Search results for: power flow
1435 Modeling and Design of E-mode GaN High Electron Mobility Transistors
Authors: Samson Mil'shtein, Dhawal Asthana, Benjamin Sullivan
Abstract:
The wide energy gap of GaN is the major parameter justifying the design and fabrication of high-power electronic components made of this material. However, the existence of a piezo-electrics in nature sheet charge at the AlGaN/GaN interface complicates the control of carrier injection into the intrinsic channel of GaN HEMTs (High Electron Mobility Transistors). As a result, most of the transistors created as R&D prototypes and all of the designs used for mass production are D-mode devices which introduce challenges in the design of integrated circuits. This research presents the design and modeling of an E-mode GaN HEMT with a very low turn-on voltage. The proposed device includes two critical elements allowing the transistor to achieve zero conductance across the channel when Vg = 0V. This is accomplished through the inclusion of an extremely thin, 2.5nm intrinsic Ga₀.₇₄Al₀.₂₆N spacer layer. The added spacer layer does not create piezoelectric strain but rather elastically follows the variations of the crystal structure of the adjacent GaN channel. The second important factor is the design of a gate metal with a high work function. The use of a metal gate with a work function (Ni in this research) greater than 5.3eV positioned on top of n-type doped (Nd=10¹⁷cm⁻³) Ga₀.₇₄Al₀.₂₆N creates the necessary built-in potential, which controls the injection of electrons into the intrinsic channel as the gate voltage is increased. The 5µm long transistor with a 0.18µm long gate and a channel width of 30µm operate at Vd=10V. At Vg =1V, the device reaches the maximum drain current of 0.6mA, which indicates a high current density. The presented device is operational at frequencies greater than 10GHz and exhibits a stable transconductance over the full range of operational gate voltages.Keywords: compound semiconductors, device modeling, enhancement mode HEMT, gallium nitride
Procedia PDF Downloads 2591434 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 521433 Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films
Authors: Vineet Barwal, Sajid Husain, Nanhe Kumar Gupta, Soumyarup Hait, Sujeet Chaudhary
Abstract:
High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications.Keywords: magnetoresistance, perpendicular magnetic anisotropy, spintronics, thin films
Procedia PDF Downloads 1241432 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications
Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries
Abstract:
A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing
Procedia PDF Downloads 4601431 Digital Female Entrepreneurs in South Africa: Drivers and Relationship to Economic Development
Authors: C. van den Berg, C. Pokpas
Abstract:
Popular discourse touts entrepreneurship as a universal solution for underdevelopment, unemployment, and poverty. Moreover, claims are made that women and other disadvantaged groups can achieve material and personal success through digital entrepreneurship. This paper examines the potential of digital technology in entrepreneurial ventures to stimulate economic growth for marginalized groups and communities. Although digital entrepreneurship is hailed as a means to empower under-resourced and socially marginalized people, these opportunities still exist within the confines of existing social and cultural practices. The perspectives of female digital entrepreneurs in developing countries are sorely understudied, particularly concerning an understanding of the complex underlying socio-cultural factors impeding women’s entrepreneurial behaviors. This qualitative study, guided by a feminist phenomenological perspective, focused on the experiences of digital female entrepreneurs in the Western Cape of South Africa. Data were collected via semi-structured interviews and analyzed through the interpretative phenomenological analysis (IPA) approach to determine the relationships between digital entrepreneurship and structural and agential enabling conditions. Findings show that digital entrepreneurship is not a panacea for economic growth in marginalized groups and communities and highlight the importance of addressing socio-cultural gender inequality to enable successful entrepreneurial activity. The paper concludes with recommendations for specialized training initiatives aimed at female entrepreneurs that address internalized constraints and barriers that keep women subservient and measures to shift gender and power beliefs. The outcome will benefit the stimulation of gender-specific public policies to develop a successful digital start-up ecosystem further.Keywords: digital innovation, female digital entrepreneurs, feminist phenomenology, gender, marginalised communities
Procedia PDF Downloads 1351430 Potential Use of Thymus mastichina L. Extract as a Natural Agent against Cheese Spoilage Microorganisms
Authors: Susana P. Dias, Andrea Gomes, Fernanda M. Ferreira, Marta F. Henriques
Abstract:
Thymus mastichina L. is an endogenous medicinal and aromatic plant of the Mediterranean flora. It has been used empirically over the years as a natural preservative in food. Nowadays, the antimicrobial activity of its bioactive compounds, such as essential oils and extracts, has been well recognized. The main purpose of this study was to evaluate the antimicrobial effect of Thymus mastichina ethanolic and aqueous extracts on pathogens and spoilage microorganisms present in cheese during ripening. The effect that the extract type and its concentration has on the development of Staphylococcus aureus, Escherichia coli, and Yarrowia lipolytica populations during 24 hours, was studied 'in vitro' using appropriate culture media. The results achieved evidenced the antimicrobial activity of T. mastichina extracts against the studied strains, and the concentration of 2 mg/mL (w/v) was selected and used directly on the cheese surface during ripening. In addition to the microbiological evaluation in terms of total aerobic bacteria, Enterobacteriaceae, yeasts (particularly Y. lipolytica) and molds, the treated cheeses physicochemical evaluation (humidity, aw, pH, colour, and texture) was also performed. The results were compared with cheeses with natamicyn (positive control) and without any treatment (negative control). The physicochemical evaluation showed that the cheeses treated with ethanolic extract of Thymus mastichina, except the fact that they lead to a faster water loss during ripening, did not present considerable differences when compared to controls. The study revealed an evident antimicrobial power of the extracts, although less effective than the one shown by the use of natamycin. For this reason, the improvement of the extraction methods and the adjustment of the extract concentrations will contribute to the use of T. mastichina as a healthier and eco-friendly alternative to natamycin, that is also more attractive from an economic point of view.Keywords: antimicrobial activity, cheese, ethanolic extract, Thymus mastichina
Procedia PDF Downloads 1741429 Software Development to Empowering Digital Libraries with Effortless Digital Cataloging and Access
Authors: Abdul Basit Kiani
Abstract:
The software for the digital library system is a cutting-edge solution designed to revolutionize the way libraries manage and provide access to their vast collections of digital content. This advanced software leverages the power of technology to offer a seamless and user-friendly experience for both library staff and patrons. By implementing this software, libraries can efficiently organize, store, and retrieve digital resources, including e-books, audiobooks, journals, articles, and multimedia content. Its intuitive interface allows library staff to effortlessly manage cataloging, metadata extraction, and content enrichment, ensuring accurate and comprehensive access to digital materials. For patrons, the software offers a personalized and immersive digital library experience. They can easily browse the digital catalog, search for specific items, and explore related content through intelligent recommendation algorithms. The software also facilitates seamless borrowing, lending, and preservation of digital items, enabling users to access their favorite resources anytime, anywhere, on multiple devices. With robust security features, the software ensures the protection of intellectual property rights and enforces access controls to safeguard sensitive content. Integration with external authentication systems and user management tools streamlines the library's administration processes, while advanced analytics provide valuable insights into patron behavior and content usage. Overall, this software for the digital library system empowers libraries to embrace the digital era, offering enhanced access, convenience, and discoverability of their vast collections. It paves the way for a more inclusive and engaging library experience, catering to the evolving needs of tech-savvy patrons.Keywords: software development, empowering digital libraries, digital cataloging and access, management system
Procedia PDF Downloads 791428 Assessment of Hydrologic Response of a Naturalized Tropical Coastal Mangrove Ecosystem Due to Land Cover Change in an Urban Watershed
Authors: Bryan Clark B. Hernandez, Eugene C. Herrera, Kazuo Nadaoka
Abstract:
Mangrove forests thriving in intertidal zones in tropical and subtropical regions of the world offer a range of ecosystem services including carbon storage and sequestration. They can regulate the detrimental effects of climate change due to carbon releases two to four times greater than that of mature tropical rainforests. Moreover, they are effective natural defenses against storm surges and tsunamis. However, their proliferation depends significantly on the prevailing hydroperiod at the coast. In the Philippines, these coastal ecosystems have been severely threatened with a 50% decline in areal extent observed from 1918 to 2010. The highest decline occurred in 1950 - 1972 when national policies encouraged the development of fisheries and aquaculture. With the intensive land use conversion upstream, changes in the freshwater-saltwater envelope at the coast may considerably impact mangrove growth conditions. This study investigates a developing urban watershed in Kalibo, Aklan province with a 220-hectare mangrove forest replanted for over 30 years from coastal mudflats. Since then, the mangrove forest was sustainably conserved and declared as protected areas. Hybrid land cover classification technique was used to classify Landsat images for years, 1990, 2010, and 2017. Digital elevation model utilized was Interferometric Synthetic Aperture Radar (IFSAR) with a 5-meter resolution to delineate the watersheds. Using numerical modelling techniques, the hydrologic and hydraulic analysis of the influence of land cover change to flow and sediment dynamics was simulated. While significant land cover change occurred upland, thereby increasing runoff and sediment loads, the mangrove forests abundance adjacent to the coasts for the urban watershed, was somehow sustained. However, significant alteration of the coastline was observed in Kalibo through the years, probably due to the massive land-use conversion upstream and significant replanting of mangroves downstream. Understanding the hydrologic-hydraulic response of these watersheds to change land cover is essential to helping local government and stakeholders facilitate better management of these mangrove ecosystems.Keywords: coastal mangroves, hydrologic model, land cover change, Philippines
