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) the incorporation of chitosan in the matrix was identified, observing the band of the amino group at 1500 - 1600 [cm-1]. By scanning electron microscopy (SEM), Hg porosimetry, and CO2 isotherm at 273 [K], the intrafiber microporosity and interfiber macroporosity were identified, with an increase in the distribution of macropores for CA/CH fibers. In the tensile test, CH into the matrix produces a more ductile and tenacious behavior, where the % elongation at break increased by 33% with the other parameters constant. Thermal analysis by differential scanning calorimetry (DSC) and Thermogravimetric Analysis (TGA) showed that the incorporation of chitosan produces higher retention of water molecules due to the functional groups (amino groups (- NH3)), but there is a decrease in the specific heat and thermoplastic properties of the matrix since the glass transition temperature and softening temperature disappear. The effect of the optimum pH for CA and CA/CH fibers were studied in a batch system. In the adsorption kinetic study, the best isotherm model adapted to the experimental results corresponds to the Sips model and the kinetics corresponds to pseudo-second orderKeywords: environmental materials, wastewater treatment, electrospun fibers, biopolymers (cellulose acetate/chitosan), metals recovery
Procedia PDF Downloads 80230 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm
Procedia PDF Downloads 225229 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures
Authors: Saeed Asiri, Yousuf Z. AL-Zahrani
Abstract:
A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method
Procedia PDF Downloads 289228 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band
Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov
Abstract:
This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization
Procedia PDF Downloads 157227 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 167226 Absorption and Carrier Transport Properties of Doped Hematite
Authors: Adebisi Moruf Ademola
Abstract:
Hematite (Fe2O3),commonly known as ‘rust’ which usually surfaced on metal when exposed to some climatic materials. This emerges as a promising candidate for photoelectrochemical (PEC) water splitting due to its favorable physiochemical properties of the narrow band gap (2.1–2.2 eV), chemical stability, nontoxicity, abundance, and low cost. However, inherent limitations such as short hole diffusion length (2–4 nm), high charge recombination rate, and slow oxygen evolution reaction kinetics inhibit the PEC performances of a-Fe2O3 photoanodes. As such, given the narrow bandgap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for a-Fe2O3 photoanodes and metal ion doping as an effective way to promote charge transfer by increasing donor density and improving the electronic conductivity of a-Fe2O3. Hematite attracts enormous efforts with a number of metal ions (Ti, Zr, Sn, Pt ,etc.) as dopants. A facile deposition-annealing process showed greatly enhanced PEC performance due to the increased donor density and reduced electron-hole recombination at the time scale beyond a few picoseconds. Zr doping was also found to enhance the PEC performance of a-Fe2O3 nanorod arrays by reducing the rate of electron-hole recombination. Slow water oxidation reaction kinetics, another main factor limiting the PEC water splitting efficiency of aFe2O3 as photoanodes, was previously found to be effectively improved by surface treatment.Keywords: deposition-annealing, hematite, metal ion doping, nanorod
Procedia PDF Downloads 221225 Photoelectrochemical Water Splitting from Earth-Abundant CuO Thin Film Photocathode: Enhancing Performance and Photo-Stability through Deposition of Overlayers
Authors: Wilman Septina, Rajiv R. Prabhakar, Thomas Moehl, David Tilley
Abstract:
Cupric oxide (CuO) is a promising absorber material for the fabrication of scalable, low cost solar energy conversion devices, due to the high abundance and low toxicity of copper. It is a p-type semiconductor with a band gap of around 1.5 eV, absorbing a significant portion of the solar spectrum. One of the main challenges in using CuO as solar absorber in an aqueous system is its tendency towards photocorrosion, generating Cu2O and metallic Cu. Although there have been several reports of CuO as a photocathode for hydrogen production, it is unclear how much of the observed current actually corresponds to H2 evolution, as the inevitability of photocorrosion is usually not addressed. In this research, we investigated the effect of the deposition of overlayers onto CuO thin films for the purpose of enhancing its photostability as well as performance for water splitting applications. CuO thin film was fabricated by galvanic electrodeposition of metallic copper onto gold-coated FTO substrates, followed by annealing in air at 600 °C. Photoelectrochemical measurement of the bare CuO film using 1 M phosphate buffer (pH 6.9) under simulated AM 1.5 sunlight showed a current density of ca. 1.5 mA cm-2 (at 0.4 VRHE), which photocorroded to Cu metal upon prolonged illumination. This photocorrosion could be suppressed by deposition of 50 nm-thick TiO2, deposited by atomic layer deposition. In addition, we found that insertion of an n-type CdS layer, deposited by chemical bath deposition, between the CuO and TiO2 layers was able to enhance significantly the photocurrent compared to without the CdS layer. A photocurrent of over 2 mA cm-2 (at 0 VRHE) was observed using the photocathode stack FTO/Au/CuO/CdS/TiO2/Pt. Structural, electrochemical, and photostability characterizations of the photocathode as well as results on various overlayers will be presented.Keywords: CuO, hydrogen, photoelectrochemical, photostability, water splitting
