Search results for: gelatin films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 985

Search results for: gelatin films

115 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 135
114 Low Voltage and High Field-Effect Mobility Thin Film Transistor Using Crystalline Polymer Nanocomposite as Gate Dielectric

Authors: Debabrata Bhadra, B. K. Chaudhuri

Abstract:

The operation of organic thin film transistors (OFETs) with low voltage is currently a prevailing issue. We have fabricated anthracene thin-film transistor (TFT) with an ultrathin layer (~450nm) of Poly-vinylidene fluoride (PVDF)/CuO nanocomposites as a gate insulator. We obtained a device with excellent electrical characteristics at low operating voltages (<1V). Different layers of the film were also prepared to achieve the best optimization of ideal gate insulator with various static dielectric constant (εr ). Capacitance density, leakage current at 1V gate voltage and electrical characteristics of OFETs with a single and multi layer films were investigated. This device was found to have highest field effect mobility of 2.27 cm2/Vs, a threshold voltage of 0.34V, an exceptionally low sub threshold slope of 380 mV/decade and an on/off ratio of 106. Such favorable combination of properties means that these OFETs can be utilized successfully as voltages below 1V. A very simple fabrication process has been used along with step wise poling process for enhancing the pyroelectric effects on the device performance. The output characteristic of OFET after poling were changed and exhibited linear current-voltage relationship showing the evidence of large polarization. The temperature dependent response of the device was also investigated. The stable performance of the OFET after poling operation makes it reliable in temperature sensor applications. Such High-ε CuO/PVDF gate dielectric appears to be highly promising candidates for organic non-volatile memory and sensor field-effect transistors (FETs).

Keywords: organic field effect transistors, thin film transistor, gate dielectric, organic semiconductor

Procedia PDF Downloads 232
113 An Analysis on the Hidden Transcripts and Power: A Cultural Study on Confliction between Mother and Daughter-in-Law in Contemporary Chinese Television Dramas

Authors: Xiaohui Pan

Abstract:

As the most influential media for the dissemination of Chinese culture, films and television dramas have played cognitive orientation in guiding young audience to understand its cultural value. Taking a retrospective overview of the Chinese domestic film and television dramas in the last decade, it is tangible to notice that Westernization has become irresistible force in the presentation of Chinese youth culture, such as the rise of sensibility, publicity of subjectivity, and the resistance to mainstream discourse. However, the process of deconstruction and transition of these film and television works on Western youth culture brought about more comprehensive conflicts and integration rather than providing a panoramic interpretation to young Chinese. Issues of tradition and modernization, oriental and Western, and serious thinking and the spirit of entertainment overwhelmed those Chinese works. This study attempts to examine the mechanism of young Chinese’s resistance, compromise and re-construction in their marriages during the dynamic cultural intergration between traditional Chinese culture and Western culture. To investigate such a mechanism, this study analyzed four Chinese television dramas themed on family ethics to reveal the conflictions between two generations, mother-in-law and daughter-in-law, aiming to identify their strategies of their struggles. Incorporating the theory of Scott's weapons of the weak, this study examines the dynamic model of the struggles content analysis on their hidden language and the power. The finding shows that young Chinese identified their self-awakening during the resistance. The study also finds out that the external factors might have the functions of switching the power from the strong end to the weak end. The finding of this study can provide useful insights for researchers in this area and for those in the process of exploring cultural integration issues.

Keywords: intergration, integration, resistance, youth culture

Procedia PDF Downloads 416
112 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 425
111 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 215
110 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 125
109 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions

Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn

Abstract:

We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.

Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions

Procedia PDF Downloads 146
108 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 152
107 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome

Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.

Abstract:

The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.

Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant

Procedia PDF Downloads 134
106 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium

Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez

Abstract:

Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.

Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials

Procedia PDF Downloads 110
105 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 90
104 The Nuclear Energy Museum in Brazil: Creative Solutions to Transform Science Education into Meaningful Learning

Authors: Denise Levy, Helen J. Khoury

Abstract:

Nuclear technology is a controversial issue among a great share of the Brazilian population. Misinformation and common wrong beliefs confuse public’s perceptions and the scientific community is expected to offer a wider perspective on the benefits and risks resulting from ionizing radiation in everyday life. Attentive to the need of new approaches between science and society, the Nuclear Energy Museum, in northeast Brazil, is an initiative created to communicate the growing impact of the beneficial applications of nuclear technology in medicine, industry, agriculture and electric power generation. Providing accessible scientific information, the museum offers a rich learning environment, making use of different educational strategies, such as films, interactive panels and multimedia learning tools, which not only increase the enjoyment of visitors, but also maximize their learning potential. Developed according to modern active learning instructional strategies, multimedia materials are designed to present the increasingly role of nuclear science in modern life, transforming science education into a meaningful learning experience. In year 2016, nine different interactive computer-based activities were developed, presenting curiosities about ionizing radiation in different landmarks around the world, such as radiocarbon dating works in Egypt, nuclear power generation in France and X-radiography of famous paintings in Italy. Feedback surveys have reported a high level of visitors’ satisfaction, proving the high quality experience in learning nuclear science at the museum. The Nuclear Energy Museum is the first and, up to the present time, the only permanent museum in Brazil devoted entirely to nuclear science.