Procedia PDF Downloads 1191427 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania
Authors: Pilly Joseph Kagosi
Abstract:
The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas
Procedia PDF Downloads 3231426 Engineering Topology of Ecological Model for Orientation Impact of Sustainability Urban Environments: The Spatial-Economic Modeling
Authors: Moustafa Osman Mohammed
Abstract:
The modeling of a spatial-economic database is crucial in recitation economic network structure to social development. Sustainability within the spatial-economic model gives attention to green businesses to comply with Earth’s Systems. The natural exchange patterns of ecosystems have consistent and periodic cycles to preserve energy and materials flow in systems ecology. When network topology influences formal and informal communication to function in systems ecology, ecosystems are postulated to valence the basic level of spatial sustainable outcome (i.e., project compatibility success). These referred instrumentalities impact various aspects of the second level of spatial sustainable outcomes (i.e., participant social security satisfaction). The sustainability outcomes are modeling composite structure based on a network analysis model to calculate the prosperity of panel databases for efficiency value, from 2005 to 2025. The database is modeling spatial structure to represent state-of-the-art value-orientation impact and corresponding complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic-ecological model; develop a set of sustainability indicators associated with the model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate spatial structure reliability. The structure of spatial-ecological model is established for management schemes from the perspective pollutants of multiple sources through the input–output criteria. These criteria evaluate the spillover effect to conduct Monte Carlo simulations and sensitivity analysis in a unique spatial structure. The balance within “equilibrium patterns,” such as collective biosphere features, has a composite index of many distributed feedback flows. The following have a dynamic structure related to physical and chemical properties for gradual prolong to incremental patterns. While these spatial structures argue from ecological modeling of resource savings, static loads are not decisive from an artistic/architectural perspective. The model attempts to unify analytic and analogical spatial structure for the development of urban environments in a relational database setting, using optimization software to integrate spatial structure where the process is based on the engineering topology of systems ecology.Keywords: ecological modeling, spatial structure, orientation impact, composite index, industrial ecology
Procedia PDF Downloads 671425 Gender and Sustainable Rural Tourism: A Study into the Experiences and the Roles of Local Women in the Sundarbans Area of Bangladesh
Authors: Jakia Rajoana
Abstract:
The key aim of this research is to achieve Sustainable Rural Tourism (SRT) through women’s empowerment in the Sundarbans area of Bangladesh. Women in rural areas in developing countries depend on biomass for their survival and that of their family. Yet they have an unequal access to resources as well as decision making, thus making them more vulnerable to any changes in the environment. Women in the developing countries experience gender inequality which is culturally embedded resulting into women having less access to and control over financial and material resources, information, and also a lack of recognition of their contribution as compared to men. Their disadvantaged social position is augmented by their extreme poverty, little or no power they have over their own lives vis-à-vis the disproportionate burden they bear in reproduction and child-raising. Despite the significance of the need to pay attention to gender related issues in sustainable rural tourism (SRT), research remains rather scant. For instance, there is very little research that illustrates the role of women in tourism in the Sundarbans area. Thus empirically, this research seeks to fill a significant gap by focusing on rural areas and in particular focus on considerably under-researched area, namely the Sundarbans women’s role in tourism. In order to fully comprehend their experiences and life stories, this research will apply the empowerment theory and consider it along with the research on sustainable rural tourism. Since, women’s empowerment can act as a potential tool for SRT development and also examine the role tourism plays in the lives of Sundarbans’ women. Methodologically, this study will follow a qualitative research design using an ethnographic approach. Participant observation, semi- structured interviews, and documentation will be the primary data collection instruments in four communities – Shayamnagar, Koyra, Mongla and Sarankhola – in the Sundarbans area. It is hoped that by focusing on the life stories of these invisible women, research is better able to engage with nuances inherent in marginal and significantly under-researched communities.Keywords: gender, sustainable rural tourism, women empowerment, Sundarbans
