Search results for: genetic breeding models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8453

Search results for: genetic breeding models

7583 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: multi objective optimization, pareto front, composite patch, cracked pipe

Procedia PDF Downloads 312
7582 Resource Constrained Time-Cost Trade-Off Analysis in Construction Project Planning and Control

Authors: Sangwon Han, Chengquan Jin

Abstract:

Time-cost trade-off (TCTO) is one of the most significant part of construction project management. Despite the significance, current TCTO analysis, based on the Critical Path Method, does not consider resource constraint, and accordingly sometimes generates an impractical and/or infeasible schedule planning in terms of resource availability. Therefore, resource constraint needs to be considered when doing TCTO analysis. In this research, genetic algorithms (GA) based optimization model is created in order to find the optimal schedule. This model is utilized to compare four distinct scenarios (i.e., 1) initial CPM, 2) TCTO without considering resource constraint, 3) resource allocation after TCTO, and 4) TCTO with considering resource constraint) in terms of duration, cost, and resource utilization. The comparison results identify that ‘TCTO with considering resource constraint’ generates the optimal schedule with the respect of duration, cost, and resource. This verifies the need for consideration of resource constraint when doing TCTO analysis. It is expected that the proposed model will produce more feasible and optimal schedule.

Keywords: time-cost trade-off, genetic algorithms, critical path, resource availability

Procedia PDF Downloads 186
7581 Microarrays: Wide Clinical Utilities and Advances in Healthcare

Authors: Salma M. Wakil

Abstract:

Advances in the field of genetics overwhelmed detecting large number of inherited disorders at the molecular level and directed to the development of innovative technologies. These innovations have led to gene sequencing, prenatal mutation detection, pre-implantation genetic diagnosis; population based carrier screening and genome wide analyses using microarrays. Microarrays are widely used in establishing clinical and diagnostic setup for genetic anomalies at a massive level, with the advent of cytoscan molecular karyotyping as a clinical utility card for detecting chromosomal aberrations with high coverage across the entire human genome. Unlike a regular karyotype that relies on the microscopic inspection of chromosomes, molecular karyotyping with cytoscan constructs virtual chromosomes based on the copy number analysis of DNA which improves its resolution by 100-fold. We have been investigating a large number of patients with Developmental Delay and Intellectual disability with this platform for establishing micro syndrome deletions and have detected number of novel CNV’s in the Arabian population with the clinical relevance.

Keywords: microarrays, molecular karyotyping, developmental delay, genetics

Procedia PDF Downloads 456
7580 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
7579 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof

Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba

Abstract:

In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.

Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof

Procedia PDF Downloads 147
7578 Effect of Non-Genetic Factors and Heritability Estimate of Some Productive and Reproductive Traits of Holstein Cows in Middle of Iraq

Authors: Salim Omar Raoof

Abstract:

This study was conducted at the Al-Salam cows’ station for milk production located in Al-Latifiya district - Al-Mahmudiyah district (25 km south of Baghdad governorate) on a sample of (180) Holstein cows imported from Germany by Taj Al-Nahrain company, in order to study the effect of the sequence, season and calving year on Total Milk Production (TMP). the lactation period (LP), calving interval, Services per conception and the estimate the heritability of the studied traits. The results showed that the overall mean of TMP and LP were 3172.53 kg and237.09-day respectively. The parity effect on TMP in Holstein cows was highly significant (P≤0.01). total Milk production increased with the advanced of parity and mostly reached its maximum value in the 4th and 3rd parity being 3305.87 kg and3286.35 kg per day, respectively. Season of calving has a highly significant (P≤0.01) effect on (TMP). Cows calved in spring had a highest milk production than that calved in other seasons. Season of calving had highly significant (P≤0.01) effect on services per conception. The result of the study showed the heritability value for TMP, LP, SPC and CL were 0.21 ,0.08 ,0.08 and 0.07 respectively.

Keywords: Holstein, cows, milk production, non-genetic, hertability

Procedia PDF Downloads 65
7577 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization

Authors: Avantika Vats, Kushal Thakur

Abstract:

This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.

Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation

Procedia PDF Downloads 72
7576 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading

Authors: Peyman Aela, Lu Zong, Guoqing Jing

Abstract:

Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.

Keywords: ballast, contact model, cyclic loading, DEM

Procedia PDF Downloads 196
7575 Interpretation of Ultrasonic Backscatter of Linear FM Chirp Pulses from Targets Having Frequency-Dependent Scattering

Authors: Stuart Bradley, Mathew Legg, Lilyan Panton

Abstract:

Ultrasonic remote sensing is a useful tool for assessing the interior structure of complex targets. For these methods, significantly enhanced spatial resolution is obtained if the pulse is coded, for example using a linearly changing frequency during the pulse duration. Such pulses have a time-dependent spectral structure. Interpretation of the backscatter from targets is, therefore, complicated if the scattering is frequency-dependent. While analytic models are well established for steady sinusoidal excitations applied to simple shapes such as spheres, such models do not generally exist for temporally evolving excitations. Therefore, models are developed in the current paper for handling such signals so that the properties of the targets can be quantitatively evaluated while maintaining very high spatial resolution. Laboratory measurements on simple shapes are used to confirm the validity of the models.

