Search results for: light vehicles
3988 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex
Authors: Lishuang Ma
Abstract:
Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexesKeywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling
Procedia PDF Downloads 1433987 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process
Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan
Abstract:
In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect
Procedia PDF Downloads 2713986 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method
Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud
Abstract:
Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator
Procedia PDF Downloads 3453985 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment
Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau
Abstract:
TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance
Procedia PDF Downloads 2313984 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator
Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski
Abstract:
Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.Keywords: human robot interaction, drones, gestures, robotics
Procedia PDF Downloads 1573983 Sustainability in Space: Implementation of Circular Economy and Material Efficiency Strategies in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
The ultimate aim of space exploration has been centralized around the possibility of life on other planets in the solar system. This aim is driven by the detrimental effects that climate change could potentially have on human survival on Earth in the future. This drives humans to search for feasible solutions to increase environmental and economical sustainability on Earth and to evaluate and explore the ability of human survival on other planets such as Mars. To do that, frequent space missions are required to meet the ambitious human goals. This means that reliable and affordable access to space is required, which could be largely achieved through the use of reusable spacecrafts. Therefore, materials and resources must be used wisely to meet the increasing demand. Space missions are currently extremely expensive to operate. However, reusing materials hence spacecrafts, can potentially reduce overall mission costs as well as the negative impact on both space and Earth environments. This is because reusing materials leads to less waste generated per mission, and therefore fewer landfill sites are required. Reusing materials reduces resource consumption, material production, and the need for processing new and replacement spacecraft and launch vehicle parts. Consequently, this will ease and facilitate human access to outer space as it will reduce the demand for scarce resources, which will boost material efficiency in the space industry. Material efficiency expresses the extent to which resources are consumed in the production cycle and how the waste produced by the industrial process is minimized. The strategies proposed in this paper to boost material efficiency in the space sector are the introduction of key performance indicators that are able to measure material efficiency as well as the introduction of clearly defined policies and legislation that can be easily implemented within the general practices in the space industry. Another strategy to improve material efficiency is by amplifying energy and resource efficiency through reusing materials. The circularity of various spacecraft materials such as Kevlar, steel, and aluminum alloys could be maximized through reusing them directly or after galvanizing them with another layer of material to act as a protective coat. This research paper has an aim to investigate and discuss how to improve material efficiency in space missions considering circular economy concepts so that space and Earth become more economically and environmentally sustainable. The circular economy is a transition from a make-use-waste linear model to a closed-loop socio-economic model, which is regenerative and restorative in nature. The implementation of a circular economy will reduce waste and pollution through maximizing material efficiency, ensuring that businesses can thrive and sustain. Further research into the extent to which reusable launch vehicles reduce space mission costs have been discussed, along with the environmental and economic implications it could have on the space sector and the environment. This has been examined through research and in-depth literature review of published reports, books, scientific articles, and journals. Keywords such as material efficiency, circular economy, reusable launch vehicles and spacecraft materials were used to search for relevant literature.Keywords: circular economy, key performance indicator, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 1253982 Tutankhamen’s Shrines (Naoses): Scientific Identification of Wood Species and Technology
Authors: Medhat Abdallah, Ahmed Abdrabou
Abstract:
Tutankhamen tomb was discovered on November 1922 by Howard carter, the grave was relatively intact and crammed full of the most beautiful burial items and furniture, the black shrine-shaped boxes on sleds studied here founded in treasury chamber. This study aims to identify the wood species used in making those shrines, illustrate technology of manufacture. Optical Microscope (OM), 3D software and Imaging Processes including; Visible light, Raking light and Visible-induced infrared luminescence were effective in illustrating wooden joints and techniques of manufacture. The results revealed that cedar of Lebanon Cedrus libani and sycamore fig Ficus sycomorus had been used for making the shrines’ boards and sleds while tamarisk Tamarix sp., Turkey Oak Quercus cerris L., and Sidder (nabk) Zizyphus spina christi used for making dowels. The wooden joint of mortise and tenon was used to connect the body of the shrine to the sled, while wooden pegs used to connect roof and cornice to the shrine body.Keywords: Tutankhamen, wood species, optical microscope, Cedrus libani, Ficus sycomorus
Procedia PDF Downloads 2083981 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field
Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian
Abstract:
Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering
Procedia PDF Downloads 1773980 Management of Jebusaea hammerschmidtii and Batrachedra amydraula on Date Palm Trees in UAE
Authors: Mohammad Ali Al-Deeb, Hamda Ateeq Al Dhaheri
Abstract:
Insects cause major damage to crops and fruit trees worldwide. In the United Arab Emirates, the date palm tree is the most economically important tree which is used for date production as well as an ornamental tree. In 2002, the number of date palm trees in UAE was 40,700,000 and it is increasing over time. The longhorn stem borer (Jebusaea hammerschmidtii) and the lesser date month (Batrachedra amydraula) are important insect pests causing damage to date palm trees in UAE. Population dynamics of the Jebusaea hammerschmidtii and Batrachedra amydraula were studied by using light and pheromons traps, respectively in Al-Ain, UAE. The first trap catch of B. amydraula adults occurred on 19 April and the insect population peaked up on 26 April 2014. The first trap catch of J. hammerschmidtii occurred in April 2014. The numbers increased over time and the population peak occurred in June. The trapping was also done in 2015. The changes in insect numbers in relation to weather parameters are discussed. Also, the importance of the results on the management of these two pests is highlighted.Keywords: date palm, integrated pest management, UAE, light trap, pheromone trap
Procedia PDF Downloads 2823979 The Effects of Circadian Rhythms Change in High Latitudes
Authors: Ekaterina Zvorykina
Abstract:
Nowadays, Arctic and Antarctic regions are distinguished to be one of the most important strategic resources for global development. Nonetheless, living conditions in Arctic regions still demand certain improvements. As soon as the region is rarely populated, one of the main points of interest is health accommodation of the people, who migrate to Arctic region for permanent and shift work. At Arctic and Antarctic latitudes, personnel face polar day and polar night conditions during the time of the year. It means that they are deprived of natural sunlight in winter season and have continuous daylight in summer. Firstly, the change in light intensity during 24-hours period due to migration affects circadian rhythms. Moreover, the controlled artificial light in winter is also an issue. The results of the recent studies on night shift medical professionals, who were exposed to permanent artificial light, have already demonstrated higher risks in cancer, depression, Alzheimer disease. Moreover, people exposed to frequent time zones change are also subjected to higher risks of heart attack and cancer. Thus, our main goals are to understand how high latitude work and living conditions can affect human health and how it can be prevented. In our study, we analyze molecular and cellular factors, which play important role in circadian rhythm change and distinguish main risk groups in people, migrating to high latitudes. The main well-studied index of circadian timing is melatonin or its metabolite 6-sulfatoxymelatonin. In low light intensity melatonin synthesis is disturbed and as a result human organism requires more time for sleep, which is still disregarded when it comes to working time organization. Lack of melatonin also causes shortage in serotonin production, which leads to higher depression risk. Melatonin is also known to inhibit oncogenes and increase apoptosis level in cells, the main factors for tumor growth, as well as circadian clock genes (for example Per2). Thus, people who work in high latitudes can be distinguished as a risk group for cancer diseases and demand more attention. Clock/Clock genes, known to be one of the main circadian clock regulators, decrease sensitivity of hypothalamus to estrogen and decrease glucose sensibility, which leads to premature aging and oestrous cycle disruption. Permanent light exposure also leads to accumulation superoxide dismutase and oxidative stress, which is one of the main factors for early dementia and Alzheimer disease. We propose a new screening system adjusted for people, migrating from middle to high latitudes and accommodation therapy. Screening is focused on melatonin and estrogen levels, sleep deprivation and neural disorders, depression level, cancer risks and heart and vascular disorders. Accommodation therapy includes different types artificial light exposure, additional melatonin and neuroprotectors. Preventive procedures can lead to increase of migration intensity to high latitudes and, as a result, the prosperity of Arctic region.Keywords: circadian rhythm, high latitudes, melatonin, neuroprotectors
Procedia PDF Downloads 1563978 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation
Authors: Amina Adala, Nadra Debbache, Tahar Sehili