Procedia PDF Downloads 2991424 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members
Authors: T. Sakamoto, S. Kainuma
Abstract:
Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.Keywords: accelerated deterioration test, coating durability, environmental factor, under-film corrosion
Procedia PDF Downloads 3671423 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation
Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely
Abstract:
Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations
Procedia PDF Downloads 901422 The Applications and Effects of the Career Courses of Taiwanese College Students with LEGO® SERIOUS PLAY®
Authors: Payling Harn
Abstract:
LEGO® SERIOUS PLAY® is a kind of facilitated workshop of thinking and problem-solving approach. Participants built symbolic and metaphorical brick models in response to tasks given by the facilitator and presented these models to other participants. LEGO® SERIOUS PLAY® applied the positive psychological mechanism of Flow and positive emotions to help participants perceiving self-experience and unknown fact and increasing the happiness of life by building bricks and narrating story. At present, LEGO® SERIOUS PLAY® is often utilized for facilitating professional identity and strategy development to assist workers in career development. The researcher desires to apply LEGO® SERIOUS PLAY® to the career courses of college students in order to promote their career ability. This study aimed to use the facilitative method of LEGO® SERIOUS PLAY® to develop the career courses of college students, then explore the effects of Taiwanese college students' positive and negative emotions, career adaptabilities, and career sense of hope by LEGO® SERIOUS PLAY® career courses. The researcher regarded strength as the core concept and use the facilitative mode of LEGO® SERIOUS PLAY® to develop the 8 weeks’ career courses, which including ‘emotion of college life’ ‘career highlights’, ‘career strengths’, ‘professional identity’, ‘business model’, ‘career coping’, ‘strength guiding principles’, ‘career visions’,’ career hope’, etc. The researcher will adopt problem-oriented teaching method to give tasks which according to the weekly theme, use the facilitative mode of LEGO® SERIOUS PLAY® to guide participants to respond tasks by building bricks. Then participants will conduct group discussions, reports, and writing reflection journals weekly. Participants will be 24 second-grade college students. They will attend LEGO® SERIOUS PLAY® career courses for 2 hours a week. The researcher used’ ‘Career Adaptability Scale’ and ‘Career Hope Scale’ to conduct pre-test and post-test. The time points of implementation testing will be one week before courses starting, one day after courses ending respectively. Then the researcher will adopt repeated measures one-way ANOVA for analyzing data. The results revealed that the participants significantly presented immediate positive effect in career adaptability and career hope. The researcher hopes to construct the mode of LEGO® SERIOUS PLAY® career courses by this study and to make a substantial contribution to the future career teaching and researches of LEGO® SERIOUS PLAY®.Keywords: LEGO® SERIOUS PLAY®, career courses, strength, positive and negative affect, career hope
Procedia PDF Downloads 2511421 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance
Procedia PDF Downloads 2551420 Understanding the Factors behind Graduate Employability in the United Arab Emirates
Authors: Mohammed Islam
Abstract:
Graduate employability is a well debated topic by governments, employers, and higher education institutes (HEI) across the world. Much of the focus of these debates have centred around the skills that graduates bring or should bring to the job market, a point echoed by United Arab Emirates (UAE) policy makers and employers. While some research has been carried out on graduates' employability skills, little or no attention has been paid to the forces at play in developing employability policy and its subsequent implementation. The focus of debate has been on a perceived skills gap rather than policy. Recognising a gap in the literature, this paper details a study of UAE employability policy development. Taking a social constructionist approach, this case study views policy as discursive and socially constructed through interactions with key stakeholders. It is within the myriad of interdependent socio-political factors and social practices, particularly power relationships, that this paper explores UAE policy on graduate employability. In doing so, this adds to the debate on graduate employability from the perspective of policy and explores its roots in the interaction between human activity and the ‘system’. Data was collected from two main sources: documentary review and semi-structured interviews. Policies and publicly stated rhetoric on graduate employability were analysed using Critical Discourse Analysis. Semi-structured interviews with representatives from policy makers, HEIs, and employers were reviewed through Thematic Analysis. The theoretical framework for the discussion of findings draws from social practice theories and highlights the factors at play in access to employment for UAE graduates. This case study presents a methodological approach to policy studies that can be applied beyond the context under investigation. Education policy researchers are provided with an opportunity to compare similarities and differences with their own specific contexts.Keywords: critical discourse analysis, employability, methodology, policy, social constructionism
