Search results for: transaction costs economics
2004 Tower Crane Selection and Positioning on Construction Sites
Authors: Dirk Briskorn, Michael Dienstknecht
Abstract:
Cranes are a key element in construction projects as they are the primary lifting equipment and among the most expensive construction equipment. Thus, selecting cranes and locating them on-site is an important factor for a project's profitability. We focus on a site with supply and demand areas that have to be connected by tower cranes. There are several types of tower cranes differing in certain specifications such as costs or operating radius. The objective is to select cranes and determine their locations such that each demand area is connected to its supply area at minimum cost. We detail the problem setting and show how to obtain a discrete set of candidate locations for each crane type without losing optimality. This discretization allows us to reduce our problem to the classic set cover problem. Despite its NP-hardness, we achieve good results employing a standard solver and a greedy heuristic, respectively.Keywords: positioning, selection, standard solver, tower cranes
Procedia PDF Downloads 3742003 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques
Authors: M. S. Annie Christi
Abstract:
Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.Keywords: best candidate method, centroid ranking technique, fuzzy transportation problem, robust ranking technique, transportation problem
Procedia PDF Downloads 2942002 Integration of Constraints Related to Composite Materials in the Design of Industrial Products
Authors: A. Boumedine, K. Benfriha, S. Lecheb
Abstract:
Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.Keywords: additive manufacturing, composite materials, design, 3D printer, turbine
Procedia PDF Downloads 1342001 Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.Keywords: AR-glass, flexural strength, prestressing, textile reinforced concrete
Procedia PDF Downloads 3312000 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1271999 Exploring the Intersection of Accounting, Business, and Economics: Bridging Theory and Practice for Sustainable Growth
Authors: Stephen Acheampong Amoafoh
Abstract:
In today's dynamic economic landscape, businesses face multifaceted challenges that demand strategic foresight and informed decision-making. This abstract explores the pivotal role of financial analytics in driving business performance amidst evolving market conditions. By integrating accounting principles with economic insights, organizations can harness the power of data-driven strategies to optimize resource allocation, mitigate risks, and capitalize on emerging opportunities. This presentation will delve into the practical applications of financial analytics across various sectors, highlighting case studies and empirical evidence to underscore its efficacy in enhancing operational efficiency and fostering sustainable growth. From predictive modeling to performance benchmarking, attendees will gain invaluable insights into leveraging advanced analytics tools to drive profitability, streamline processes, and adapt to changing market dynamics. Moreover, this abstract will address the ethical considerations inherent in financial analytics, emphasizing the importance of transparency, integrity, and accountability in data-driven decision-making. By fostering a culture of ethical conduct and responsible stewardship, organizations can build trust with stakeholders and safeguard their long-term viability in an increasingly interconnected global economy. Ultimately, this abstract aims to stimulate dialogue and collaboration among scholars, practitioners, and policymakers, fostering knowledge exchange and innovation in the realms of accounting, business, and economics. Through interdisciplinary insights and actionable recommendations, participants will be equipped to navigate the complexities of today's business environment and seize opportunities for sustainable success.Keywords: financial analytics, business performance, data-driven strategies, sustainable growth
Procedia PDF Downloads 531998 The Impact of Regulation on Corporate Social Responsibility Reporting Quality: UK Evidence
Authors: Ruba Hamed, Khaled Hussainey, Basiem Al-Shattarat, Wasim Al-Shattarat
Abstract:
This paper examines how the influence of mandating corporate social responsibility reporting (CSR) on subsequent financial performance through accounting-based measures and market-based measures. We provide evidence about the negative impact of reporting CSR voluntarily on the firm’s future performance due to the increased spending on and costs related to such activities. On the contrary, mandating CSR reporting enhances firms’ future performance by signalling to the market about the firm’s positive stance towards sustainability issues in the UK. Our findings are of interest to regulation setters and stakeholders with respect to mandatory CSR reporting and provide further insight and feedback into accounting and reporting practices.Keywords: accounting-based performance, mandatory CSR, mandatory regulation, market-based performance
