Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3
Search results for: hormesis
3 How Hormesis Impacts Practice of Ecological Risk Assessment and Food Safety Assessment
Authors: Xiaoxian Zhang
Abstract:
Guidelines of ecological risk assessment (ERA) and food safety assessment (FSA) used nowadays, based on an S-shaped threshold dose-response curve (SDR), fail to consider hormesis, a reproducible biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in the real-life environment across multitudinous compounds on cells, organisms, populations, and even the ecosystem. Specifically, in SDR-based ERA and FSA practice, predicted no effect concentration (PNEC) is calculated separately for individual substances from no observed effect concentration (NOEC, usually equivalent to 10% effect concentration (EC10) of a contaminant or food condiment) over an assessment coefficient that is bigger than 1. Experienced researchers doubted that hormesis in the real-life environment might lead to a waste of limited human and material resources in ERA and FSA practice, but related data are scarce. In this study, hormetic effects on bioluminescence of Aliivibrio fischeri (A. f) induced by sulfachloropyridazine (SCP) under 40 conditions to simulate the real-life scenario were investigated, and hormetic effects on growth of human MCF-7 cells caused by brown sugar and mascavado sugar were found likewise. After comparison of related parameters, it has for the first time been proved that there is a 50% probability for safe concentration (SC) of contaminants and food condiments to fall within the hormetic-stimulatory range (HSR) or left to HSR, revealing the unreliability of traditional parameters in standardized (eco)toxicological studies, and supporting qualitatively and quantitatively the over-strictness of ERA and FSA resulted from misuse of SDR. This study provides a novel perspective for ERA and FSA practitioners that hormesis should dominate and conditions where SDR works should only be singled out on a specific basis.Keywords: dose-response relationship, food safety, ecological risk assessment, hormesis
Procedia PDF Downloads 1482 The Effect of Low and High Dose Curcumin Supplementation on Prevention and Treatment of Sarcopenia: The Concept of Hormesis
Authors: Sevana Daneghian, Leila Chodari, Sahar Mehranfar, Shadi Mohammadpour-Asl, Diman Mahdi
Abstract:
Sarcopenia is an age-related muscle disease. Lack of antioxidant protection, and cumulative oxidative damage to skeletal muscle are recognized mechanisms. Curcumin is a hormetin as it has a stimulating effect in low doses and an inhibitory effect in high doses. The purpose of this study was to examine the effects of four weeks of curcumin supplementation in presarcopenic and sarcopenic rats, and likelihood of potential negative effects while co-exist with sarcopenia. The rats were divided into 7 groups: young sham rats, 18 months old; presarcopenic control, supplemented with 400 and 1500 mg/kg/day, 24 months old; Sarcopenia control, sarcopenia supplemented with 400 and 1500 mg/kg/day. MDA levels were significantly reduced in the low-dose pre-sarcopenic group compared to the control group. Compared to the corresponding control groups, SOD levels decreased in the groups treated with low-dose presarcopenic supplementation and increased in the high-dose sarcopenic supplemented. GPx levels increased at both doses only in the sarcopenic group compared to the control group. SIRT-1 only increased at low doses in the sarcopenic groups and PGC-1α in both pre-sarcopenia groups compared to the corresponding control. IGF-1 increased compared to the control group at both doses in the pre-sarcopenic group and at high doses in sarcopenic group. Considering the hormetic effects of curcumin, it can be argued that, curcumin supplementation has some positive effects not only at low but also at high doses in both groups. This means that the high doses of curcumin have no negative synergistic effects in addition to oxidative stress during sarcopenia and high-dose supplementation in patients already suffering from high oxidative stress due to sarcopenia is safe and could be considered hormetic.Keywords: curcumin, hormesis, sarcopenia, muscular atrophy, PGC protein, Sirtuins
Procedia PDF Downloads 411 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field
Authors: Sergei Voychuk
Abstract:
Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response
Procedia PDF Downloads 320