Keywords: linear FM chirp, time-dependent acoustic scattering, ultrasonic remote sensing, ultrasonic scattering

Procedia PDF Downloads 316
7574 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: automotive flows, flame propagation, combustion modelling, CNG

Procedia PDF Downloads 292
7573 Molecular and Phytochemical Fingerprinting of Anti-Cancer Drug Yielding Plants in South India

Authors: Alexis John de Britto

Abstract:

Studies were performed to select the superior genotypes based on intra-specific variations, caused by phytogeographical, climatic and edaphic parameters of three anti cancer drug yielding mangrove plants such as Acanthus ilicifolius L., Calophyllum inophyllum L. and Excoecaria agallocha L. using ISSR (Inter Simple Sequence Repeats) markers and phytochemical analysis such as preliminary phytochemical tests, TLC, HPTLC, HPLC and antioxidant tests. The plants were collected from five different geographical locations of the East Coast of south India. Genetic heterozygosity, Nei’s gene diversity, Shannon’s information index and Percentage of polymorphism between the populations were calculated using POPGENE software. Cluster analysis was performed using UPGMA algorithm. AMOVA and correlations between genetic diversity and soil factors were analyzed. Combining the molecular and phytochemical variations superior genotypes were selected. Conservation constraints and methods of efficient exploitation of the species are discussed.

Keywords: anti-cancer drug yielding plants, DNA fingerprinting, phytochemical analysis, selection of superior genotypes

Procedia PDF Downloads 330
7572 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling

Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo

Abstract:

Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.

Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling

Procedia PDF Downloads 298
7571 Prediction of the Solubility of Benzoic Acid in Supercritical CO2 Using the PC-SAFT EoS

Authors: Hamidreza Bagheri, Alireza Shariati

Abstract:

There are many difficulties in the purification of raw components and products. However, researchers are seeking better ways for purification. One of the recent methods is extraction using supercritical fluids. In this study, the phase equilibria of benzoic acid-supercritical carbon dioxide system were investigated. Regarding the phase equilibria of this system, the modeling of solid-supercritical fluid behavior was performed using the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and Peng-Robinson equations of state (PR EoS). For this purpose, five PC-SAFT EoS parameters for pure benzoic acid were obtained using its experimental vapor pressure. Benzoic acid has association sites and the behavior of the benzoic acid-supercritical fluid system was well-predicted using both equations of state, while the binary interaction parameter values for PR EoS were negative. Genetic algorithm, which is one of the most accurate global optimization algorithms, was also used to optimize the pure benzoic acid parameters and the binary interaction parameters. The AAD% value for the PC-SAFT EoS, were 0.22 for the carbon dioxide-benzoic acid system.

Keywords: supercritical fluids, solubility, solid, PC-SAFT EoS, genetic algorithm

Procedia PDF Downloads 521
7570 Postmortem Genetic Testing to Sudden and Unexpected Deaths Using the Next Generation Sequencing

Authors: Eriko Ochiai, Fumiko Satoh, Keiko Miyashita, Yu Kakimoto, Motoki Osawa

Abstract:

Sudden and unexpected deaths from unknown causes occur in infants and youths. Recently, molecular links between a part of these deaths and several genetic diseases are examined in the postmortem. For instance, hereditary long QT syndrome and Burgada syndrome are occasionally fatal through critical ventricular tachyarrhythmia. There are a large number of target genes responsible for such diseases, the conventional analysis using the Sanger’s method has been laborious. In this report, we attempted to analyze sudden deaths comprehensively using the next generation sequencing (NGS) technique. Multiplex PCR to subject’s DNA was performed using Ion AmpliSeq Library Kits 2.0 and Ion AmpliSeq Inherited Disease Panel (Life Technologies). After the library was constructed by emulsion PCR, the amplicons were sequenced 500 flows on Ion Personal Genome Machine System (Life Technologies) according to the manufacture instruction. SNPs and indels were analyzed to the sequence reads that were mapped on hg19 of reference sequences. This project has been approved by the ethical committee of Tokai University School of Medicine. As a representative case, the molecular analysis to a 40 years old male who received a diagnosis of Brugada syndrome demonstrated a total of 584 SNPs or indels. Non-synonymous and frameshift nucleotide substitutions were selected in the coding region of heart disease related genes of ANK2, AKAP9, CACNA1C, DSC2, KCNQ1, MYLK, SCN1B, and STARD3. In particular, c.629T-C transition in exon 3 of the SCN1B gene, resulting in a leu210-to-pro (L210P) substitution is predicted “damaging” by the SIFT program. Because the mutation has not been reported, it was unclear if the substitution was pathogenic. Sudden death that failed in determining the cause of death constitutes one of the most important unsolved subjects in forensic pathology. The Ion AmpliSeq Inherited Disease Panel can amplify the exons of 328 genes at one time. We realized the difficulty in selection of the true source from a number of candidates, but postmortem genetic testing using NGS analysis deserves of a diagnostic to date. We now extend this analysis to SIDS suspected subjects and young sudden death victims.