Procedia PDF Downloads 1251419 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater
Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen
Abstract:
Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity
Procedia PDF Downloads 2321418 Groundwater Potential Mapping using Frequency Ratio and Shannon’s Entropy Models in Lesser Himalaya Zone, Nepal
Authors: Yagya Murti Aryal, Bipin Adhikari, Pradeep Gyawali
Abstract:
The Lesser Himalaya zone of Nepal consists of thrusting and folding belts, which play an important role in the sustainable management of groundwater in the Himalayan regions. The study area is located in the Dolakha and Ramechhap Districts of Bagmati Province, Nepal. Geologically, these districts are situated in the Lesser Himalayas and partly encompass the Higher Himalayan rock sequence, which includes low-grade to high-grade metamorphic rocks. Following the Gorkha Earthquake in 2015, numerous springs dried up, and many others are currently experiencing depletion due to the distortion of the natural groundwater flow. The primary objective of this study is to identify potential groundwater areas and determine suitable sites for artificial groundwater recharge. Two distinct statistical approaches were used to develop models: The Frequency Ratio (FR) and Shannon Entropy (SE) methods. The study utilized both primary and secondary datasets and incorporated significant role and controlling factors derived from field works and literature reviews. Field data collection involved spring inventory, soil analysis, lithology assessment, and hydro-geomorphology study. Additionally, slope, aspect, drainage density, and lineament density were extracted from a Digital Elevation Model (DEM) using GIS and transformed into thematic layers. For training and validation, 114 springs were divided into a 70/30 ratio, with an equal number of non-spring pixels. After assigning weights to each class based on the two proposed models, a groundwater potential map was generated using GIS, classifying the area into five levels: very low, low, moderate, high, and very high. The model's outcome reveals that over 41% of the area falls into the low and very low potential categories, while only 30% of the area demonstrates a high probability of groundwater potential. To evaluate model performance, accuracy was assessed using the Area under the Curve (AUC). The success rate AUC values for the FR and SE methods were determined to be 78.73% and 77.09%, respectively. Additionally, the prediction rate AUC values for the FR and SE methods were calculated as 76.31% and 74.08%. The results indicate that the FR model exhibits greater prediction capability compared to the SE model in this case study.Keywords: groundwater potential mapping, frequency ratio, Shannon’s Entropy, Lesser Himalaya Zone, sustainable groundwater management
Procedia PDF Downloads 801417 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways
Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates
Abstract:
The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.Keywords: carbon dioxide utilization, processes, energy options, environmental impacts
Procedia PDF Downloads 1451416 Harnessing Community Benefits; Case Study of REDD+ in Ghana
Authors: Abdul-Razak Saeed
Abstract:
Addressing the climate change crisis that this generation faces has evolved to include the consideration of a policy mechanism referred to as reduced emissions from deforestation and forest degradation with plus components of conservation, sustainable forest management and enhancement of forest carbon stocks (REDD+). REDD+ emerged from the International level of UNFCCC but its implementation is by developing countries. It challenges the development paradigm of nations that depend on the unsustainable clearing of forests and land use change for economic development whilst posing as an opportunity or risk for forest community livelihoods, institutions and their interaction with the forest resources. As a novel policy mechanism, it is imperative to gain global insight into local contexts of its implementation and to understand local level mobilization of their agency for institutional sustainability as reconfigured by new carbon economy initiatives like REDD+. Using a systematic review process, as the initial stages of this study, secondary data of REDD+ projects across the globe were evaluated to pick up gaps in research and that of on ground REDD+ implementation. Primary data was gathered from 30 actors in the government, NGO, private sector and traditional authorities using face-to-face semi structured interviews in Ghana; participation in meetings and workshops and policy and strategy document reviews. Preliminary findings of the study include REDD+ knowledge being a key determinant of power distribution and affects who shapes the process; in Ghana, informal relationships are playing key roles in advancing REDD+ unlike in traditional forestry and a subjectivity shift of local communities from an 'emotive-link' of environmental care to one of 'economic self-seeking and enriching' domain of thought.Keywords: climate change, communities, forests, REDD+
