Search results for: stochastic gradient descent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1262

Search results for: stochastic gradient descent

392 Mathematical Model to Simulate Liquid Metal and Slag Accumulation, Drainage and Heat Transfer in Blast Furnace Hearth

Authors: Hemant Upadhyay, Tarun Kumar Kundu

Abstract:

It is utmost important for a blast furnace operator to understand the mechanisms governing the liquid flow, accumulation, drainage and heat transfer between various phases in blast furnace hearth for a stable and efficient blast furnace operation. Abnormal drainage behavior may lead to high liquid build up in the hearth. Operational problems such as pressurization, low wind intake, and lower material descent rates, normally be encountered if the liquid levels in the hearth exceed a critical limit when Hearth coke and Deadman start to float. Similarly, hot metal temperature is an important parameter to be controlled in the BF operation; it should be kept at an optimal level to obtain desired product quality and a stable BF performance. It is not possible to carry out any direct measurement of above due to the hostile conditions in the hearth with chemically aggressive hot liquids. The objective here is to develop a mathematical model to simulate the variation in hot metal / slag accumulation and temperature during the tapping of the blast furnace based on the computed drainage rate, production rate, mass balance, heat transfer between metal and slag, metal and solids, slag and solids as well as among the various zones of metal and slag itself. For modeling purpose, the BF hearth is considered as a pressurized vessel, filled with solid coke particles. Liquids trickle down in hearth from top and accumulate in voids between the coke particles which are assumed thermally saturated. A set of generic mass balance equations gives the amount of metal and slag intake in hearth. A small drainage (tap hole) is situated at the bottom of the hearth and flow rate of liquids from tap hole is computed taking in account the amount of both the phases accumulated their level in hearth, pressure from gases in the furnace and erosion behaviors of tap hole itself. Heat transfer equations provide the exchange of heat between various layers of liquid metal and slag, and heat loss to cooling system through refractories. Based on all that information a dynamic simulation is carried out which provides real time information of liquids accumulation in hearth before and during tapping, drainage rate and its variation, predicts critical event timings during tapping and expected tapping temperature of metal and slag on preset time intervals. The model is in use at JSPL, India BF-II and its output is regularly cross-checked with actual tapping data, which are in good agreement.

Keywords: blast furnace, hearth, deadman, hotmetal

Procedia PDF Downloads 185
391 Accurate Cortical Reconstruction in Narrow Sulci with Zero-Non-Zero Distance (ZNZD) Vector Field

Authors: Somojit Saha, Rohit K. Chatterjee, Sarit K. Das, Avijit Kar

Abstract:

A new force field is designed for propagation of the parametric contour into deep narrow cortical fold in the application of knowledge based reconstruction of cerebral cortex from MR image of brain. Designing of this force field is highly inspired by the Generalized Gradient Vector Flow (GGVF) model and markedly differs in manipulation of image information in order to determine the direction of propagation of the contour. While GGVF uses edge map as its main driving force, the newly designed force field uses the map of distance between zero valued pixels and their nearest non-zero valued pixel as its main driving force. Hence, it is called Zero-Non-Zero Distance (ZNZD) force field. The objective of this force field is forceful propagation of the contour beyond spurious convergence due to partial volume effect (PVE) in to narrow sulcal fold. Being function of the corresponding non-zero pixel value, the force field has got an inherent property to determine spuriousness of the edge automatically. It is effectively applied along with some morphological processing in the application of cortical reconstruction to breach the hindrance of PVE in narrow sulci where conventional GGVF fails.

Keywords: deformable model, external force field, partial volume effect, cortical reconstruction, MR image of brain

Procedia PDF Downloads 397
390 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 324
389 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis

Authors: Hana Gebremariam Liliso

Abstract:

This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.

Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion

Procedia PDF Downloads 59
388 Customer Preference in the Textile Market: Fabric-Based Analysis

Authors: Francisca Margarita Ocran

Abstract:

Underwear, and more particularly bras and panties, are defined as intimate clothing. Strictly speaking, they enhance the place of women in the public or private satchel. Therefore, women's lingerie is a complex garment with a high involvement profile, motivating consumers to buy it not only by its functional utility but also by the multisensory experience it provides them. Customer behavior models are generally based on customer data mining, and each model is designed to answer questions at a specific time. Predicting the customer experience is uncertain and difficult. Thus, knowledge of consumers' tastes in lingerie deserves to be treated as an experiential product, where the dimensions of the experience motivating consumers to buy a lingerie product and to remain faithful to it must be analyzed in detail by the manufacturers and retailers to engage and retain consumers, which is why this research aims to identify the variables that push consumers to choose their lingerie product, based on an in-depth analysis of the types of fabrics used to make lingerie. The data used in this study comes from online purchases. Machine learning approach with the use of Python programming language and Pycaret gives us a precision of 86.34%, 85.98%, and 84.55% for the three algorithms to use concerning the preference of a buyer in front of a range of lingerie. Gradient Boosting, random forest, and K Neighbors were used in this study; they are very promising and rich in the classification of preference in the textile industry.

