Search results for: Ames Salmonella assay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1335

Search results for: Ames Salmonella assay

435 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 849
434 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior

Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release

Procedia PDF Downloads 224
433 Ecotoxicity Evaluation Methodology for Metallurgical and Steel Wastes

Authors: G. Pelozo, N. Quaranta

Abstract:

The assessment of environmental hazard and ecotoxicological potential of industrial wastes has become an issue of concern in many countries. Therefore, the aim of this work is to develop a methodology, adapting an Argentinian standard, which allows analyze the ecotoxicological effect of various metallurgical and steel wastes. Foundry sand, white mud, red mud, electric arc furnace dust, converter slag, among others, are the studied wastes. The species used to analyze the ecotoxicological effects of wastes is rye grass (Lolium Perenne). The choice of this kind lies, among other things, in its easy and rapid germination making it possible to develop the test in a few days. Moreover, since the processes involved are general for most seeds, the obtained results with this kind are representative, in general, of the effects on seeds or seedlings. Since the studied residues are solids, prior to performing the assay, an eluate is obtained by stirring for 2 hours and subsequent filtration of a solution of waste in water in a relationship of 1:4. This represents 100% of eluate from which two dilutions in water (25% and 50%) are prepared. A sample with untreated solid waste and water is also performed. The test is performed by placing two filter papers in a Petri dish that are saturated with 3.5ml of the prepared dilutions. After that 20 rye grass seeds are placed, and the Petri dishes are covered and the seeds are incubated for 120 hours at 24 °C. Reference controls are carried out by distilled water. Three replicates are performed for each concentration. Once the exposure period is finished, inhibiting elongation of the root is measured (IR). The results of this test show that all the studied wastes produce an unfavorable effect on the development of the seedlings, being the electric arc furnace dust which more affects the germination.

Keywords: ecotoxicity, industrial wastes, environmental hazard, seeds

Procedia PDF Downloads 403
432 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 447
431 Wound Healing and Antioxidant Properties of 80% Methanol Leaf Extract of Verbascum sinaiticum (Scrophulariaceae), an Ethiopian Medicinal Plant

Authors: Solomon Assefa Huluka

Abstract:

Wounds account for severe morbidity, socioeconomic distress, and mortality around the globe.For several years, various herbal products are used to expediteand augment the innate wound healing process. In Ethiopian folkloricmedicine, Verbascum sinaiticum L. (V. sinaiticum) is commonlyapplied as a wound-healing agent. The present study investigated the potential wound healing and antioxidant properties of hydroalcoholic leaf extract of V. sinaiticum. The 80% methanol extract, formulated as 5% (w/w) and 10% (w/w) ointments, was evaluated in excision and incision wound models using nitrofurazone and simple ointment as positive and negative controls, respectively. Parameters such as wound contraction, period of epithelialization, and tensile strength were determined. Moreover, its in vitro antioxidant property was evaluated using a DPPH assay. In the excision model, both doses (5% and 10% w/w) of the extract showed a significant (p<0.001) wound healing efficacy compared to the negative control, as evidenced by enhanced wound contraction rate and shorter epithelialization time records. In the incision model, the lower dose (5% w/w) ointment formulation of the extract exhibited the maximum increment in tensile strength (85.6%) that was significant (p<0.001)compared to negative and untreated controls. Animals treated with 5% w/wointment, furthermore, showed a significantly (p < 0.05) higher percentage of tensile strength than nitrofurazone treated ones. Moreover, the hydroalcoholic extract of the plant showed a noticeable free radical scavenging property. The result of the present study upholds the folkloric use of V. sinaiticum in the treatment of wounds.