Procedia PDF Downloads 3671415 Studies on Space-Based Laser Targeting System for the Removal of Orbital Space Debris
Authors: Krima M. Rohela, Raja Sabarinath Sundaralingam
Abstract:
Humans have been launching rockets since the beginning of the space age in the late 1950s. We have come a long way since then, and the success rate for the launch of rockets has increased considerably. With every successful launch, there is a large amount of junk or debris which is released into the upper layers of the atmosphere. Space debris has been a huge concern for a very long time now. This includes the rocket shells released from the launch and the parts of defunct satellites. Some of this junk will come to fall towards the Earth and burn in the atmosphere. But most of the junk goes into orbit around the Earth, and they remain in orbits for at least 100 years. This can cause a lot of problems to other functioning satellites and may affect the future manned missions to space. The main concern of the space-debris is the increase in space activities, which leads to risks of collisions if not taken care of soon. These collisions may result in what is known as Kessler Syndrome. This debris can be removed by a space-based laser targeting system. Hence, the matter is investigated and discussed. The first step in this involves launching a satellite with a high-power laser device into space, above the debris belt. Then the target material is ablated with a focussed laser beam. This step of the process is highly dependent on the attitude and orientation of the debris with respect to the Earth and the device. The laser beam will cause a jet of vapour and plasma to be expelled from the material. Hence, the force is applied in the opposite direction, and in accordance with Newton’s third law of motion, this will cause the material to move towards the Earth and get pulled down due to gravity, where it will get disintegrated in the upper layers of the atmosphere. The larger pieces of the debris can be directed towards the oceans. This method of removal of the orbital debris will enable safer passage for future human-crewed missions into space.Keywords: altitude, Kessler syndrome, laser ablation, Newton’s third law of motion, satellites, Space debris
Procedia PDF Downloads 1471414 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions
Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation
Procedia PDF Downloads 2621413 The Three-Dimensional Kinematics of the Sprint Start in Young Elite Sprinters
Authors: Saeed Ilbeigi, Bart Van Gheluwe
Abstract:
The purpose of this study was to identify the three-dimensional kinematics of the sprint start during the start phase of the sprint. The purpose of this study was to identify the three-dimensional kinematics of the sprint start during the start phase of the sprint. Moreover, the effect of anthropometrical factors such as skeletal muscle mass, thigh girth, and calf girth also were considered on the kinematics of the sprint start. Among all young sprinters involved in the national Belgium league, sixty sprinters (boys: 14.7 ± 1.8 years and girls: 14.8±1.5 years) were randomly selected. The kinematics data of the sprint start were collected with a Vicon® 620 motion analysis system equipped with 12 infrared cameras running at 250 Hz and running the Vicon Data Station software. For statistical analysis, T-tests and ANOVA׳s with Scheffé post hoc test were used and the significant level was set as p≤0.05. The results showed that the angular positions of the lower joints of the young sprinters in the set position were comparable with adult figures from literature, however, with a greater range of joint extension. The most significant difference between boys and girls was found in the set position, where the boys presented a more dorsiflexed ankle. No further gender effect was observed during the leaving the blocks and contact phase. The sprinters with a higher age, skeletal muscle mass, thigh girth, and calf girth displayed a better angular position of the lower joints (e.g. ankle, knee, hip) in the set position, a more optimal angular position for the foot and knee for absorbing impact forces at foot contact and finally a higher range of flexion/extension motion to produce force and power when leaving the blocks.Keywords: anthropometry, kinematics, sprint start, young elite sprinters
Procedia PDF Downloads 2261412 Impact of Crime on Women and Their Families in Rural Areas of Haryana State in India
Authors: Rashmi Tyagi, Savita Vermani
Abstract:
Violence against women is the result of long-standing power imbalance between men and women and thus seriously compromises the well-being, productivity and contribution of one half the population. The costs incurred to the family especially children and society at large in terms of physical, psychological, social and financial losses are huge. The communities’ native to the state of Haryana in India is primarily patriarchal, burdened with age old regressive mindset under the socio-cultural and religious structures which discriminates against women. Therefore it was important to bring to light the issues affecting women in this region. Therefore this study focused on studying the consequences of crime on victim women and their families. Two hundred women were randomly selected and out of those one hundred twenty, who were affected with some kind of violence were interviewed. Data was collected and statistically analyzed for physical, psychological, inter-family and societal consequences of violence on these women. Women reported physical injuries, gynecological problems, unwanted pregnancies, frigidity, phobia and sexual dysfunction. 