Procedia PDF Downloads 1241997 A Lightweight Blockchain: Enhancing Internet of Things Driven Smart Buildings Scalability and Access Control Using Intelligent Direct Acyclic Graph Architecture and Smart Contracts
Authors: Syed Irfan Raza Naqvi, Zheng Jiangbin, Ahmad Moshin, Pervez Akhter
Abstract:
Currently, the IoT system depends on a centralized client-servant architecture that causes various scalability and privacy vulnerabilities. Distributed ledger technology (DLT) introduces a set of opportunities for the IoT, which leads to practical ideas for existing components at all levels of existing architectures. Blockchain Technology (BCT) appears to be one approach to solving several IoT problems, like Bitcoin (BTC) and Ethereum, which offer multiple possibilities. Besides, IoTs are resource-constrained devices with insufficient capacity and computational overhead to process blockchain consensus mechanisms; the traditional BCT existing challenge for IoTs is poor scalability, energy efficiency, and transaction fees. IOTA is a distributed ledger based on Direct Acyclic Graph (DAG) that ensures M2M micro-transactions are free of charge. IOTA has the potential to address existing IoT-related difficulties such as infrastructure scalability, privacy and access control mechanisms. We proposed an architecture, SLDBI: A Scalable, lightweight DAG-based Blockchain Design for Intelligent IoT Systems, which adapts the DAG base Tangle and implements a lightweight message data model to address the IoT limitations. It enables the smooth integration of new IoT devices into a variety of apps. SLDBI enables comprehensive access control, energy efficiency, and scalability in IoT ecosystems by utilizing the Masked Authentication Message (MAM) protocol and the IOTA Smart Contract Protocol (ISCP). Furthermore, we suggest proof-of-work (PoW) computation on the full node in an energy-efficient way. Experiments have been carried out to show the capability of a tangle to achieve better scalability while maintaining energy efficiency. The findings show user access control management at granularity levels and ensure scale up to massive networks with thousands of IoT nodes, such as Smart Connected Buildings (SCBDs).Keywords: blockchain, IOT, direct acyclic graphy, scalability, access control, architecture, smart contract, smart connected buildings
Procedia PDF Downloads 1221996 Weight Comparison of Oil and Dry Type Distribution Transformers
Authors: Murat Toren, Mehmet Çelebi
Abstract:
Reducing the weight of transformers while providing good performance, cost reduction and increased efficiency is important. Weight is one of the most significant factors in all electrical machines, and as such, many transformer design parameters are related to weight calculations. This study presents a comparison of the weight of oil type transformers and dry type transformer weight. Oil type transformers are mainly used in industry; however, dry type transformers are becoming more widespread in recent years. MATLAB is typically used for designing transformers and design parameters (rated voltages, core loss, etc.) along with design in ANSYS Maxwell. Similar to other studies, this study presented that the dry type transformer option is limited. Moreover, the commonly-used 50 kVA distribution transformers in the industry are oil type and dry type transformers are designed and considered in terms of weight. Currently, the preference for low-cost oil-type transformers would change if costs for dry-type transformer were more competitive. The aim of this study was to compare the weight of transformers, which is a substantial cost factor, and to provide an evaluation about increasing the use of dry type transformers.Keywords: weight, optimization, oil-type transformers, dry-type transformers
Procedia PDF Downloads 3531995 Constructivist Design Approaches to Video Production for Distance Education in Business and Economics
Authors: C. von Essen
Abstract:
This study outlines and evaluates a constructivist design approach to the creation of educational video on postgraduate business degree programmes. Many online courses are tapping into the educational affordances of video, as this form of online learning has the potential to create rich, multimodal experiences. And yet, in many learning contexts video is still being used to transmit instruction to passive learners, rather than promote learner engagement and knowledge creation. Constructivism posits the notion that learning is shaped as students make connections between their experiences and ideas. This paper pivots on the following research question: how can we design educational video in ways which promote constructivist learning and stimulate analytic viewing? By exploring and categorizing over two thousand educational videos created since 2014 for over thirty postgraduate courses in business, economics, mathematics and statistics, this paper presents and critically reflects on a taxonomy of video styles and features. It links the pedagogical intent of video – be it concept explanation, skill demonstration, feedback, real-world application of ideas, community creation, or the cultivation of course narrative – to specific presentational characteristics such as visual effects including diagrammatic and real-life graphics and aminations, commentary and sound options, chronological sequencing, interactive elements, and presenter set-up. The findings of this study inform a framework which captures the pedagogical, technological and production considerations instructional designers and educational media specialists should be conscious of when planning and preparing the video. More broadly, the paper demonstrates how learning theory and technology can coalesce to produce informed and pedagogical grounded instructional design choices. This paper reveals how crafting video in a more conscious and critical manner can produce powerful, new educational design.Keywords: educational video, constructivism, instructional design, business education
Procedia PDF Downloads 2361994 Ties of China and the United States Regarding to the Shanghai Cooperation Organization on the Basis of Soft Power Theory
Authors: Shabnam Dadparvar, Laijin Shen
Abstract:
After a period of conflict between Russia and the West, new signs of confrontation between the United States and China are observed. China, as the most populous country in the world with a high rate of economic growth, neither stands the hegemonic power of the United States nor has the intention of direct confrontation with it. By raising the costs of the United States’ leadership at the international level, China seeks to find a better status without direct confrontation with the US. Meanwhile, the Shanghai Cooperation Organization (SCO), as a soft balancing strategy against the hegemony of the United States is used as a tool to reach this goal. The authors by using a descriptive-analytical method try to explain the policies of China and the United States on Shanghai Cooperation Organization as well as confrontation between these two countries within the framework of 'balance of soft power theory'.Keywords: balance of soft power, Central Asia, Shanghai cooperation organization, terrorism
Procedia PDF Downloads 3711993 Natural Language Processing; the Future of Clinical Record Management
Authors: Khaled M. Alhawiti
Abstract:
This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.Keywords: clinical information, information retrieval, natural language processing, automated applications
Procedia PDF Downloads 4041992 Oakes Test and Proportionality Test: Balance between the Practical Costs of Limiting Rights and the Benefits Arising from the Law
Authors: Rafael Tedrus Bento
Abstract:
The analysis of proportionality as a test is raised as a basic foundation for the achievement of Fundamental Rights. We used legal dogmatics and empirical analysis to seek the expected results, from the reading of the RV Oakes trial by the Supreme Court of Canada. In cases involving freedom of expression, two tests are used to resolve disputes. The first examines whether, in fact, the case can be characterized as a violation of freedom of expression; the second assesses whether this violation can be justified by the reasonable limit clause. This test was defined in the RV Oakes trial by the Supreme Court of Canada, concluding with the Oakes Test, used worldwide as a proportionality test. Resulting is a proportionality between the effects of the limiting measure and the objective - the more serious the harmful effects of a measure, the more important the objective must be.Keywords: Oakes, proportionality, fundamental rights, Supreme Court of Canada
Procedia PDF Downloads 1461991 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1111990 A Performance Analysis Study for Cloud Based ERP Systems
Authors: Burak Erkayman
Abstract:
The manufacturing and service organizations are in the need of using ERP systems to integrate many functions from purchasing to storage, production planning to calculation of costs. Using ERP systems by the integration in the level of information provides companies remarkable advantages in terms of profitability, productivity and efficiency in processes. Cloud computing is one of the most significant changes in information and communication technology. The developments in Cloud Computing attract business world to take advantage of this field. Cloud Computing means much more storage area, more cost saving and faster data transfer rate. In addition to these, it presents new business models, new field of study and practicable solutions for anyone’s use. These developments make inevitable the implementation of ERP systems to cloud environment. In this study, the performance of ERP systems in cloud environment is analyzed through various performance criteria and a comparison between traditional and cloud-ERP systems is presented. At the end of study the transformation and the future of ERP systems is discussed.Keywords: cloud-ERP, ERP system performance, information system transformation
