Search results for: real time kernel preemption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20895

Search results for: real time kernel preemption

20025 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment

Authors: Xiaoxian Zhang

Abstract:

Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.

Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis

Procedia PDF Downloads 145
20024 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 76
20023 Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error

Authors: Seyedamir Makinejadsanij

Abstract:

One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased.

Keywords: k-means, overhead crane, melt weight, weight estimation, swing problem

Procedia PDF Downloads 90
20022 Analysis of Strategies to Reduce Patients’ Disposition Holding Time from Emergency Department to Ward

Authors: Kamonwat Suksumek, Seeronk Prichanont

Abstract:

Access block refers to the situation where Emergency Department (ED) patients requiring hospital admission spend an unreasonable holding time in an ED because their access to a ward is blocked by the full utilization of the ward’s beds. Not only it delays the proper treatments required by the patients, but access block is also the cause of ED’s overcrowding. Clearly, access block is an inter-departmental problem that needs to be brought to management’s attention. This paper focuses on the analysis of strategies to address the access block problem, both in the operational and intermediate levels. These strategies were analyzed through a simulation model with a real data set from a university hospital in Thailand. The paper suggests suitable variable levels for each strategy so that the management will make the final decisions.

Keywords: access block, emergency department, health system analysis, simulation

Procedia PDF Downloads 409
20021 Manufacturing Facility Location Selection: A Numercal Taxonomy Approach

Authors: Seifoddini Hamid, Mardikoraeem Mahsa, Ghorayshi Roya

Abstract:

Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data.

Keywords: manufacturing facility, manufacturing sites, real world data

Procedia PDF Downloads 563
20020 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 84
20019 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows

Authors: Imen Boudali, Marwa Ragmoun

Abstract:

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.

Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO

Procedia PDF Downloads 411
20018 Temporal Axis in Japanese: The Paradox of a Metaphorical Orientation in Time

Authors: Tomoko Usui

Abstract:

In the field of linguistics, it has been said that concepts associated with space and motion systematically contribute structure to the temporal concept. This is the conceptual metaphor theory. conceptual metaphors typically employ a more abstract concept (time) as their target and a more concrete or physical concept as their source (space). This paper will examine two major temporal conceptual metaphors: Ego-centered Moving Time Metaphor and Time-RP Metaphor. Moving time generally receives a front-back orientation, however, Japanese shows a different orientation given to time. By means of Ego perspective, this paper will illustrate the paradox of a metaphorical orientation in time.

Keywords: Ego-centered Moving Time Metaphor, Japanese saki, temporal metaphors, Time RP Metaphor

Procedia PDF Downloads 496
20017 Crossing the Interdisciplinary Border: A Multidimensional Linguistics Analysis of a Legislative Discourse

Authors: Manvender Kaur Sarjit Singh

Abstract:

There is a crucial mismatch between classroom written language tasks and real world written language requirements. Realizing the importance of reducing the gap between the professional needs of the legal practitioners and the higher learning institutions that offer the legislative education in Malaysia, it is deemed necessary to develop a framework that integrates real-life written communication with the teaching of content-based legislative discourse to future legal practitioners. By highlighting the actual needs of the legal practitioners in the country, the present teaching practices will be enhanced and aligned with the actual needs of the learners thus realizing the vision and aspirations of the Malaysian Education Blueprint 2013-2025 and Legal Profession Qualifying Board. The need to focus future education according to the actual needs of the learners can be realized by developing a teaching framework which is designed within the prospective requirements of its real-life context. This paper presents the steps taken to develop a specific teaching framework that fulfills the fundamental real-life context of the prospective legal practitioners. The teaching framework was developed based on real-life written communication from the legal profession in Malaysia, using the specific genre analysis approach which integrates a corpus-based approach and a structural linguistics analysis. This approach was adopted due to its fundamental nature of intensive exploration of the real-life written communication according to the established strategies used. The findings showed the use of specific moves and parts-of-speech by the legal practitioners, in order to prepare the selected genre. The teaching framework is hoped to enhance the teachings of content-based law courses offered at present in the higher learning institutions in Malaysia.