58.9% women felt decreased work efficiency. Psychological problems encountered were anxiety, isolation, depression, suicidal tendencies. 66.7% respondents suffered from anxiety followed by 65.0% faced depression symptoms. At family levels, 40.0% respondents felt the atmosphere was unsuitable for children while 39.2% reported lack of interaction. The societal consequences reported were breakdown of interaction with friends and family (44.2%) and resulting humiliation and demeaning remarks from others (38.3%). The impact of violence on women had an adverse effect on children. 36.7% children felt responsible for abuse and powerless to stop it, 29.2% reported living with fear. Concerted efforts are required to curb violence against women in Haryana.Keywords: impact of violence against women on children, patriarchal society, physical psychological and societal consequences, violence against women
Procedia PDF Downloads 3071411 Globally Convergent Sequential Linear Programming for Multi-Material Topology Optimization Using Ordered Solid Isotropic Material with Penalization Interpolation
Authors: Darwin Castillo Huamaní, Francisco A. M. Gomes
Abstract:
The aim of the multi-material topology optimization (MTO) is to obtain the optimal topology of structures composed by many materials, according to a given set of constraints and cost criteria. In this work, we seek the optimal distribution of materials in a domain, such that the flexibility of the structure is minimized, under certain boundary conditions and the intervention of external forces. In the case we have only one material, each point of the discretized domain is represented by two values from a function, where the value of the function is 1 if the element belongs to the structure or 0 if the element is empty. A common way to avoid the high computational cost of solving integer variable optimization problems is to adopt the Solid Isotropic Material with Penalization (SIMP) method. This method relies on the continuous interpolation function, power function, where the base variable represents a pseudo density at each point of domain. For proper exponent values, the SIMP method reduces intermediate densities, since values other than 0 or 1 usually does not have a physical meaning for the problem. Several extension of the SIMP method were proposed for the multi-material case. The one that we explore here is the ordered SIMP method, that has the advantage of not being based on the addition of variables to represent material selection, so the computational cost is independent of the number of materials considered. Although the number of variables is not increased by this algorithm, the optimization subproblems that are generated at each iteration cannot be solved by methods that rely on second derivatives, due to the cost of calculating the second derivatives. To overcome this, we apply a globally convergent version of the sequential linear programming method, which solves a linear approximation sequence of optimization problems.Keywords: globally convergence, multi-material design ordered simp, sequential linear programming, topology optimization
Procedia PDF Downloads 3141410 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise
Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez
Abstract:
Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability
Procedia PDF Downloads 1451409 Effects of Irregular Migration from Different Aspects of Security
Authors: Muzaffer Topgul, Hasan Atac
Abstract:
In case of explaining the migration concept, although it is not a new phenomenon, it is easy to understand that communities have migrated for variety of reasons such as natural disasters, famine, wars, economic problems, and several theories have been put forth to define and find solution for migration within its changing nature. Examining of migration theories denotes that the circumstances under which they appear reflect political, social, and economic conditions of the age they appear. In this day and time, security is considered not only from military perspective but also from economic, political, sociological dimensions. Based on the changing security environment new impacts of migration has occurred; the migration is proceed to be conferred as a type of war, qualified as a transnational crime because of its outcomes and interpreted in a different dimension owing to its effects on the health and education areas. Social security dimension in the context of expanding concept of security; when dealing with the safety of people and social groups with the assumption that national unity and identity are threatened, it sees immigrants as a source of threat. The human security assesses the safety of individuals in terms of survival and quality of life. Changes in the standard of living under the influence of immigrants and possible terrorist acts can be seen as a threat source in this type of security. Economic security of the individuals and the regional changes at the micro level created by the immigrants are covered issues of economic security. Due to the factors such as terrorism and civil war, the increasing numbers of displaced people who have taken refugee status affect the countries, whether it is near or far to the crisis areas, in the new and different dimensions of security day by day. In this study, the term of