Procedia PDF Downloads 5291989 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1191988 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering
Authors: Z. Soleymani, M. Amirzadeh
Abstract:
Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.Keywords: customer voice, engineering parameters, gear pump, QFD
Procedia PDF Downloads 2491987 Life Cycle Assessment Applied to Supermarket Refrigeration System: Effects of Location and Choice of Architecture
Authors: Yasmine Salehy, Yann Leroy, Francois Cluzel, Hong-Minh Hoang, Laurence Fournaison, Anthony Delahaye, Bernard Yannou
Abstract:
Taking into consideration all the life cycle of a product is now an important step in the eco-design of a product or a technology. Life cycle assessment (LCA) is a standard tool to evaluate the environmental impacts of a system or a process. Despite the improvement in refrigerant regulation through protocols, the environmental damage of refrigeration systems remains important and needs to be improved. In this paper, the environmental impacts of refrigeration systems in a typical supermarket are compared using the LCA methodology under different conditions. The system is used to provide cold at two levels of temperature: medium and low temperature during a life period of 15 years. The most commonly used architectures of supermarket cold production systems are investigated: centralized direct expansion systems and indirect systems using a secondary loop to transport the cold. The variation of power needed during seasonal changes and during the daily opening/closure periods of the supermarket are considered. R134a as the primary refrigerant fluid and two types of secondary fluids are considered. The composition of each system and the leakage rate of the refrigerant through its life cycle are taken from the literature and industrial data. Twelve scenarios are examined. They are based on the variation of three parameters, 1. location: France (Paris), Spain (Toledo) and Sweden (Stockholm), 2. different sources of electric consumption: photovoltaic panels and low voltage electric network and 3. architecture: direct and indirect refrigeration systems. OpenLCA, SimaPro softwares, and different impact assessment methods were compared; CML method is used to evaluate the midpoint environmental indicators. This study highlights the significant contribution of electric consumption in environmental damages compared to the impacts of refrigerant leakage. The secondary loop allows lowering the refrigerant amount in the primary loop which results in a decrease in the climate change indicators compared to the centralized direct systems. However, an exhaustive cost evaluation (CAPEX and OPEX) of both systems shows more important costs related to the indirect systems. A significant difference between the countries has been noticed, mostly due to the difference in electric production. In Spain, using photovoltaic panels helps to reduce efficiently the environmental impacts and the related costs. This scenario is the best alternative compared to the other scenarios. Sweden is a country with less environmental impacts. For both France and Sweden, the use of photovoltaic panels does not bring a significant difference, due to a less sunlight exposition than in Spain. Alternative solutions exist to reduce the impact of refrigerating systems, and a brief introduction is presented.Keywords: eco-design, industrial engineering, LCA, refrigeration system
Procedia PDF Downloads 1891986 Clients’ Priorities in Design and Delivery of Green Projects: South African Perspective
Authors: Charles Mothobiso
Abstract:
This study attempts to identify the client’s main priority when delivering green projects. The aim is to compare whether clients’ interests are similar when delivering conventional buildings as compared to green buildings. Private clients invest more in green buildings as compared to government and parastatal entities. Private clients prioritize on maximizing a return on investment and they mainly invest in energy-saving buildings that have low life cycle costs. Private clients are perceived to be more knowledgeable about the benefits of green building projects as compared to government and parastatal clients. A shortage of expertise and managerial skill leads to the low adaptation of green buildings in government and parastatal projects. Other factors that seem to prevent the adoption of green buildings are the preparedness of the supply chain within the industry and inappropriate procurement strategies adopted by clients.Keywords: construction clients, design team, green buildings, procurement