Keywords: postmortem genetic testing, sudden death, SIDS, next generation sequencing

Procedia PDF Downloads 358
7569 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models

Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche

Abstract:

It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.

Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells

Procedia PDF Downloads 120
7568 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 20
7567 Genetic Analysis of Rust Resistance Genes in Global Wheat

Authors: Aktar-Uz-Zaman, M. Tuhina-Khatun, Mohamed Hanafi Musa

Abstract:

Three rust diseases: leaf (brown) rust caused by Puccinia triticina Eriks, stripe (yellow) rust caused by Puccinia striiformis West, and stem (black) rust caused by Puccinia graminis f. sp. tritici are economically important diseases of wheat in world wide. Yield loss due to leaf rust is 40% in susceptible cultivars. Yield losses caused by the stem rust pathogens in the mid of 20 century reached 20-30% in Eastern and Central Europe and the most virulent stem rust race Ug99 emerged first in Uganda and after that in Kenya, Ethiopia, Yemen, in the Middle East and South Asia. Yield losses were estimated up to 100%, whereas, up to 80% have been reported in Kenya during 1999. In case of stripe rust, severity level has been recorded 60% - 70% as compared to 100% severity of susceptible check in disease screening nurseries in Kenya. Improvement of resistant varieties or cultivars is the sustainable, economical and environmentally friendly approaches for increasing the global wheat production to suppress the rust diseases. More than 68 leaf rust, 49 stripe rust and 53 stem rust resistance genes have been identified in the global wheat cultivars or varieties using different molecular breeding approaches. Among these, Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr47, Lr51, Lr3bg, Lr18, Lr40, Lr46, and Lr50 leaf rust resistance genes have been identified by using molecular, enzymatic and microsatellite markers from African, Asian, European cultivars of hexaploid wheat (Triticum aestivum), durum wheat and diploid wheat species. These genes are located on 20, of the 21 chromosomes of hexaploid wheat. Similarly, Sr1, Sr2, Sr24, and Sr3, Sr31 stem rust resistance genes have been recognized from wheat cultivars of Pakistan, India, Kenya, and Uganda etc. A race of P. striiformis (stripe rust) Yr9, Yr18, and Yr29 was first observed in East Africa, Italy, Pakistan and India wheat cultivars. These stripe rust resistance genes are located on chromosomes 1BL, 4BL, 6AL, 3BS and 6BL in bread wheat cultivars. All these identified resistant genes could be used for notable improvement of susceptible wheat cultivars in the future.

Keywords: hexaploid wheat, resistance genes, rust disease, triticum aestivum

Procedia PDF Downloads 481
7566 On In vitro Durum Wheat Isolated Microspore Culture

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 355
7565 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
7564 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics

Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova

Abstract:

We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.

Keywords: cybersecurity, epidemiology, cyber epidemiology, malware

Procedia PDF Downloads 107
7563 Relating Symptoms with Protein Production Abnormality in Patients with Down Syndrome

Authors: Ruolan Zhou

Abstract:

Trisomy of human chromosome 21 is the primary cause of Down Syndrome (DS), and this genetic disease has significantly burdened families and countries, causing great controversy. To address this problem, the research takes an approach in exploring the relationship between genetic abnormality and this disease's symptoms, adopting several techniques, including data analysis and enrichment analysis. It also explores open-source websites, such as NCBI, DAVID, SOURCE, STRING, as well as UCSC, to complement its result. This research has analyzed the variety of genes on human chromosome 21 with simple coding, and by using analysis, it has specified the protein-coding genes, their function, and their location. By using enrichment analysis, this paper has found the abundance of keratin production-related coding-proteins on human chromosome 21. By adopting past researches, this research has attempted to disclose the relationship between trisomy of human chromosome 21 and keratin production abnormality, which might be the reason for common diseases in patients with Down Syndrome. At last, by addressing the advantage and insufficiency of this research, the discussion has provided specific directions for future research.