Keywords: linguistics analysis, corpus analysis, genre analysis, legislative discourse

Procedia PDF Downloads 383
20016 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 222
20015 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 79
20014 Evaluation of the Cytotoxicity and Cellular Uptake of a Cyclodextrin-Based Drug Delivery System for Cancer Therapy

Authors: Caroline Mendes, Mary McNamara, Orla Howe

Abstract:

Drug delivery systems are proposed for use in cancer treatment to specifically target cancer cells and deliver a therapeutic dose without affecting normal cells. For that purpose, the use of folate receptors (FR) can be considered a key strategy, since they are commonly over-expressed in cancer cells. In this study, cyclodextrins (CD) have being used as vehicles to target FR and deliver the chemotherapeutic drug, methotrexate (MTX). CDs have the ability to form inclusion complexes, in which molecules of suitable dimensions are included within their cavities. Here, β-CD has been modified using folic acid so as to specifically target the FR. Thus, this drug delivery system consists of β-CD, folic acid and MTX (CDEnFA:MTX). Cellular uptake of folic acid is mediated with high affinity by folate receptors while the cellular uptake of antifolates, such as MTX, is mediated with high affinity by the reduced folate carriers (RFCs). This study addresses the gene (mRNA) and protein expression levels of FRs and RFCs in the cancer cell lines CaCo-2, SKOV-3, HeLa, MCF-7, A549 and the normal cell line BEAS-2B, quantified by real-time polymerase chain reaction (real-time PCR) and flow cytometry, respectively. From that, four cell lines with different levels of FRs, were chosen for cytotoxicity assays of MTX and CDEnFA:MTX using the MTT assay. Real-time PCR and flow cytometry data demonstrated that all cell lines ubiquitously express moderate levels of RFC. These experiments have also shown that levels of FR protein in CaCo-2 cells are high, while levels in SKOV-3, HeLa and MCF-7 cells are moderate. A549 and BEAS-2B cells express low levels of FR protein. FRs are highly expressed in all the cancer cell lines analysed when compared to the normal cell line BEAS-2B. The cell lines CaCo-2, MCF-7, A549 and BEAS-2B were used in the cell viability assays. 48 hours treatment with the free drug and the complex resulted in IC50 values of 93.9 µM ± 15.2 and 56.0 µM ± 4.0 for CaCo-2 for free MTX and CDEnFA:MTX respectively, 118.2 µM ± 16.8 and 97.8 µM ± 12.3 for MCF-7, 36.4 µM ± 6.9 and 75.0 µM ± 10.5 for A549 and 132.6 µM ± 16.1 and 288.1 µM ± 26.3 for BEAS-2B. These results demonstrate that free MTX is more toxic towards cell lines expressing low levels of FR, such as the BEAS-2B. More importantly, these results demonstrate that the inclusion complex CDEnFA:MTX showed greater cytotoxicity than the free drug towards the high FR expressing CaCo-2 cells, indicating that it has potential to target this receptor, enhancing the specificity and the efficiency of the drug. The use of cell imaging by confocal microscopy has allowed visualisation of FR targeting in cancer cells, as well as the identification of the interlisation pathway of the drug. Hence, the cellular uptake and internalisation process of this drug delivery system is being addressed.

Keywords: cancer treatment, cyclodextrins, drug delivery, folate receptors, reduced folate carriers

Procedia PDF Downloads 310
20013 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72
20012 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: queueing network, discrete-event simulation, health applications, SPT

Procedia PDF Downloads 187
20011 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 108
20010 A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification

Authors: Ahmed Salim, A. El Bouari, M. Tahiri, O. Tanane

Abstract:

This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels.

Keywords: environmental pollution, adsorbent, activated carbon, phosphoric acid, date Kernels, pollutants, adsorption

Procedia PDF Downloads 44
20009 Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion

Authors: Sonam Behl, Raju, Ginu Rajan, Paul Farrar, B. Gangadhara Prusty

Abstract:

Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well.