Keywords: consumer behavior, data mining, lingerie, machine learning, preference

Procedia PDF Downloads 90
387 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 91
386 Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius

Authors: Osama H. Elsayed, Mohsen M. S. Asker, Mahmoud A. Swelim, Ibrahim H. Abbas, Aziza I. Attwa, Mohamed E. El Awady

Abstract:

Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities.

Keywords: hydroxy marilone C, production, bioactive compound, Streptomyces badius

Procedia PDF Downloads 253
385 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 361
384 The Igbo People's Dual Religion Identity on Rite of Marriage in Imo State

Authors: Henry Okechukwu Onyeiwu, Arfah Ab. Majid

Abstract:

To fully understand the critical role of marriage in society, it is important to view it as a social institution that provides some basic social needs for society. A ‘social institution’ is the network of shared meanings, norms, definitions, expectations, and understandings held by the members of society. It is what guides and governs how the members of the society are expected to act and interact, what is socially desirable and legitimate, what they should be striving for, and so on. One of the major social institutions is marriage. Marriage is and has often focused on children and what is best for them because the rising generation literally is the future of every society. However, according to the aforementioned definition, which notes that marriage may also be a union between two persons of the same sex with legal support, this study stands with the definitions that are based on marriage being a union between a man and woman that is the most appropriate in Igbo land and not the other way round. The issue to be evaluated concerns marriage as it associates with Igbo Catholic Christians in Nigeria. Pasts of Igbo culture should be better organized into the Christian faith. Igbo Christians actually convey a significant number of their customary thoughts, customs, and social qualities, particularly regarding marriage, in the aftermath of switching to Christianity. The analyst agrees that marriage among Igbo Christians warrants adequate evolution. This study, therefore, concentrates on the Igbo community’s interpretation of the concept of culture and religion and the religious implications of traditional marriage and Christian marriage ceremonies in Igbo. The research design of this study is a qualitative design that provides in-depth information on the dual religious identity of the Igbo people on the rite of marriage in Imo state. The study population was composed of both male and female members from each selected local government area in Imo State. Thematic analysis was used to elaborate on the result from the respondents. This survey found that reputation is a major concern for Ibo people. Parental discomfort can lead to the use of coping strategies such as displacement, in which parents pass on their own vulnerable sentiments to their children. Those who participate in marriage negotiations feel the pain of their parents because they are unable to communicate their own feelings. As a result, participants experience increased stress and a range of negative emotions related to their marriage, including worry, dissatisfaction, and ambivalence. It was concluded that when it comes to Igbo culture, marriage is seen as a need for the continuation of the family’s lineage of descent, according to the outcome. The Task at hand was to discover how the locals preparing to get married define the impending transition. Imo State is home to the practice of Igba-nkwu, where the woman is either inherited or taken in the place of another.

Keywords: Igbo, culture, Christianity, traditional marriage, Christian wedding

Procedia PDF Downloads 162
383 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions

Authors: Jian Li

Abstract:

The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.

Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase

Procedia PDF Downloads 86
382 Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods

Authors: Christelle E. Chua, Alicia L. Ho

Abstract:

The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used.

Keywords: biomarker, extracellular miRNA, isolation methods, lymphocyte cell line

Procedia PDF Downloads 199
381 Trace Analysis of Genotoxic Impurity Pyridine in Sitagliptin Drug Material Using UHPLC-MS

Authors: Bashar Al-Sabti, Jehad Harbali

Abstract:

Background: Pyridine is a reactive base that might be used in preparing sitagliptin. International Agency for Research on Cancer classifies pyridine in group 2B; this classification means that pyridine is possibly carcinogenic to humans. Therefore, pyridine should be monitored at the allowed limit in sitagliptin pharmaceutical ingredients. Objective: The aim of this study was to develop a novel ultra high performance liquid chromatography mass spectrometry (UHPLC-MS) method to estimate the quantity of pyridine impurity in sitagliptin pharmaceutical ingredients. Methods: The separation was performed on C8 shim-pack (150 mm X 4.6 mm, 5 µm) in reversed phase mode using a mobile phase of water-methanol-acetonitrile containing 4 mM ammonium acetate in gradient mode. Pyridine was detected by mass spectrometer using selected ionization monitoring mode at m/z = 80. The flow rate of the method was 0.75 mL/min. Results: The method showed excellent sensitivity with a quantitation limit of 1.5 ppm of pyridine relative to sitagliptin. The linearity of the method was excellent at the range of 1.5-22.5 ppm with a correlation coefficient of 0.9996. Recoveries values were between 93.59-103.55%. Conclusions: The results showed good linearity, precision, accuracy, sensitivity, selectivity, and robustness. The studied method was applied to test three batches of sitagliptin raw materials. Highlights: This method is useful for monitoring pyridine in sitagliptin during its synthesis and testing sitagliptin raw materials before using them in the production of pharmaceutical products.

Keywords: genotoxic impurity, pyridine, sitagliptin, UHPLC -MS

Procedia PDF Downloads 95
380 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory

Procedia PDF Downloads 129
379 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 233
378 Portfolio Optimization with Reward-Risk Ratio Measure Based on the Mean Absolute Deviation

Authors: Wlodzimierz Ogryczak, Michal Przyluski, Tomasz Sliwinski

Abstract:

In problems of portfolio selection, the reward-risk ratio criterion is optimized to search for a risky portfolio with the maximum increase of the mean return in proportion to the risk measure increase when compared to the risk-free investments. In the classical model, following Markowitz, the risk is measured by the variance thus representing the Sharpe ratio optimization and leading to the quadratic optimization problems. Several Linear Programming (LP) computable risk measures have been introduced and applied in portfolio optimization. In particular, the Mean Absolute Deviation (MAD) measure has been widely recognized. The reward-risk ratio optimization with the MAD measure can be transformed into the LP formulation with the number of constraints proportional to the number of scenarios and the number of variables proportional to the total of the number of scenarios and the number of instruments. This may lead to the LP models with huge number of variables and constraints in the case of real-life financial decisions based on several thousands scenarios, thus decreasing their computational efficiency and making them hardly solvable by general LP tools. We show that the computational efficiency can be then dramatically improved by an alternative model based on the inverse risk-reward ratio minimization and by taking advantages of the LP duality. In the introduced LP model the number of structural constraints is proportional to the number of instruments thus not affecting seriously the simplex method efficiency by the number of scenarios and therefore guaranteeing easy solvability. Moreover, we show that under natural restriction on the target value the MAD risk-reward ratio optimization is consistent with the second order stochastic dominance rules.

Keywords: portfolio optimization, reward-risk ratio, mean absolute deviation, linear programming

Procedia PDF Downloads 407
377 Numerical Analysis of Wire Laser Additive Manufacturing for Low Carbon Steels+

Authors: Juan Manuel Martinez Alvarez, Michele Chiumenti

Abstract:

This work explores the benefit of the thermo-metallurgical simulation to tackle the Wire Laser Additive Manufacturing (WLAM) of low-carbon steel components. The Finite Element Analysis is calibrated by process monitoring via thermal imaging and thermocouples measurements, to study the complex thermo-metallurgical behavior inherent to the WLAM process of low carbon steel parts.A critical aspect is the analysis of the heterogeneity in the resulting microstructure. This heterogeneity depends on both the thermal history and the residual stresses experienced during the WLAM process. Because of low carbon grades are highly sensitive to quenching, a high-gradient microstructure often arises due to the layer-by-layer metal deposition in WLAM. The different phases have been identified by scanning electron microscope. A clear influence of the heterogeneities on the final mechanical performance has been established by the subsequent mechanical characterization. The thermo-metallurgical analysis has been used to determine the actual thermal history and the corresponding thermal gradients during the printing process. The correlation between the thermos-mechanical evolution, the printing parameters and scanning sequence has been established. Therefore, an enhanced printing strategy, including optimized process window has been used to minimize the microstructure heterogeneity at ArcelorMittal.

Keywords: additive manufacturing, numerical simulation, metallurgy, steel

Procedia PDF Downloads 71
376 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
375 The Impact of Window Opening Occupant Behavior Models on Building Energy Performance

Authors: Habtamu Tkubet Ebuy

Abstract:

Purpose Conventional dynamic energy simulation tools go beyond the static dimension of simplified methods by providing better and more accurate prediction of building performance. However, their ability to forecast actual performance is undermined by a low representation of human interactions. The purpose of this study is to examine the potential benefits of incorporating information on occupant diversity into occupant behavior models used to simulate building performance. The co-simulation of the stochastic behavior of the occupants substantially increases the accuracy of the simulation. Design/methodology/approach In this article, probabilistic models of the "opening and closing" behavior of the window of inhabitants have been developed in a separate multi-agent platform, SimOcc, and implemented in the building simulation, TRNSYS, in such a way that the behavior of the window with the interconnectivity can be reflected in the simulation analysis of the building. Findings The results of the study prove that the application of complex behaviors is important to research in predicting actual building performance. The results aid in the identification of the gap between reality and existing simulation methods. We hope this study and its results will serve as a guide for researchers interested in investigating occupant behavior in the future. Research limitations/implications Further case studies involving multi-user behavior for complex commercial buildings need to more understand the impact of the occupant behavior on building performance. Originality/value This study is considered as a good opportunity to achieve the national strategy by showing a suitable tool to help stakeholders in the design phase of new or retrofitted buildings to improve the performance of office buildings.

Keywords: occupant behavior, co-simulation, energy consumption, thermal comfort

Procedia PDF Downloads 104
374 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen

Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung

Abstract:

Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.

Keywords: 3D DIC, radial distortion, distortion correction, planarity

Procedia PDF Downloads 551
373 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 216
372 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 408
371 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome

Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah

Abstract:

Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.

Keywords: acute respiratory distress syndrome, critical care, mechanical ventilation, prone position

Procedia PDF Downloads 538
370 The Utilization of FSI Technique and Two-Way Particle Coupling System on Particle Dynamics in the Human Alveoli

Authors: Hassan Athari, Abdurrahim Bolukbasi, Dogan Ciloglu

Abstract:

This study represented the respiratory alveoli system, and determined the trajectory of inhaled particles more accurately using the modified three-dimensional model with deformable walls of alveoli. The study also considered the tissue tension in the model to demonstrate the effect of lung. Tissue tensions are transferred by the lung parenchyma and produce the pressure gradient. This load expands the alveoli and establishes a sub-ambient (vacuum) pressure within the lungs. Thus, at the alveolar level, the flow field and movement of alveoli wall lead to an integrated effect. In this research, we assume that the three-dimensional alveolus has a visco-elastic tissue (walls). For accurate investigation of pulmonary tissue mechanical properties on particle transport and alveolar flow field, the actual relevance between tissue movement and airflow is solved by two-way FSI (Fluid Structure Interaction) simulation technique in the alveolus. Therefore, the essence of real simulation of pulmonary breathing mechanics can be achieved by developing a coupled FSI computational model. We, therefore conduct a series of FSI simulations over a range of tissue models and breathing rates. As a result, the fluid flows and streamlines have changed during present flexible model against the rigid models and also the two-way coupling particle trajectories have changed against the one-way particle coupling.

Keywords: FSI, two-way particle coupling, alveoli, CDF

Procedia PDF Downloads 257
369 Deep Reinforcement Learning Model for Autonomous Driving

Authors: Boumaraf Malak

Abstract:

The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.

Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning

Procedia PDF Downloads 85
368 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 144
367 Implementation of a Lattice Boltzmann Method for Pulsatile Flow with Moment Based Boundary Condition

Authors: Zainab A. Bu Sinnah, David I. Graham

Abstract:

The Lattice Boltzmann Method has been developed and used to simulate both steady and unsteady fluid flow problems such as turbulent flows, multiphase flow and flows in the vascular system. As an example, the study of blood flow and its properties can give a greater understanding of atherosclerosis and the flow parameters which influence this phenomenon. The blood flow in the vascular system is driven by a pulsating pressure gradient which is produced by the heart. As a very simple model of this, we simulate plane channel flow under periodic forcing. This pulsatile flow is essentially the standard Poiseuille flow except that the flow is driven by the periodic forcing term. Moment boundary conditions, where various moments of the particle distribution function are specified, are applied at solid walls. We used a second-order single relaxation time model and investigated grid convergence using two distinct approaches. In the first approach, we fixed both Reynolds and Womersley numbers and varied relaxation time with grid size. In the second approach, we fixed the Womersley number and relaxation time. The expected second-order convergence was obtained for the second approach. For the first approach, however, the numerical method converged, but not necessarily to the appropriate analytical result. An explanation is given for these observations.

Keywords: Lattice Boltzmann method, single relaxation time, pulsatile flow, moment based boundary condition

Procedia PDF Downloads 231
366 The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications

Authors: Ayesha Asma, Aqsa Arooj

Abstract:

It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications.

Keywords: structural, optimized, vibrational, ultraviolet

Procedia PDF Downloads 42
365 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Ross Lee, Pritpal Singh, Andrew Jester

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential

Procedia PDF Downloads 118
364 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 151
363 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 136