Keywords: Down Syndrome, protein production, genome, enrichment analysis

Procedia PDF Downloads 126
7562 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 330
7561 Phylogeographic Reconstruction of the Tiger Shrimp (Penaeus monodon) Invasion in the Atlantic Ocean: The Role of the Farming Systems in the Marine Biological Invasions

Authors: Juan Carlos Aguirre Pabon, Stephen Sabatino, James Morris, Khor Waiho, Antonio Murias

Abstract:

The tiger shrimp Penaeus monodon is one of the most important species in aquaculture and is native to the Indo-Pacific Ocean. During its greatest success in world production (70s and 80s) was introduced in many Atlantic Ocean countries for cultivation purposes and is currently reported as established in several countries of this area. Because there are no studies to understand the magnitude of the invasion process, this is an exciting opportunity to test evolutionary hypotheses in the context of marine invasions mediated by culture systems; therefore, the purpose of this study was to reconstruct the scenario of invasion of P. monodon in the Atlantic Ocean, by using mitochondrial DNA and eight loci microsatellites. In addition, samples of the invasion area in the Atlantic Ocean (US, Colombia, Venezuela, Brazil, Guienne Bissau, Senegal), the Indo-Pacific Ocean (Indonesia, India, Mozambique), and some cultivation systems (India, Bangladesh, Madagascar) were collected; and analysis of phylogenetic relationships (using some species of the family), genetic diversity, structure population, and demographic changes were performed. High intraspecific divergence in P. semisulcatus and P. monodon were found, high genetic variability in all sites (especially with microsatellites) and the presence of three clusters or populations. In addition, signs of demographic expansion in the culture population and bottlenecks in the invasive and native populations were found, as well as evidence of gene mixtures from all of the populations studied, implying that cropping systems play an essential role in mitigating the negative effects of the founder effect and providing a source of genetic variability that can ensure the success of the invasion.

Keywords: species introduction, increased variability, demographic changes, promoting invasion.

Procedia PDF Downloads 51
7560 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 409
7559 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.

Keywords: ABC classification, multi criteria inventory classification models, ZF-model

Procedia PDF Downloads 508
7558 Comparative Study and Parallel Implementation of Stochastic Models for Pricing of European Options Portfolios using Monte Carlo Methods

Authors: Vinayak Bassi, Rajpreet Singh

Abstract:

Over the years, with the emergence of sophisticated computers and algorithms, finance has been quantified using computational prowess. Asset valuation has been one of the key components of quantitative finance. In fact, it has become one of the embryonic steps in determining risk related to a portfolio, the main goal of quantitative finance. This study comprises a drawing comparison between valuation output generated by two stochastic dynamic models, namely Black-Scholes and Dupire’s bi-dimensionality model. Both of these models are formulated for computing the valuation function for a portfolio of European options using Monte Carlo simulation methods. Although Monte Carlo algorithms have a slower convergence rate than calculus-based simulation techniques (like FDM), they work quite effectively over high-dimensional dynamic models. A fidelity gap is analyzed between the static (historical) and stochastic inputs for a sample portfolio of underlying assets. In order to enhance the performance efficiency of the model, the study emphasized the use of variable reduction methods and customizing random number generators to implement parallelization. An attempt has been made to further implement the Dupire’s model on a GPU to achieve higher computational performance. Furthermore, ideas have been discussed around the performance enhancement and bottleneck identification related to the implementation of options-pricing models on GPUs.

Keywords: monte carlo, stochastic models, computational finance, parallel programming, scientific computing

Procedia PDF Downloads 161
7557 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
7556 Comparison of Unit Hydrograph Models to Simulate Flood Events at the Field Scale

Authors: Imene Skhakhfa, Lahbaci Ouerdachi

Abstract:

To ensure the overall coherence of simulated results, it is necessary to develop a robust validation process. In many applications, it is no longer content to calibrate and validate the model only in relation to the hydro graph measured at the outlet, but we try to better simulate the functioning of the watershed in space. Therefore the timing also performs compared to other variables such as water level measurements in intermediate stations or groundwater levels. As part of this work, we limit ourselves to modeling flood of short duration for which the process of evapotranspiration is negligible. The main parameters to identify the models are related to the method of unit hydro graph (HU). Three different models were tested: SNYDER, CLARK and SCS. These models differ in their mathematical structure and parameters to be calibrated while hydrological data are the same, the initial water content and precipitation. The models are compared on the basis of their performance in terms six objective criteria, three global criteria and three criteria representing volume, peak flow, and the mean square error. The first type of criteria gives more weight to strong events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent and also highlight the problems associated with the simulation of low flow events and intermittent precipitation.

Keywords: model calibration, intensity, runoff, hydrograph

Procedia PDF Downloads 486
7555 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

The modeling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high-resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve denser and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high-resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D models, environment, matching, pleiades

Procedia PDF Downloads 330
7554 Poisson Type Spherically Symmetric Spacetimes

Authors: Gonzalo García-Reyes

Abstract:

Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.

Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter

Procedia PDF Downloads 87