Keywords: dental composite, glass fibre, polymerisation shrinkage strain, fibre-Bragg grating sensors

Procedia PDF Downloads 154
20008 Processes and Application of Casting Simulation and Its Software’s

Authors: Surinder Pal, Ajay Gupta, Johny Khajuria

Abstract:

Casting simulation helps visualize mold filling and casting solidification; predict related defects like cold shut, shrinkage porosity and hard spots; and optimize the casting design to achieve the desired quality with high yield. Flow and solidification of molten metals are, however, a very complex phenomenon that is difficult to simulate correctly by conventional computational techniques, especially when the part geometry is intricate and the required inputs (like thermo-physical properties and heat transfer coefficients) are not available. Simulation software is based on the process of modeling a real phenomenon with a set of mathematical formulas. It is, essentially, a program that allows the user to observe an operation through simulation without actually performing that operation. Simulation software is used widely to design equipment so that the final product will be as close to design specs as possible without expensive in process modification. Simulation software with real-time response is often used in gaming, but it also has important industrial applications. When the penalty for improper operation is costly, such as airplane pilots, nuclear power plant operators, or chemical plant operators, a mockup of the actual control panel is connected to a real-time simulation of the physical response, giving valuable training experience without fear of a disastrous outcome. The all casting simulation software has own requirements, like magma cast has only best for crack simulation. The latest generation software Auto CAST developed at IIT Bombay provides a host of functions to support method engineers, including part thickness visualization, core design, multi-cavity mold design with common gating and feeding, application of various feed aids (feeder sleeves, chills, padding, etc.), simulation of mold filling and casting solidification, automatic optimization of feeders and gating driven by the desired quality level, and what-if cost analysis. IIT Bombay has developed a set of applications for the foundry industry to improve casting yield and quality. Casting simulation is a fast and efficient solution for process for advanced tool which is the result of more than 20 years of collaboration with major industrial partners and academic institutions around the world. In this paper the process of casting simulation is studied.

Keywords: casting simulation software’s, simulation technique’s, casting simulation, processes

Procedia PDF Downloads 475
20007 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends

Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.

Keywords: biodiesel, blends, macauba kernel oil, stability oxidative

Procedia PDF Downloads 539
20006 Sensing of Cancer DNA Using Resonance Frequency

Authors: Sungsoo Na, Chanho Park

Abstract:

Lung cancer is one of the most common severe diseases driving to the death of a human. Lung cancer can be divided into two cases of small-cell lung cancer (SCLC) and non-SCLC (NSCLC), and about 80% of lung cancers belong to the case of NSCLC. From several studies, the correlation between epidermal growth factor receptor (EGFR) and NSCLCs has been investigated. Therefore, EGFR inhibitor drugs such as gefitinib and erlotinib have been used as lung cancer treatments. However, the treatments result showed low response (10~20%) in clinical trials due to EGFR mutations that cause the drug resistance. Patients with resistance to EGFR inhibitor drugs usually are positive to KRAS mutation. Therefore, assessment of EGFR and KRAS mutation is essential for target therapies of NSCLC patient. In order to overcome the limitation of conventional therapies, overall EGFR and KRAS mutations have to be monitored. In this work, the only detection of EGFR will be presented. A variety of techniques has been presented for the detection of EGFR mutations. The standard detection method of EGFR mutation in ctDNA relies on real-time polymerase chain reaction (PCR). Real-time PCR method provides high sensitive detection performance. However, as the amplification step increases cost effect and complexity increase as well. Other types of technology such as BEAMing, next generation sequencing (NGS), an electrochemical sensor and silicon nanowire field-effect transistor have been presented. However, those technologies have limitations of low sensitivity, high cost and complexity of data analyzation. In this report, we propose a label-free and high-sensitive detection method of lung cancer using quartz crystal microbalance based platform. The proposed platform is able to sense lung cancer mutant DNA with a limit of detection of 1nM.

Keywords: cancer DNA, resonance frequency, quartz crystal microbalance, lung cancer

Procedia PDF Downloads 233
20005 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 107
20004 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification

Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇

Abstract:

Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.