Keywords: wound healing, antioxidant, excision wound model, incision wound model, verbascum sinaiticum

Procedia PDF Downloads 89
430 Chemical Modifications of Carotol and Their Antioxidant Activity

Authors: Dalvir Kataria, Khushminder Kaur Chahal, Amit Kumar

Abstract:

The carrot seed essential oil was obtained by hydrodistillation. Hexane, dichloromethane, and methanol solvents were used for extraction of carrot seed by Soxhlet extraction methods. The major and minor compounds identified in carrot seed essential oil were carotol (52.73), daucol (5.10), daucene (5.68), (E)-β-farnesene (5.40), β-cubebene (3.19), longifolenaldehyde (3.23), β-elimene (3.23), (E)-caryophyllene (1.22), β-bisabolene (2.95) etc. The chemical composition of hexane, dichloromethane, and methanol extracts was different. Carotol was the common compound present. Major compounds isolated were from the carrot seed essential oil by column chromatography. Chemical transformations of carotol (2) with mercuric acetate/sodium borohydride, dry hydrochloric acid gas, acetonitrile/sulfuric acid, selenium dioxide/t-butyl hydrogen peroxide, N-bromosuccinimide, hydrogen iodide, and phenol were carried out. The derivatives of carotol were designed to explore the significance of some structural modifications in relation to antioxidant activities. The structures of major compounds and derivatives were confirmed on the basis of FT-IR, 1HNMR and 13CNMR spectroscopy. Antioxidant activity of carrot seed essential oil, various extracts and isolated compounds were tested by in vitro models involving 2, 2-diphenyl-1-picrylhydrazyl (DPPH•), hydroxyl (OH•), nitric oxide (NO•), superoxide radical scavenging methods and ferric reducing antioxidant power assay (FRAP). Chemical transformations of major isolated compound carotol were carried out, and antioxidant activity of all compounds was undertaken. The major sesquiterpenoidcarotol isolated from carrot seed essential oil showed the highest antioxidant activity in all the methods. The methanol extract showed higher antioxidant potential as compared to carrot seed essential oil, hexane, and dichloromethane extracts.

Keywords: antioxidant, carotol, carrot, DPPH

Procedia PDF Downloads 132
429 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion

Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri

Abstract:

To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.

Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa

Procedia PDF Downloads 131
428 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 313
427 Seroprevalence and Associated Factors of Hepatitis B and Hepatitis C Viral Infections among Prisoners in Tigrai, Northern Ethiopia

Authors: Belaynesh Tsegay Beyene, Teklay Gebrecherkos, Atsebaha Gebrekidan Kahsay, Mahmud Abdulkader

Abstract:

Background: Hepatitis B and C viruses are of important health and socioeconomic problem of the globe with remarkable diseases and deaths in Sub-Saharan African countries. The burden of hepatitis is unknown in the prison settings of Tigrai. Therefore, we aimed to describe the seroprevalence and associated factors of hepatitis B and C viruses among prisoners of Tigrai, Ethiopia. Methods: A cross-sectional study was carried out from February 2020 to May 2020 at the prison facilities of Tigrai. Demographics and associated factors were collected from 315 prisoners prospectively. Five milliliter of blood was collected and tested using rapid tests kits of HBsAg (Zhejiang orient Gene Biotech Co., Ltd., China) and HCV antibodies (Volkan Kozmetik Sanayi Ve Ticaret Ltd. STI, Turkey). Positive samples were confirmed using enzyme-linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise Co. Ltd). Data were analyzed using Statistical Package for Social Sciences (SPSS) version 20 and p < 0.05 was considered statistically significant. Results: The overall seroprevalence of HBV and HCV were 25 (7.9%) and 1(0.3%), respectively. The majority of hepatitis B viral infections were identified from the age groups of 18-25 years (10.7%) and unmarried prisoners (11.8%). Prisoners greater than 100 per cell [AOR =3.95, 95% CI= (1.15, 13.6, p =0.029)] and having history of alcohol consumption [AOR =3.01, 95% CI= (1.17, 7.74, p =0.022)] were significantly associated with HBV infections. Conclusions: The seroprevalence of HBV among prisoners was nearly high or borderline (7.9%) with a very low HCV prevalence (0.3%). HBV was most prevalent among young adults, large number of prisoners per cell and those who had history of alcohol consumption. This study recommends that there should be prison-focused intervention including regular health education by emphasis on the mode of transmission and introducing HBV screening policy for prisoners especially when they enter to the prison.

Keywords: seroprevalence, HBV, HCV, prisoners, Tigrai

Procedia PDF Downloads 73
426 Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria

Authors: Malalage Mudara Peiris

Abstract:

Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs.

Keywords: green nanotechnology, silver nanoparticles, bacteria, antimicrobial activity

Procedia PDF Downloads 206
425 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage

Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh

Abstract:

Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.

Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range

Procedia PDF Downloads 162
424 Comparison of Transforming Growth Factor-β1 Levels in the Human Gingival Sulcus during Canine Retraction Using Elastic Chain and Closed Coil Spring

Authors: Sri Suparwitri

Abstract:

When an orthodontic force is applied to a tooth, an inflammatory response is initiated then lead to bone remodeling process, and the process accommodates tooth movement. One of cytokine that plays a prominent role in bone remodeling process was transforming growth factor-beta 1 (TGF-β1). The purpose of this study was to identify and compare changes of TGF-β1 in human gingival crevicular fluid during canine retraction using elastic chain and closed coil spring. Ten patients (mean age 20.7 ± 2.9 years) participated. The patients were entering the space closure phase of fixed orthodontic treatment. An upper canine of each patient was retracted using elastic chain, and the contralateral canine was retracted using closed coil spring. Gingival crevicular fluid samples were collected from the canine teeth before and 7 days after the force was applied. Transforming growth factor-beta 1 was determined by enzyme-linked immunosorbent assay (ELISA). The concentrations of TGF-β1 at 7 days were significantly higher compared to before canine retraction in both groups. In the evaluation of between-group difference, before retraction, the difference was insignificant, whereas at 7 days significantly higher values were determined in the closed coil spring group compared to elastic chain group. The result suggests that TGF-β1 is associated with the bone remodeling that occurs during canine distalization movement. Closed coil spring gave higher TGF-β1 concentrations thus more bone remodeling occurred and may be considered the treatment of choice.

Keywords: closed coil spring, elastic chain, gingival crevicular fluid, TGF-β1

Procedia PDF Downloads 170
423 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell

Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim

Abstract:

Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.

Keywords: dolichos lablab, germination, neuroprotection, trigonelline

Procedia PDF Downloads 323
422 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice

Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza

Abstract:

Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.

Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E

Procedia PDF Downloads 427
421 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model

Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.

Abstract:

Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.

Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model

Procedia PDF Downloads 62
420 Response of Wheat and Lentil to Herbicides Applied in the Preceding Non-Puddled Transplanted Rainy Season Rice

Authors: Taslima Zahan

Abstract:

A field study was done in 2013-14 and 2014-15 by following bio-assay technique to determine the carryover effect of herbicides applied in rainy season rice on growth and yield of two probable succeeding crops of rice viz., wheat and lentil. Rice seedlings were transplanted on strip-tilled non-puddled field, and five herbicides named pyrazosufuron-ethyl, butachlor, orthosulfamuron, butachlor + propanil and 2,4-D amine were applied in rice at their recommended rate and time as eight treatment combinations and compared with one untreated control. Residual effects of those rice herbicides on the succeeding wheat and lentil were examined by following micro-plot bioassay technique. The study revealed that germination of wheat and lentil seeds were not affected by the residue of herbicides applied in the preceding rainy season rice. Shoot length of wheat and lentil seedlings of herbicide treated plots were also non-significantly varied with untreated control plots. Herbicide treated plots of wheat had higher leaf chlorophyll contents over the control plots by 1.8-14.0% on an average while in case of lentil herbicide treated plots had negligible amount of reduction in leaf chlorophyll contents than control plots. Grain yields of wheat and lentil in herbicide treated plots were higher than control plots by 2.8-6.6% and 0.2-10.9%, respectively. Therefore, two-year bioassay study claimed that tested herbicides applied in rainy season rice under strip-tilled non-puddled field had no adverse residual effect on growth and yield of the succeeding wheat and lentil.

Keywords: crop sensitivity, herbicide persistence, minimum tillage rice, yield improvement

Procedia PDF Downloads 160
419 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis

Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas

Abstract:

Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.

Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum

Procedia PDF Downloads 161
418 Chitosan Doped Curcumin Gold Clusters Flexible Nanofiber for Wound Dressing and Anticancer Activities

Authors: Saravanan Govindaraju, Kyusik Yun

Abstract:

The purpose of this study is to develop the chitosan doped curcumin gold cluster nanofiber for wound healing and skin cancer drug delivery applications. Chitosan is a typical marine polysaccharide composed of glucosamine and n-acetyl glucosamine biodegradable and biocompatible polymer. Curcumin is a natural bioactive molecule obtained from Curcuma longo, it mostly occurs in some Asian countries like India and China. It has naturally antioxidant, antimicrobial, wound healing and anticancer property. Due to this advantage, we prepared a combination of natural polymer chitosan with Curcumin and gold nanocluster nanofiber (CH-CUR-AuNCs nanofibers). The prepared nanofiber was characterized by using Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Antibacterial studies were performed with E.coli and S.aureus. Antioxidant assay, drug release test, and cytotoxicity will be evaluated. Prepared nanofiber emits low intensity of red fluorescent. The FTIR confirm the presence of chitosan and Curcumin in the nanofiber. In vitro study clearly shows the antibacterial activity against the gram negative and gram positive bacteria. Particularly, synthesised nanofibers provide better antibacterial activity against gram negative than gram positive. Cytotoxicity study also provides better killing rate in cancer cell, biocompatible with normal cell. Prepared CH-CUR-AuNCs nanofibers provide the better killing rate to bacterial strains and cancer cells. Finally, prepared nanofiber can be possible to use for wound healing dressing, patch for skin cancer and other biomedical applications.

Keywords: curcumin, chitosan, gold clusters, nanofibers

Procedia PDF Downloads 261
417 Role of Giardia lamblia Infection in the Pathogenesis of Gastritis in Patients with Dyspepsia

Authors: Aly Kassem, Eman A. Sabet, Hanaa A. El-Hady, Doha S. Mohamed, Abeer Sheneef, Mona Fattouh, Mamdouh M. Esmat

Abstract:

Objective: Giardia lamblia parasite is the most common protozoal infection in human. Concomitant Helecobacter Pylori (H. pylori) and Giardia lamblia infection is common for their similar mode of transmission and strong correlation to socioeconomic levels. Only few reports had described gastric giardiasis. Our aim was to detect H. pylori and Giardia in gastric antral mucosal biopsies from patients with dyspepsia. The impact of both pathogens on clinical, endoscopic and histopathogical changes was studied. Methods: 48 patients with dyspepsia (group1) and 28 control patients (patients undergoing esophagogastroduodenoscopy EGD for reasons other than dyspepsia), (group 2) were studied. Endoscopic data were reported and gastric biopsy specimens were obtained for subsequent PCR assay for both organisms and for histopathological and electron microscopic examination. Results: Endoscopic antral gastritis and duodenal lesions were found in both groups, however, they were significantly more frequently in group 1 (p= 0.002 and P= 0.0005 respectively). Esophageal lesions, nodular antral gastritis, gastric ulcers and superficial corpal gastritis were found only in group 1. PCR detected H. pylori infection in 58% Vs 64 % for group 1 and group 2 respectively (P: NS). Giardia infection was present in 67 % Vs 42 % for group 1 and group 2 respectively (P=0.0003, Odd ratio=2.6). Co-infection with H. pylori and Giardia was present in 33% of group 1 Vs 36% for group 2 (P:NS). Abnormal histologic findings were found in both groups, however, intestinal metaplasia was found in group 1 only. Cellular abnormalities in the form of cytoplasmic vacuoles, mitochondrial destruction or nuclear abnormalities were found by Electron microscopic study in infected subjects of both groups. Conclusion: H. pylori is not the only gastric pathogen in our community, gastric giardiasis is another pathogen. Its contribution might be a factor in persistent dyspepsia after H. pylori eradication.

Keywords: dyspepsia, gastritis, Giardia lamblia, H. pylori

Procedia PDF Downloads 305
416 Biochemical and Pomological Variability among 14 Moroccan and Foreign Cultivars of Prunus dulcis

Authors: H. Hanine, H. H'ssaini, M. Ibno Alaoui, A. Nablousi, H. Zahir, S. Ennahli, H. Latrache, H. Zine Abidine

Abstract:

Biochemical and pomological variability among 14 cultivars of Prunus dulcis planted in a germoplasm collection site in Morocco were evaluated. Almond samples from six local and eight foreign cultivars (France, Italy, Spain, and USA) were characterized. Biochemical and pomological data revealed significant genetic variability among the 14 cultivars; local cultivars exhibited higher total polyphenol content. Oil content ranged from 35 to 57% among cultivars; both Texas and Toundout genotypes recorded the highest oil content. Total protein concentration from select cultivars ranged from 50 mg/g in Ferraduel to 105 mg/g in Rizlane1 cultivars. Antioxidant activity of almond samples was examined by a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging assay; the antioxidant activity varied significantly within the cultivars, with IC50 (the half-maximal inhibitory concentration) values ranging from 2.25 to 20 mg/ml. Autochthonous cultivars originated from the Oujda region exhibited higher tegument total polyphenol and amino acid content compared to others. The genotype Rizlane2 recorded the highest flavonoid content. Pomological traits revealed a large variability within the almond germplasms. The hierarchical clustering analysis of all the data regarding pomological traits distinguished two groups with some particular genotypes as distinct cultivars, and groups of cultivars as polyclone varieties. These results strongly exhibit a potential use of Moroccan-originated almonds as potential clones for future selection due to their nutritional values and pomological traits compared to well-established cultivars.

Keywords: antioxidant activity, DDPH, Moroccan almonds, Prunus dulcis

Procedia PDF Downloads 242
415 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer

Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam

Abstract:

Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.

Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations

Procedia PDF Downloads 131
414 Rrelationship Between Intrauterine Growth Retardation and TORCH Infections in Neonates

Authors: Seyed Saeid Nabavi

Abstract:

Background: Many infants with intrauterine growth disorder are screened for TORCH infections. This action has no economic justification in terms of the imposed costs. In this regard, due to the research gap in this field, this study aimed to investigate the relationship between intrauterine growth disorder and TORCH infection in neonates referred to Milad hospital in 2019 and 2020. Materials and Methods: In this cross-sectional study, 41IUGR newborns were selected and evaluated based on diagnostic and clinical studies in Milad Hospital in 2019 and 2020. TORCH results found in IgG and IgM antibody titer assay were tested in mother and infant. Antibody titers of toxoplasmosis, rubella, cytomegalovirus, herpes, and syphilis were determined in cases, and other variables were compared. The collected data were entered in SPSS software 25 and analyzed at a significant level of 0.05 using the statistical tests of Kolmogorov–Smirnov, Shapiro–Wilk, chi-square, and Mann–Whitney. Results: Most of the IUGR infants studied were girls (68.3%), Gravida and Parity were reported to be 68.3% and 80%, respectively, in the study. Mean weight, APGAR score, and neonatal gestational age are reported as 1710.62±334.43 g, 7.71±1.47, and 35.7+ 1.98 weeks, respectively. Most of the newborns were born by cesarean section (92.7%). TORCH infection was reported in three patients, 7.3%. The mean gestational age of IUGR infants with TORCH infection was reported to be less than other babies with IUGR. Therefore, the mean gestational age of subjects with TORCH infection was 33±1.4 weeks and in others 35.94±1.91 weeks (p-value = 0.038). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found (p-value > 0.05). Conclusion: TORCH infection was reported in 3 patients( 7.3%). No significant relationship between TORCH infection and gender, gravidity, and parity of newborns was found. p-value > 0.05

Keywords: congenital infection, intrauterine growth restriction, TORCH infections, neonates

Procedia PDF Downloads 133
413 Microbial Analysis of Street Vended Ready-to-Eat Meat around Thohoyandou Area, Vhembe District, Limpopo Province, RSA

Authors: Tshimangadzo Jeanette Raedani, Edgar Musie, Afsatou Traore

Abstract:

Background: Street-vended meats, including chicken, pork, and beef, are popular in urban areas worldwide due to their convenience and affordability. However, these meats often pose a significant risk of foodborne diseases. The high water activity, protein content, and nearly neutral pH of meat create conditions conducive to the growth of pathogenic bacteria. Street foods, particularly meats, are frequently linked to outbreaks of foodborne illnesses due to potential contamination from improper handling and preparation. This study aimed to assess the microbial quality and safety of street-vended ready-to-eat meat sold in the Thohoyandou area. Method: The study involved collecting 168 samples of street-vended meat, split evenly between chicken (n=84) and beef (n=84), from various vendors around Thohoyandou. The samples were randomly selected and transported in sterile conditions to the Department of Food Microbiology at the University of Venda for analysis. Each 10-gram sample was cultured in selective media: MSA for Staphylococcus aureus, EMB for E. coli O157, XLD agar for Salmonella, and Sorbitol McConkey for Shigella. After initial culturing, the presumptive colonies were sub-cultured for purification and identified through Gram staining and biochemical tests, including Catalase, API 20E, Klingler Iron Agar Test, and Vitek 2 system. Antibiotic susceptibility was tested using agents such as Ampicillin, Chloramphenicol, Penicillin, Neomycin, Tetracycline, Streptomycin, and Amoxicillin. Molecular characterization was performed to identify E. coli pathotypes using multiplex PCR. Results: Out of 168 samples tested, 32 (19%) were positive for Staphylococcus spp., with the highest prevalence found in cooked chicken meat. The most common staphylococcus species identified were S. xylosus (13.2%) and S. saprophyticus (10.5%). E. coli was present in 29 (19.3%) of the samples, with the highest prevalence in fried chicken. Antibiotic susceptibility testing showed that 100% of E. coli isolates were resistant to Ampicillin, Tetracycline, and Penicillin, but 100% were susceptible to Neomycin. Staphylococcus spp. isolates were also 100% resistant to Ampicillin and 100% susceptible to Neomycin. The study detected a range of virulence genes in E. coli, with prevalence rates from 13.33% to 86.67%. The identified pathotypes included EPEC, EHEC, ETEC, EAEC, and EIEC, with many isolates showing mixed pathotypes. Conclusion: The study highlighted that the microbial quality and safety of street-vended meats in Thohoyandou are inadequate, rendering them unsafe for consumption. The presence of pathogenic microorganisms in both beef and chicken samples indicates significant risks associated with poor personal hygiene and food preparation practices. This underscores the need for improved monitoring and stricter food safety measures to prevent foodborne diseases and ensure consumer safety.

Keywords: meat, microbial analysis, street vendors, E. coli

Procedia PDF Downloads 27
412 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 295
411 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 123
410 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid

Authors: Anindita Sen

Abstract:

Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.

Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid

Procedia PDF Downloads 59
409 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 174
408 Antibacterial Activity and Kinetic Parameters of the Essential Oils of Drypetes Gossweileri S.Moore, Ocimun Gratissimum L. and Cymbopogon Citratus DC Stapf on 5 Multidrug-Resistant Strains of Shigella

Authors: Elsa Makue Nguuffo, Esther Del Florence Moni Ndedi, Jacky Njiki Bikoï, Jean Paul Assam Assam, Maximilienne Ascension Nyegue

Abstract:

Aims: The present study aims to evaluate the kinetic parameters of essential oils (EOs) and combinations fromDrypetes gossweileri Stem Bark, Ocimum gratissimum leaves, Cymbopogon citratusleaves after evaluation of their antibacterial activityonmultidrug-resistant strains ofShigella. Material and Methods:fiveclinical strains of Shigellaisolated from patients with diarrhoeaincluding Shigella flexneri, and 4 otherstrains of Shigella sppwere selected. Their antibiotic profile was established using agar test diffusion with seven antibiotics belonging to seven classes.EOs were extracted from each plant using hydrodistillation process. The activity of Ciprofloxacin®, OEs, and their combination formulatedinthe followingratios(w/w/w): C1: 1/1/1; C2: 2/1/1; C3: 1/2/1, C4:1/1/2 was evaluated microdilution assay. The various interactions of OEs in the different combinations were determined then the OE and the most active combination were retained to determine their kinetic parameters on S. flexneri. Results: Antibiotic susceptibility tests revealed that most Shigella isolates (n = 4) were resistant to six antibiotics tested. Ciprofloxacin (40%), Nalidixic acid (60%), Tetracycline (80%), Amoxicillin (100%), Cefotaxime (80%), Erythromycin (100%), and Cotrimoxazole (80%) were the profiles found in the different strains of Shigella. About the antibacterial activity of OEs, Drypetes gossweileriOE and C2 combination had shown a higher Shigellicide property with a Minimal Inhibitory Concentration(MIC) respectivelyranging from 0.078 mg/mL to 0.312 mg/mL and 0.012 to 1.562 mg/mL. Combinations of OEs showed various interactions whose synergistic effects were mostly encountered. The best deactivation was obtained by the combination C2 at 16 MIC withb= 1.962. Conclusion: the susceptibility of Shigella to OEs and their combinations justifies their use in traditional medicine in the treatment of shigellosis.