Abstract:
Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen
Procedia PDF Downloads 833977 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer
Authors: R. Karmouch
Abstract:
A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons
Procedia PDF Downloads 4203976 Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization
Authors: Houria Hamitouche, Abdellah Khelifa
Abstract:
Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize.Keywords: quaternary ammonium salts, reformate, light naphtha, kerosene
Procedia PDF Downloads 3363975 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes
Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad
Abstract:
Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance
Procedia PDF Downloads 1813974 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning
Authors: ChoLiang Chung, YuMin Chen
Abstract:
C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.Keywords: carbon, TiO2, chitosan, electrospinning
Procedia PDF Downloads 2573973 Comparison of the Indocyanine Green Dye Method versus the Combined Method of Indigo Carmine Blue Dye with Indocyanine Green Fluorescence Imaging for Sentinel Lymph Node Biopsy in Breast Conservative Therapy for Early Breast Cancer
Authors: Nobuyuki Takemoto, Ai Koyanagi, Masanori Yasuda, Hiroshi Yamamoto
Abstract:
Background: Fluorescence imaging (FI) is one of the methods to identify sentinel lymph nodes (SLNs). However, the procedure is technically complicated and requires procedural skills, as SLN biopsy must be conducted in dim light conditions. As an improved version of this method, we introduced a combined method (Combined mixed dye and fluorescence; CMF) consisting of indigo carmine blue dye and FI. The direct visualization of SLNs under shadowless surgical light conditions is facilitated by the addition of the blue dye. We compared the SLN detection rates of CMF with that of the indocyanine green (ICG) dye method (ICG-D). Methods: A total of 202 patients with stage ≤ IIA breast cancer who underwent breast conservative therapy with separate incision from January 2004 to February 2017 were reviewed. Details of the two methods are as follows: (1) ICG-D: 2ml of ICG (10mg) was used and the green-stained SLNs were resected via a 3-4cm axillary incision; (2) CMF: A combination of 1ml of ICG (5mg) and 1-3ml of indigo carmine (4-12mg) was used. Using Photodynamic Eye (PDE), a 1.5-2 cm incision was made near the point of disappearance of the fluorescence and SLNs with intermediate color of blue and green were resected. Results: There were 92 ICG-D and 110 CMF cases. CMF resulted in a significantly higher detection rate than ICG-D (96.4% vs. 83.7%; p=0.003). This difference was particularly notable in those aged ≥ 60 years (98.3% vs. 74.3%) and individuals with BMI ≥ 25kg/m2 (90.3% vs. 58.3%). Conclusion: CMF is an effective method to identify SLNs which is safe, efficient, and cost-effective. Furthermore, radiation exposure can be avoided, and it can be performed in institutes without nuclear medicine facilities. CMF achieves a high SLN identification rate, and most of this procedure is feasible under shadowless surgical light conditions. CMF can reliably perform SLN biopsy even in those aged ≥ 60 years and individuals with BMI ≥ 25 kg/m2.Keywords: sentinel lymph node biopsy, identification rate, indocyanine green (ICG), indigocarmine, fluorescence
Procedia PDF Downloads 1713972 Central Solar Tower Model
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.Keywords: solar oven, solar cooker, composite material, low cost, sustainable development
Procedia PDF Downloads 4173971 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite
Authors: Jayson Cheyne, David Butler, Iain Bomphray
Abstract:
In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway
Procedia PDF Downloads 1453970 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil
Authors: T. S. Ijimdiya, K. J. Osinubi
Abstract:
This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts
Procedia PDF Downloads 4333969 Comparative Studies on the Needs and Development of Autotronic Maintenance Training Modules for the Training of Automobile Independent Workshop Service Technicians in North – Western Region, Nigeria
Authors: Muhammad Shuaibu Birniwa
Abstract:
Automobile Independent Workshop Service Technicians (popularly called roadside mechanics) are technical personals that repairs most of the automobile vehicles in Nigeria. Majority of these mechanics acquired their skills through apprenticeship training. Modern vehicle imported into the country posed greater challenges to the present automobile technicians particularly in the area of carrying out maintenance repairs of these latest automobile vehicles (autotronics vehicle) due to their inability to possessed autotronic skills competency. To source for solution to the above mentioned problems, therefore a research is carried out in North – Western region of Nigeria to produce a suitable maintenance training modules that can be used to train the technicians for them to upgrade/acquire the needed competencies for successful maintenance repair of the autotronic vehicles that were running everyday on the nation’s roads. A cluster sampling technique is used to obtain a sample from the population. The population of the study is all autotronic inclined lecturers, instructors and independent workshop service technicians that are within North – Western region of Nigeria. There are seven states (Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto and Zamfara) in the study area, these serves as clusters in the population. Five (5) states were randomly selected to serve as the sample size. The five states are Jigawa, Kano, Katsina, Kebbi and Zamfara, the entire population of the five states which serves as clusters is (183), lecturers (44), instructors (49) and autotronic independent workshop service technicians (90), all of them were used in the study because of their manageable size. 183 copies of autotronic maintenance training module questionnaires (AMTMQ) with 174 and 149 question items respectively were administered and collected by the researcher with the help of an assistants, they are administered to 44 Polytechnic lecturers in the department of mechanical engineering, 49 instructors in skills acquisition centres/polytechnics and 90 master craftsmen of an independent workshops that are autotronic inclined. Data collected for answering research questions 1, 3, 4 and 5 were analysed using SPSS software version 22, Grand Mean and standard deviation were used to answer the research questions. Analysis of Variance (ANOVA) was used to test null hypotheses one (1) to three (3) and t-test statistical tool is used to analyzed hypotheses four (4) and five (5) all at 0.05 level of significance. The research conducted revealed that; all the objectives, contents/tasks, facilities, delivery systems and evaluation techniques contained in the questionnaire were required for the development of the autotronic maintenance training modules for independent workshop service technicians in the north – western zone of Nigeria. The skills upgrade training conducted by federal government in collaboration with SURE-P, NAC and SMEDEN was not successful because the educational status of the target population was not considered in drafting the needed training modules. The mode of training used does not also take cognizance of the theoretical aspect of the trainees, especially basic science which rendered the programme ineffective and insufficient for the tasks on ground.Keywords: autotronics, roadside, mechanics, technicians, independent
Procedia PDF Downloads 733968 Development a Battery of Measurements to Assess Giftedness Initiatives in Light of the Objectives of Saudi Arabia's Future Vision of Gifted Education
Authors: Saeed M. Al Qahtani, Alaa Eldin A. Ayoub
Abstract:
The study aimed to develop a battery of measures to assessment gifted initiatives in Saudi Arabia. The battery consisted of 17 measures developed in light of Saudi Arabia's future vision objectives for gifted education. A battery was applied to 193 gifted students who benefit from gifted initiatives and programs, 42 teachers of gifted as well as, 40 experts of gifted. Samples were taken from three main regions: Riyadh, Sharqia, Gharbia in Saudi Arabia. The results indicated that battery measures have a reliability and stability index ranging from 0.6 to 0.87. Besides that, results showed that the educational environment lacks many basic components such as facilities, laboratories, and activities that may stimulate creativity and innovation. Furthermore, results showed that there is a weakness in private sector involvement in the construction of educational buildings, special centers for gifted people and the provision of certain facilities that support talented programs. The recommendations of the study indicate the need for the private sector participation in the provision of services and projects for the care of gifted students in Saudi Arabia.Keywords: battery of measures, gifted care initiatives, Saudi future vision, gifted student
Procedia PDF Downloads 1713967 Effects of LED Lighting on Visual Comfort with Respect to the Reading Task
Authors: Ayşe Nihan Avcı, İpek Memikoğlu
Abstract:
Lighting systems in interior architecture need to be designed according to the function of the space, the type of task within the space, user comfort and needs. Desired and comfortable lighting levels increase task efficiency. When natural lighting is inadequate in a space, artificial lighting is additionally used to support the level of light. With the technological developments, the characteristics of light are being researched comprehensively and several business segments have focused on its qualitative and quantitative characteristics. These studies have increased awareness and usage of artificial lighting systems and researchers have investigated the effects of lighting on physical and psychological aspects of human in various ways. The aim of this study is to research the effects of illuminance levels of LED lighting on user visual comfort. Eighty participants from the Department of Interior Architecture of Çankaya University participated in three lighting scenarios consisting of 200 lux, 500 lux and 800 lux that are created with LED lighting. Each lighting scenario is evaluated according to six visual comfort criteria in which a reading task is performed. The results of the study indicated that LED lighting with three different illuminance levels affect visual comfort in different ways. The results are limited to the participants and questions that are attended and used in this study.Keywords: illuminance levels, LED lighting, reading task, visual comfort criteria
Procedia PDF Downloads 2553966 The Effect of Common Daily Schedule on the Human Circadian Rhythms during the Polar Day on Svalbard: Field Study
Authors: Kamila Weissova, Jitka Skrabalova, Katerina Skalova, Jana Koprivova, Zdenka Bendova