Procedia PDF Downloads 224224 Catalytic Synthesis and Characterization of N-(4-(Tert-Butyl) Benzyl)-1-(4-Tert-Butyl) Phenyl)-N-Methyl Methanaminium Chloride from Tert-Butyl Benzyl Derivatives
Authors: Muhammad A. Muhammad
Abstract:
Butenafine (N-4-tert-butyl benzyl-N-methyl-1-naphthylene methylamine hydrochloride) is a benzylamine antimycotic (antifungal) agent that has a broad spectrum of action. The quest for improved antimycotic action brought about many research on the structure-activity properties of butenafine in relation to other antifungal agents. Of all those research, only little or no effort was recorded on the substituents attached to the aromatic systems in butenafine. In this research, N-(4-(tert-butyl) benzyl)-1-(4-tert-butyl) phenyl)-N-methyl methanaminium chloride, which is a butenafine analogue was synthesised from tert-butyl benzyl derivatives, by reductive amination using various solvents through a direct approach, where 1,2-dichloroethane gave the best solvent action at 40 °C (Yield: 75%) and of all the reducing agents used, sodium borohydride was found to give the best reducing action in the presence of silica chloride at room temperature (Yield: 50%). Characterization of the compound by 1H NMR showed a singlet peak of 18 hydrogen atoms with a chemical shift at 1.3-1.5 ppm for the presence of 6 methyl groups in the two tert-butyl substituents, the 13C NMR also indicated the presence of the two tert-butyl substituents by the peak with a chemical shift at 31-32 ppm for the six methyl carbon atoms, the IR indicated the presence of a tertiary ammonium ion by a strong band at 2460 cm-1 and finally the EIS-MS confirmed the molar mass of the compound by a mass to charge ratio of 324.2693. These results suggested that the target molecule was actually synthesised and therefore, 1,2-dichloroethane is a good solvent for this synthesis, and the most suitable reducing agent is sodium borohydride.Keywords: antimicrobial agents, antimycotic agents, butenafine, chemotherapeutic agents, semisynthetic agents
Procedia PDF Downloads 293223 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application
Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh
Abstract:
Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide
Procedia PDF Downloads 180222 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking
Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier
Abstract:
In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time
Procedia PDF Downloads 81221 The Effect of Kelp Ecklonia maxima Inclusion in Formulated Feed on Growth, Feed Utilization and the Gut Microbiota of South African Abalone Haliotis Midae
Authors: Aldi Nel, Cliff L. W. Jones, Justin O. G. Kemp, Peter J. Britz
Abstract:
Kelp Ecklonia maxima is included in formulated abalone feeds in South Africa, but its effect on abalone growth, feed utilisation efficiency and gut-bacterial communities has not previously been investigated. An eight-month on-farm growth trial with sub-adult Haliotis midae (~43 mm shell length) fed graded levels of kelp in formulated feeds was conducted. Kelp inclusion (0.44–3.54 % of pellet dry mass) promoted faster growth (65.7 – 74.5 % total mass gain), with better feed and protein conversions (FCR: 1.4 – 1.8; PER 2.3 – 2.7), compared to abalone fed the non-supplemented feed (52.3% total mass gain; FCR: 2.1; PER 1.9; p < 0.001). The gut-bacterial communities of abalone fed kelp-supplemented feed (0.88 % of pellet dry mass) were subsequently compared with that of abalone fed a non-supplemented control diet. Abalone gut-bacterial DNA was sequenced using 16S rRNA pyrosequencing and sequences were clustered into operational taxonomic units (OTUs) at a 97 % similarity level. A supplementary 16S rRNA denaturing gradient gel electrophoresis (DGGE) analysis was conducted. The dominant OTUs differed in terms of their relative abundances, with that of an autochthonous Mollicutes strain being significantly higher (p = 0.03) in the guts of abalone fed kelp-supplemented feed. The DGGE band patterns displayed a higher within-group variability of dominant bacterial strains for abalone fed the control diet, suggesting that dietary inclusion of kelp, which is rich in fermentable polysaccharides, promotes a balanced gut-bacterial community. This may contribute to the better feed utilisation and growth in abalone fed kelp-supplemented feeds.Keywords: abfeed, digestion, macroalgae, mariculture
Procedia PDF Downloads 284220 Sun-Light Driven Photocatalytic Degradation of Tetracycline Antibiotics Employing Hydrothermally Synthesized sno₂/mnv₂o₆ Heterojunction
Authors: Sandeep Kaushal
Abstract:
Tetracycline (TC) is a widespread antibiotic that is utilised in a multitude of countries, particularly China, India, and the United States of America, due to its low cost and potency in boosting livestock production. Unfortunately, certain antibiotics can be hazardous to living beings due to metal complexation and aggregation, which can lead to teratogenicity and carcinogenicity. Heterojunction photocatalysts are promising for the effective removal of pollutants like antibiotics. Herein, a simple, economical, and pollution-less hydrothermal technique was used to construct SnO₂/MnV₂O₆heterojunction with varying amounts of tin dioxide (SO₂). Various sophisticated techniques like XRD, FTIR, XPS, FESEM, HRTEM, and PLand Raman spectroscopy demonstrated the successful synthesis of SnO₂/MnV₂O₆ heterojunction photocatalysts.BET surface area analysis revealed that the as-synthesized heterojunction has a favorable surface area and surface properties for efficacious degradation of tetracycline. Under the direct sunlight exposure, the SnO₂/MnV₂O₆ heterojunction possessed superior photodegradation activity toward TC than the pristine SnO₂ and MnV2O6owing to their excellent adsorption abilities suitable band positions, large surface areas along with the effective charge-transfer ability of the heterojunction. The SnO₂/MnV₂O₆ heterojunction possessed extraordinary efficiency for the photocatalytic degradation of TC antibiotic (98% in 60 min) with an apparent rate constant of 0.092 min–1. In the degradation experiments, photocatalytic activities of as-synthesized heterojunction were studied by varying different factors such as time contact, catalyst dose, and solution pH. The role of reactive species in antibiotics was validated by radical scavenging studies, which indicated that.OH, radical has a critical role in photocatalytic degradation. Moreover, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.Keywords: photocatalytic degradation, tetracycline, heterojunction, LC-MS
Procedia PDF Downloads 106219 Korea and Japan Economic Relations: An Analysis through the World Trade Organization Panels
Authors: Caroline S. Dutra, Tatiana C. Squeff
Abstract:
It is well known that the history between South Korea and Japan influences their international relations; thus, also encompassing their economic relations. In this sense, it is impossible to analyze the latter without understanding the development of the former, which is known for episodes of hostility, like on Japanese colonization, but also had moments of cultural and trade interexchange. Indeed, since 1965, with the establishment of diplomatic relations between both countries, their trade relations have improved, especially after both nations have signed the General Agreement on Tariffs and Trade (GATT). Thereafter, with the establishment of the World Trade Organization (WTO) in 1995, another chapter of their diplomatic and economic relations have been inaugurated. Hence, bearing in mind this history between both nations, this research intends to examine their relations through the analysis of the WTO panels they have engaged in between each other, which are, in chronological order, “DS323: Japan – Import Quotas on Dried Laver and Seasoned Laver”, “DS336: Japan - Countervailing Duties on Dynamic Random Access Memories from Korea”, “DS495: Korea - Import Band, and Testing and Certification Requirements for Radionuclides”, “DS553: Korea - Sunset Review of Anti-Dumping Duties on Stainless Steel Bars” and “DS571: Korea - Measures Affecting Trade in Commercial Vessels”. The objective of this case analysis is to point out what are the areas that are more conflictual between Japan and South Korea in regard to their economic relations so that it is possible to assert on their future (economic) relations and other possible outcomes. And in order to do so, bibliographic and documental research will be made, particularly those involving the WTO and the nations under consideration. Regarding the methods used, it is important to highlight that this is applied research in the field of international economic relations and international law, which follows a hypothetic-deductive model.Keywords: international economic relations, Japan, South Korea, World Trade Organization
Procedia PDF Downloads 166218 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines
Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu
Abstract:
The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity
Procedia PDF Downloads 490217 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 68216 Structural Anatomy and Deformation Pattern of the Palghat-Cauvery Shear Zone in the Central Sector, Tamil Nadu, Southern India
Authors: Mrinal Mukherjee, Gargi Seal, Bitopan Mazumdar, Prakhar Agarwal
Abstract:
The central sector of Palghat-Cauvery Shear zone Tamil Nadu, India, had been studied with reference to development, mode of occurrence, interrelationship and variation of structural elements. The litho assemblages of the study area include gneisses migmatites granites and bear signature of multistage deformation patterns. The early deformation D1 is characterized in migmatites and gneisses by the development of tight to isoclinal, recumbent to reclined folds within the compositional bands that are refolded subsequently to produce D2 deformation structures ranging from type-II to type-III superposed geometry. The granite, in general, is undeformed, save a few places where strong mylonitic foliation developed with stretching lineation on it. The D1-D2 structures of gneisses and migmatites were affected by a D3 stage- E-W trending shear zone (Palghat-Cauvery Shear zone) that dips steeply towards north. The shear zone is characterized by the development of mylonite zone with stretching lineation on foliation, shear band structures, modification of geometry and orientation of earlier folds and foliations within the shear zone and development of shear induced folds and foliations. Several anastomosing lenses of shear zones define the larger Palghat-Cauvery Shear zone. The orientation of the shear induced folds and foliations and deflections of earlier foliation and folds within the Palghat-Cauvery shear zone indicate an oblique-slip thrust-shear with north-towards-east sense of displacement. The E-W trending shear zone is further openly folded along N-S in the D4 stage of deformation.Keywords: deformation, migmatites, mylonites, shear zones
Procedia PDF Downloads 190