Keywords: shigella, multidrug-resistant, EOs, kinetic

Procedia PDF Downloads 98
407 Optimization of Enzymatic Hydrolysis of Cooked Porcine Blood to Obtain Hydrolysates with Potential Biological Activities

Authors: Miguel Pereira, Lígia Pimentel, Manuela Pintado

Abstract:

Animal blood is a major by-product of slaughterhouses and still represents a cost and environmental problem in some countries. To be eliminated, blood should be stabilised by cooking and afterwards the slaughterhouses must have to pay for its incineration. In order to reduce the elimination costs and valorise the high protein content the aim of this study was the optimization of hydrolysis conditions, in terms of enzyme ratio and time, in order to obtain hydrolysates with biological activity. Two enzymes were tested in this assay: pepsin and proteases from Cynara cardunculus (cardosins). The latter has the advantage to be largely used in the Portuguese Dairy Industry and has a low price. The screening assays were carried out in a range of time between 0 and 10 h and using a ratio of enzyme/reaction volume between 0 and 5%. The assays were performed at the optimal conditions of pH and temperature for each enzyme: 55 °C at pH 5.2 for cardosins and 37 °C at pH 2.0 for pepsin. After reaction, the hydrolysates were evaluated by FPLC (Fast Protein Liquid Chromatography) and tested for their antioxidant activity by ABTS method. FPLC chromatograms showed different profiles when comparing the enzymatic reactions with the control (no enzyme added). The chromatogram exhibited new peaks with lower MW that were not present in control samples, demonstrating the hydrolysis by both enzymes. Regarding to the antioxidant activity, the best results for both enzymes were obtained using a ratio enzyme/reactional volume of 5% during 5 h of hydrolysis. However, the extension of reaction did not affect significantly the antioxidant activity. This has an industrial relevant aspect in what concerns to the process cost. In conclusion, the enzymatic blood hydrolysis can be a better alternative to the current elimination process allowing to the industry the reuse of an ingredient with biological properties and economic value.

Keywords: antioxidant activity, blood, by-products, enzymatic hydrolysis

Procedia PDF Downloads 509
406 Antiplasmodial Activity of Drimane Sesquiterpene Isolated from Warburgia salutaris

Authors: Mthokozisi Simelane

Abstract:

Background: Malaria remains a life-threatening disease in tropical regions despite the advances in the treatment of this disease, it still remains a significant burden as some parasites have become resistant to the currently available drugs. This has created a necessity for the development of alternative, more efficient antimalarial drugs. Warburgia salutaris is a traditional medicinal plant used in malaria treatment by Zulu traditional healers. Materials and methods: The W. salutaris stem-bark was extracted with dichloromethane and the compound was isolated through column chromatography. The compound was identified and characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS) and the structure was also confirmed by x-ray crystallography. The anti-plasmodial activity (in vitro) was studied on NF54 Plasmodium falciparum strain (CQS). Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Docking of Mukaadial acetate was conducted in AutoDock Vina. Structural modifications were conducted in UCSF Chimera and molecular interactions examined in LigPlot. Results: The compound, Mukaadial Acetate showed appreciable inhibition (IC50 0.44±0.10 µg/ml) of the parasite growth and cytotoxicity activity of 0.124±0.109 and 0.199±0.083 (µg/ml) on HEK293 and HEPG2 cells respectively. Molecular docking revealed that Mukaadial Acetate binds to the purine, pyrophosphate and ribose binding sites of the PfHGXPRT with an optimum binding conformation and forms hydrogen bond, steric and hydrophobic interactions with the residues inhabiting the respective binding sites. Conclusion: It is apparent that W. salutaris contains components (including Mukaadial Acetate) that exhibit antimalarial activity. This study scientifically validates the use of this plant in folk medicine.

Keywords: plasmodium falciparum, molecular docking, antimalarial activity, PfHGXPRT, Warburgia salutaris, mukaadial acetate

Procedia PDF Downloads 197