Procedia PDF Downloads 2981985 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid
Authors: Zahra Majd, Mohsen Kalantar
Abstract:
Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix
Procedia PDF Downloads 911984 Sustainable Electricity Generation Mix for Kenya from 2015 to 2035
Authors: Alex Maina, Mwenda Makathimo, Adwek George, Charles Opiyo
Abstract:
This research entails the simulation of three possible power scenarios for Kenya from 2015 to 2035 using the Low Emissions Analysis Platform (LEAP). These scenarios represent the unfolding future electricity generation that will fully satisfy the demand while considering the following: energy security, power generation cost and impacts on the environment. These scenarios are Reference Scenario (RS), Nuclear Scenario (NS) and More Renewable Scenario (MRS). The findings obtained reveals that the most sustainable scenario while comparing the costs was found to be the coal scenario with a Net Present Value (NPV) of $30,052.67 million though it has the highest Green House Gases (GHGs) emissions. However, the More Renewable Scenario (MRS) had the least GHGs emissions but was found to be a most expensive scenario to implement with an NPV of $30,733.07 million.Keywords: energy security, Kenya, low emissions analysis platform, net-present value, greenhouse gases
Procedia PDF Downloads 941983 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant
Procedia PDF Downloads 4121982 Towards Resource Sufficiency in Engineering Education in Sub-Saharan Africa
Authors: Iyabosola B. Oronti, Adeoluwawale A. Adewusi, Olubusola O. Nuga
Abstract:
Sub-Saharan Africa has long been known to be a region rife with poverty, inadequate health facilities, food shortages, high transport and communication costs and very low pace of infrastructural and technological development. These factors combined have led to decades of resource paucity in engineering education. Engineering is core to global development and building of capacity in engineering education with available resources in sub-Saharan Africa has become imperative. This paper identifies core political issues and policy shifts contributing adversely to this present state of affairs, and also explores the offshoots of the changing global political environment as it affects engineering education in the developing nations of sub-Saharan Africa. Opportunities for instituting resource sufficiency are examined and corrective measures that can be taken to resuscitate and stabilize the educational sector in the region are also suggested.Keywords: capacity building, engineering education, resource sufficiency, sub-Saharan Africa
Procedia PDF Downloads 4351981 Microgrid Design Under Optimal Control With Batch Reinforcement Learning
Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion
Abstract:
Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.Keywords: batch-constrained reinforcement learning, control, design, optimal
Procedia PDF Downloads 1231980 Optimal Mitigation of Slopes by Probabilistic Methods
Authors: D. De-León-Escobedo, D. J. Delgado-Hernández, S. Pérez
Abstract:
A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.Keywords: expected life-cycle cost, failure probability, slopes failure, storms
Procedia PDF Downloads 1601979 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle
Authors: P. Kacejko, M. Wendeker
Abstract:
The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption
Procedia PDF Downloads 1201978 Water, Hygiene, and Sanitation in Senegal’s School Environment: A Study of the Performance of a Reed Bed Filter Installed at Gandiol School for Wastewater Treatment and Reuse
Authors: Abdou Khafor Ndiaye
Abstract:
The article examines clean water and sanitation in Saint-Louis region schools. It finds that 59% have clean water, with disparities between departments, urban/rural areas, and school types. Podor and Dagana lack water due to distance and costs. 70% have sanitation, but rural schools lack it due to low investment. Podor and Dagana suffer the most. Many sanitation facilities need renovation. Wastewater treatment is effective, reducing pollutants and nitrogen, but adjustments are needed for nitrates. Treated water meets Senegalese standards and can be used for irrigation but needs monitoring for strict standards. In conclusion, the wastewater system is good for regions with limited water. Meeting stricter European standards and monitoring for health and environmental standards are needed.Keywords: water, constructed wetland, sanitation, hygiene
Procedia PDF Downloads 771977 Effects of Residence Time on Selective Absorption of Hydrogen Suphide
Authors: Dara Satyadileep, Abdallah S. Berrouk
Abstract:
Selective absorption of Hydrogen Sulphide (H2S) using methyldiethanol amine (MDEA) has become a point of interest as means of minimizing capital and operating costs of gas sweetening plants. This paper discusses the prominence of optimum design of column internals to best achieve H2S selectivity using MDEA. To this end, a kinetics-based process simulation model has been developed for a commercial gas sweetening unit. Trends of sweet gas H2S & CO2 contents as function of fraction active area (and hence residence time) have been explained through analysis of interdependent heat and mass transfer phenomena. Guidelines for column internals design in order to achieve desired degree of H2S selectivity are provided. Also the effectiveness of various operating conditions in achieving H2S selectivity for an industrial absorber with fixed internals is investigated.Keywords: gas sweetening, H2S selectivity, methyldiethanol amine, process simulation, residence time
Procedia PDF Downloads 3431976 Neoliberalism and Environmental Justice: A Critical Examination of Corporate Greenwashing
Authors: Arnav M. Raval
Abstract:
This paper critically examines the neoliberal economic model and its role in enabling corporate greenwashing, a practice where corporations deceptively market themselves as environmentally responsible while continuing harmful environmental practices. Through a rigorous focus on the neoliberal emphasis of free markets, deregulation, and minimal government intervention, this paper explores how these policies have set the stage for corporations to externalize environmental costs and engage in superficial sustainability initiatives. Within this framework, companies often bypass meaningful environmental reform, opting for strategies that enhance their public image without addressing their actual environmental impacts. The paper also draws on the works of critical theorists Theodor Adorno, Max Horkheimer, and Herbert Marcuse, particularly their critiques of capitalist society and its tendency to commodify social values. This paper argues that neoliberal capitalism has commodified environmentalism, transforming genuine ecological responsibility into a marketable product. Through corporate social responsibility initiatives, corporations have created the illusion of sustainability while masking deeper environmental harm. Under neoliberalism, these initiatives often serve as public relations tools rather than genuine commitments to environmental justice and sustainability. This commodification has become particularly dangerous because as it manipulates consumer perceptions and diverts attention away from the structural causes of environmental degradation. The analysis also examines how greenwashing practices have disproportionately affected marginalized communities, particularly in the global South, where environmental costs are often externalized. As these corporations promote their “sustainability” in wealthier markets, these marginalized communities bear the brunt of their pollution, resource depletion, and other forms of environmental degradation. This dynamic underscores the inherent injustice within neoliberal environmental policies, as those most vulnerable to environmental risks are often neglected, as companies reap the benefits of corporate sustainability efforts at their expense. Finally, this paper calls for a fundamental transition away from neoliberal market-driven solutions, which prioritize corporate profit over genuine ecological reform. It advocates for stronger regulatory frameworks, transparent third-party certifications, and a more collective approach to environmental governance. In order to ensure genuine corporate accountability, governments and institutions must move beyond superficial green initiatives and market-based solutions, shifting toward policies that enforce real environmental responsibility and prioritize environmental justice for all communities. Through the critique of the neoliberal system and its commodification of environmentalism, this paper has highlighted the urgent need to rethink how environmental responsibility is defined and enacted in the corporate world. Without systemic change, greenwashing will continue to undermine both ecological sustainability and social justice, leaving the most vulnerable populations to suffer the consequences.Keywords: critical theory, environmental justice, greenwashing, neoliberalism
Procedia PDF Downloads 171975 New Approaches to the Determination of the Time Costs of Movements
Authors: Dana Kristalova
Abstract:
This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms, etc. have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is surface of the terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for commander´s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.Keywords: surface of a terrain, movement of vehicles, geographical factor, optimization of routes
Procedia PDF Downloads 462