Abstract:
Any Arctic visitor has to deal with extreme conditions, including constant light during the summer season or constant darkness during winter time. Light/dark cycle is the most powerful synchronizing signal for biological clock and the absence of daily dark period during the polar day can significantly alter the functional state of the internal clock. However, the inner clock can be synchronized by other zeitgebers such as physical activity, food intake or social interactions. Here, we investigated the effect of polar day on circadian clock of 10 researchers attending the polar base station in the Svalbard region during July. The data obtained on Svalbard were compared with the data obtained before the researchers left for the expedition (in the Czech Republic). To determine the state of circadian clock we used wrist actigraphy followed by sleep diaries, saliva, and buccal mucosa samples, both collected every 4 hours during 24h-interval to detect melatonin by radioimmunoassay and clock gene (PER1, BMAL1, NR1D1, DBP) mRNA levels by RT-qPCR. The clock gene expression was analyzed using cosinor analysis. From our results, it is apparent that the constant sunlight delayed melatonin onset and postponed the physical activity in the same order. Nevertheless, the clock gene expression displayed higher amplitude on Svalbard compared to the amplitude detected in the Czech Republic. These results have suggested that the common daily schedule at the Svalbard expedition can strengthen circadian rhythm in the environment that is lacking light/dark cycle. In conclusion, the constant sunlight delays melatonin onset, but it still maintains its rhythmic secretion. The effect of constant sunlight on circadian clock can be minimalized by common daily scheduled activity.Keywords: actighraph, clock genes, human, melatonin, polar day
Procedia PDF Downloads 1733965 A Comparative Analysis of Various Companding Techniques Used to Reduce PAPR in VLC Systems
Authors: Arushi Singh, Anjana Jain, Prakash Vyavahare
Abstract:
Recently, Li-Fi(light-fiedelity) has been launched based on VLC(visible light communication) technique, 100 times faster than WiFi. Now 5G mobile communication system is proposed to use VLC-OFDM as the transmission technique. The VLC system focused on visible rays, is considered for efficient spectrum use and easy intensity modulation through LEDs. The reason of high speed in VLC is LED, as they flicker incredibly fast(order of MHz). Another advantage of employing LED is-it acts as low pass filter results no out-of-band emission. The VLC system falls under the category of ‘green technology’ for utilizing LEDs. In present scenario, OFDM is used for high data-rates, interference immunity and high spectral efficiency. Inspite of the advantages OFDM suffers from large PAPR, ICI among carriers and frequency offset errors. Since, the data transmission technique used in VLC system is OFDM, the system suffers the drawbacks of OFDM as well as VLC, the non-linearity dues to non-linear characteristics of LED and PAPR of OFDM due to which the high power amplifier enters in non-linear region. The proposed paper focuses on reduction of PAPR in VLC-OFDM systems. Many techniques are applied to reduce PAPR such as-clipping-introduces distortion in the carrier; selective mapping technique-suffers wastage of bandwidth; partial transmit sequence-very complex due to exponentially increased number of sub-blocks. The paper discusses three companding techniques namely- µ-law, A-law and advance A-law companding technique. The analysis shows that the advance A-law companding techniques reduces the PAPR of the signal by adjusting the companding parameter within the range. VLC-OFDM systems are the future of the wireless communication but non-linearity in VLC-OFDM is a severe issue. The proposed paper discusses the techniques to reduce PAPR, one of the non-linearities of the system. The companding techniques mentioned in this paper provides better results without increasing the complexity of the system.Keywords: non-linear companding techniques, peak to average power ratio (PAPR), visible light communication (VLC), VLC-OFDM
Procedia PDF Downloads 2863964 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density
Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany
Abstract:
Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination
Procedia PDF Downloads 2633963 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima
Authors: Rajesh Chandra, Uttam K. Ghosh
Abstract:
This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid
Procedia PDF Downloads 1563962 The U.S. Missile Defense Shield and Global Security Destabilization: An Inconclusive Link
Authors: Michael A. Unbehauen, Gregory D. Sloan, Alberto J. Squatrito
Abstract:
Missile proliferation and global stability are intrinsically linked. Missile threats continually appear at the forefront of global security issues. North Korea’s recently demonstrated nuclear and intercontinental ballistic missile (ICBM) capabilities, for the first time since the Cold War, renewed public interest in strategic missile defense capabilities. To protect from limited ICBM attacks from so-called rogue actors, the United States developed the Ground-based Midcourse Defense (GMD) system. This study examines if the GMD missile defense shield has contributed to a safer world or triggered a new arms race. Based upon increased missile-related developments and the lack of adherence to international missile treaties, it is generally perceived that the GMD system is a destabilizing factor for global security. By examining the current state of arms control treaties as well as existing missile arsenals and ongoing efforts in technologies to overcome U.S. missile defenses, this study seeks to analyze the contribution of GMD to global stability. A thorough investigation cannot ignore that, through the establishment of this limited capability, the U.S. violated longstanding, successful weapons treaties and caused concern among states that possess ICBMs. GMD capability contributes to the perception that ICBM arsenals could become ineffective, creating an imbalance in favor of the United States, leading to increased global instability and tension. While blame for the deterioration of global stability and non-adherence to arms control treaties is often placed on U.S. missile defense, the facts do not necessarily support this view. The notion of a renewed arms race due to GMD is supported neither by current missile arsenals nor by the inevitable development of new and enhanced missile technology, to include multiple independently targeted reentry vehicles (MIRVs), maneuverable reentry vehicles (MaRVs), and hypersonic glide vehicles (HGVs). The methodology in this study encapsulates a period of time, pre- and post-GMD introduction, while analyzing international treaty adherence, missile counts and types, and research in new missile technologies. The decline in international treaty adherence, coupled with a measurable increase in the number and types of missiles or research in new missile technologies during the period after the introduction of GMD, could be perceived as a clear indicator of GMD contributing to global instability. However, research into improved technology (MIRV, MaRV and HGV) prior to GMD, as well as a decline of various global missile inventories and testing of systems during this same period, would seem to invalidate this theory. U.S. adversaries have exploited the perception of the U.S. missile defense shield as a destabilizing factor as a pretext to strengthen and modernize their militaries and justify their policies. As a result, it can be concluded that global stability has not significantly decreased due to GMD; but rather, the natural progression of technological and missile development would inherently include innovative and dynamic approaches to target engagement, deterrence, and national defense.Keywords: arms control, arms race, global security, GMD, ICBM, missile defense, proliferation
Procedia PDF Downloads 1433961 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate
Authors: Mahfuzur Rahman
Abstract:
Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO
Procedia PDF Downloads 1463960 Possibilities of Output Technology the Project ADAPTIV for Use in Infrared Camouflage
Authors: Jiří Barta, Teodor Baláž, Tomáš Ludík, Jiří. F. Urbánek
Abstract:
This article deals with the outputs of project acronym ADAPTIV of Czech Defence Research Project. This Project solved tends to adaptive camouflage. The camouflage is concealment by means of disguise. Perceptive interface between recipient and camouflaged object is visualized by means of textile modular screens. Screens special light semi-permeability enables front/ back projection with nearly identical light parameters. Information permeability, towards illusion creation, must be controlled by the camouflage provider by means sophisticated and mastered illusion with perfect scenarios. The project ADAPTIV was primarily funded with the maximum possible use of COTS (Commercial-Off-The-Shelf) principle asks special definition of feasibility conditions, especially recipient space position. This paper deals with uses the ADAPTIV output with name DATAsam with modification for infrared camouflage. It is focused on active camouflage in infrared spectrum of emissivity at <8;14> μm for laboratory conditions. The main chapter provides basic experiments and testing physical properties needed for camouflage in infrared environment. The evaluation experiments revealed the possibility of use case in various types of camouflage.Keywords: camouflage, ADAPTIV, infrared camouflage, computer-aided, COTS
Procedia PDF Downloads 4173959 Design of a Low Cost Programmable LED Lighting System
Authors: S. Abeysekera, M. Bazghaleh, M. P. L. Ooi, Y. C. Kuang, V. Kalavally
Abstract:
Smart LED-based lighting systems have significant advantages over traditional lighting systems due to their capability of producing tunable light spectrums on demand. The main challenge in the design of smart lighting systems is to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area. This paper outlines the programmable LED lighting system design principles of design to achieve the two aims. In this paper, a seven-channel design using low-cost discrete LEDs is presented. Optimization algorithms are used to calculate the number of required LEDs, LEDs arrangements and optimum LED separation distance. The results show the illumination uniformity for each channel. The results also show that the maximum color error is below 0.0808 on the CIE1976 chromaticity scale. In conclusion, this paper considered the simulation and design of a seven-channel programmable lighting system using low-cost discrete LEDs to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area.Keywords: light spectrum control, LEDs, smart lighting, programmable LED lighting system
Procedia PDF Downloads 187