Keywords: biogas, bioscrubber, desulfurization, PDMS membrane

Procedia PDF Downloads 226
20003 Radio Frequency Identification (Rfid) Cost-Effective, Location-Based System for Managing Construction Materials

Authors: Mourad Bakouka, Abdelaziz Rabehi

Abstract:

Companies need to have logistics and transportation in place that can adapt to the changing nature of construction sites. This ensures they can react quickly when needed. A study was conducted to develop a way to locate and track materials on construction sites. The system is an RFID/GPS integration that's required to pull off this feat. The study also reports how the platform has been used in construction. They found many advantages to using it, including reductions in both time and costs as well as improved management of materials orders. . For example, the time in which a project could start up was shortened from two weeks to three days with just a single digital order. As of now, the technology is still limited in its widespread adoption due largely to overall lack of awareness and difficulty connecting to it. However, as more and more companies embrace it in construction, the technology is expected to become ubiquitous. The developed platform provides contractors and construction managers with real-time information about the status of materials and work, allowing them to better manage the workflow in a project. The study sheds new light on this subject, which is essential to know. This work is becoming increasingly aware of the use of smart tools in constructing buildings.

Keywords: materials management, internet of things (IoT), radio frequency identification (RFID), construction site, supply chain management

Procedia PDF Downloads 81
20002 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 539
20001 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 145
20000 On the Design of a Secure Two-Party Authentication Scheme for Internet of Things Using Cancelable Biometrics and Physically Unclonable Functions

Authors: Behnam Zahednejad, Saeed Kosari

Abstract:

Widespread deployment of Internet of Things (IoT) has raised security and privacy issues in this environment. Designing a secure two-factor authentication scheme between the user and server is still a challenging task. In this paper, we focus on Cancelable Biometric (CB) as an authentication factor in IoT. We show that previous CB-based scheme fail to provide real two-factor security, Perfect Forward Secrecy (PFS) and suffer database attacks and traceability of the user. Then we propose our improved scheme based on CB and Physically Unclonable Functions (PUF), which can provide real two-factor security, PFS, user’s unlinkability, and resistance to database attack. In addition, Key Compromise Impersonation (KCI) resilience is achieved in our scheme. We also prove the security of our proposed scheme formally using both Real-Or-Random (RoR) model and the ProVerif analysis tool. For the usability of our scheme, we conducted a performance analysis and showed that our scheme has the least communication cost compared to the previous CB-based scheme. The computational cost of our scheme is also acceptable for the IoT environment.

Keywords: IoT, two-factor security, cancelable biometric, key compromise impersonation resilience, perfect forward secrecy, database attack, real-or-random model, ProVerif

Procedia PDF Downloads 102
19999 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy security

Keywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization

Procedia PDF Downloads 139
19998 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 57
19997 Tree Dress and the Internet of Living Things

Authors: Vibeke Sorensen, Nagaraju Thummanapalli, J. Stephen Lansing

Abstract:

Inspired by the indigenous people of Borneo, Indonesia and their traditional bark cloth, artist and professor Vibeke Sorensen executed a “digital unwrapping” of several trees in Southeast Asia using a digital panorama camera and digitally “stitched” them together for printing onto sustainable silk and fashioning into the “Tree Dress”. This dress is a symbolic “un-wrapping” and “re-wrapping” of the tree’s bark onto a person as a second skin. The “digital bark” is directly responsive to the real tree through embedded and networked electronics that connect in real-time to sensors at the physical site of the living tree. LEDs and circuits inserted into the dress display the continuous measurement of the O2 / CO2, temperature, humidity, and light conditions at the tree. It is an “Internet of Living Things” (IOLT) textile that can be worn to track and interact with it. The computer system connecting the dress and the tree converts the gas emission data at the site of the real tree into sound and music as sonification. This communicates not only the scientific data but also translates it into a poetic representation. The wearer of the garment can symbolically identify with the tree, or “become one” with it by adorning its “skin.” In this way, the wearer also becomes a human agent for the tree, bringing its actual condition to direct perception of the wearer and others who may engage it. This project is an attempt to bring greater awareness to issues of deforestation by providing a direct access to living things separated by physical distance, and hopefully, to increase empathy for them by providing a way to sense individual trees and their daily existential condition through remote monitoring of data. Further extensions to this project and related issues of sustainability include the use of recycled and alternative plant materials such as bamboo and air plants, among others.

Keywords: IOLT, sonification, sustainability, tree, wearable technology

Procedia PDF Downloads 138
19996 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Authors: Daniel S. Brox

Abstract:

Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.

Keywords: seismic activation, statistical physics, geodynamics, signal processing

Procedia PDF Downloads 17