immigration through the eyes of national and international law will be evaluated, the place of the irregular and illegal immigration in the changing security sphere will be revealed and the effects of the irregular migration to short-term, mid-term and long-term security issues will be assessed through human and social security aspects. In order to analyze the threats for the human security; the parameters such as living conditions of the immigrants, the ratio of the genders, birth rate occasions, the education circumstances of the immigrant children and the effects of the illegal passing on the public order will be evaluated. The outcomes of the problem areas for the human security and the demographic alteration resulting from the human flow of displaced people will be discussed thorough social security extent. The fizzling economic diversity, which has shown up by irregular migration, will be presented within the scope of economic dimension of security.Keywords: irregular migration, the changing dimensions of security, human security, social security
Procedia PDF Downloads 3351408 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment
Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi
Abstract:
Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness
Procedia PDF Downloads 5091407 Exploring Gender-Base Salary Disparities and Equities Among University Presidents
Authors: Daniel Barkley, Jianyi Zhu
Abstract:
This study investigates base salary differentials and gender equity among university presidents across 427 U.S. colleges and universities. While endowments typically do not directly determine university presidents' base salaries, our analysis reveals a noteworthy pattern: endowments explain more than half of the variance in female university presidents' base salaries, compared to a mere 0.69 percent for males. Moreover, female presidents' base salaries tend to rise much faster than male base salaries with increasing university endowments. This disparate impact of endowments on base salaries implies an endowment threshold for achieving gender pay equity. We develop an analytical model predicting an endowment threshold for achieving gender equality and empirically estimate this equity threshold using data from over 427 institutions. Surprisingly, the fields of science and athletics have emerged as sources of gender-neutral base pay. Both male and female university presidents with STEM backgrounds command higher base salaries than those without such qualifications. Additionally, presidents of universities affiliated with Power 5 conferences consistently receive higher base salaries regardless of gender. Consistent with the theory of human capital accumulation, the duration of the university presidency incrementally raises base salaries for both genders but at a diminishing rate. Curiously, prior administrative leadership experience as a vice president, provost, dean, or department chair does not significantly influence base salaries for either gender. By providing empirical evidence and analytical models predicting an endowment threshold for achieving gender equality in base salaries, the study offers valuable insights for policymakers, university administrators, and other stakeholders. These findings hold crucial policy implications, informing strategies to promote gender equality in executive compensation within higher education institutions.Keywords: higher education, endowments, base salaries, university presidents
Procedia PDF Downloads 551406 Technological Properties, in Vitro Starch Digestibility, and Antioxidant Activity of Gluten-Free Cakes Enriched With Prunus spinosa
Authors: Elif Cakir, Görkem Özülkü, Hatice Bekiroğlu, Muhammet Arici, Osman Sağdic
Abstract:
It is important to be able to formulate cakes with a wide consumption mass with gluten-free and high nutritional value ingredients to increase the consumption possibilities of people with limited nutrition opportunities. Although people do not prefer Prunus spinosa (PS)because of its sour taste and its use in the food industry is limited on a local scale, the potential of using PS, which is a naturally rich source of many micronutrients and bioactive compounds, in glutenfree cake production has been investigated. In this study, the potential of using PS, a natural wild fruit, in the production of functional gluten-free cakes was investigated. It was aimed to evaluate the effects of freeze-dried and powdered PS-enriched rice flour cakes on tech functionality, nutrition and eating quality. In terms of physicochemical properties, PS raises increased the ash, protein, and moisture values of the cakes. PS with high phenolic content, phenolic component content, and radical reducing power made by ABTS, FRAP, and DPPH techniques were higher in all samples than control, and the highest 4% PS was determined in cakes. In terms of the glycemic index (GI), which is an important feature of diet products, it was determined that the GI in cakes decreased by 86.30±1.04.75.05±1.16 and 69.38±1.21, respectively, with the increase in PS ratio. Except for the 1%, PS added sample, the increase in PS caused a decrease in specific volume, % porosity and increase in hardness, including 4 days of storage. PS increase decreased the L* and b* values and increased a* value and redness of the cake. Sensory liking of the cake samples containing PS was scored significantly (p<0.05) higher of control.Keywords: Prunus spinosa, gluten-free cake, antioxidant, phenolic, glycemic index
Procedia PDF Downloads 136