Keywords: nuclear technology, multimedia learning tools, science museum, society and education

Procedia PDF Downloads 306
103 Modeling of Bipolar Charge Transport through Nanocomposite Films for Energy Storage

Authors: Meng H. Lean, Wei-Ping L. Chu

Abstract:

The effects of ferroelectric nanofiller size, shape, loading, and polarization, on bipolar charge injection, transport, and recombination through amorphous and semicrystalline polymers are studied. A 3D particle-in-cell model extends the classical electrical double layer representation to treat ferroelectric nanoparticles. Metal-polymer charge injection assumes Schottky emission and Fowler-Nordheim tunneling, migration through field-dependent Poole-Frenkel mobility, and recombination with Monte Carlo selection based on collision probability. A boundary integral equation method is used for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit. Trajectories for charge that make it through the film are curvilinear paths that meander through the interspaces. Results indicate that charge transport behavior depends on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and lowest level of charge trapping in the interaction zone. Simulation prediction of a size range of 80 to 100 nm to minimize attachment and maximize conduction is validated by theory. Attached charge fractions go from 2.2% to 97% as nanofiller size is decreased from 150 nm to 60 nm. Computed conductivity of 0.4 x 1014 S/cm is in agreement with published data for plastics. Charge attachment is increased with spheroids due to the increase in surface area, and especially so for oblate spheroids showing the influence of larger cross-sections. Charge attachment to nanofillers and nanocrystallites increase with vol.% loading or degree of crystallinity, and saturate at about 40 vol.%.

Keywords: nanocomposites, nanofillers, electrical double layer, bipolar charge transport

Procedia PDF Downloads 340
102 Perpetrator Trauma in Current World Cinema

Authors: Raya Morag

Abstract:

This paper proposes a new paradigm for cinema/trauma studies - the trauma of the perpetrator. Canonical trauma research from Freud’s Aetiology of Hysteria to the present has been carried out from the perspective of identification with the victim, as have cinema trauma research and contemporary humanities-based trauma studies, climaxing during the 1990s in widespread interest in the victim vis-à-vis the Holocaust, war, and domestic violence. Breaking over 100 years of repression of the abhorrent and rejected concept of the perpetrator in psychoanalytic-based research proposes an uncanny shift in our conception of psychoanalysis' trajectory from women's 'hysteria' to 'post-traumatic stress disorder'. This new paradigm is driven by the global emergence of new waves of films (2007-2015) representing trauma suffered by perpetrators involved in the new style of war entailing deliberate targeting of non-combatants. Analyzing prominent examples from Israeli post-second Intifada documentaries (e.g., Ari Folman’s Waltz with Bashir), and post post-Iraq (and Afghanistan) War American documentaries (e.g., Errol Morris' Standard Operating Procedure), the paper discusses the limitations of victim trauma by the firm boundaries it (rightly) set in order to defend such victims of nineteenth and especially twentieth-century catastrophes; the epistemological processes needed in order to consider perpetrators’ trauma as an inevitable part of psychiatric-psychological and cultural perspectives on trauma, and, thus, the definition of perpetrators' trauma in contrast to victims'. It also analyzes the perpetrator's figure in order to go beyond the limitation of current trauma theory's relation to the Real, thus transgressing the 'unspeakableness' of the trauma itself. The paper seeks an exploration of what perpetrator trauma teaches us not only as a counter-paradigm to victim trauma, but as a reflection on the complex intertwining of the two paradigms in the twenty-first century collective new war unconscious, and on what psychoanalysis might offer us in the first decade of this terrorized-ethnicized century.

Keywords: American war documentaries, Israeli war documentaries, 'new war', perpetrator trauma

Procedia PDF Downloads 278
101 Elaboration of Sustainable Luminescence Material Based on Rare Earth Complexes for Solar Energy Conversion

Authors: Othmane Essahili, Mohamed Ilsouk, Carine Duhayon, Omar Moudam

Abstract:

Due to their excellent and promising properties, a great deal of attention has recently been devoted to luminescent materials, particularly those utilizing rare earth elements. These materials play an essential role in low-cost energy conversion technology applications, such as luminescent solar concentrators (LSCs). They also have potential applications in Agri-PV systems and smart building windows. Luminescent materials based on europium (III) complexes are known for their high luminescence efficiency, long fluorescence lifetimes, and sharp emission bands. However, they present certain drawbacks related to their limited absorption capacity due to the forbidden 4f-4f electronic transitions. To address these drawbacks, using β-diketonate ligands as sensitizers appears as a promising solution to enhance luminescence intensity through the antenna effect, where the ligand's excited energy is transferred to the europium ions. In this study, we synthesized β-diketonate-based europium complexes with phenanthroline derivatives, modified with various methyl groups, to examine their effects on the complexes' stability in poly(methyl methacrylate) (PMMA) films. Our findings reveal that these complexes exhibit remarkable red emission and high photoluminescence quantum yield. Stability tests under different conditions for 1200 hours showed that complexes with a higher number of methyl substitutions offer improved photoluminescent stability and resistance to degradation, particularly in outdoor settings. This research underscores the potential of chemically tuned phenanthroline ligands in developing stable, efficient luminescent materials for future optoelectronic devices, including efficient and durable LSCs.

Keywords: luminescent materials, photochemistry, luminescent solar concentrators, β-diketonate-based europium complexes

Procedia PDF Downloads 47
100 Multi-Functional Metal Oxides as Gas Sensors, Photo-Catalysts and Bactericides

Authors: Koyar Rane

Abstract:

Nano- to submicron size particles of narrow particle size distribution of semi-conducting TiO₂, ZnO, NiO, CuO, Fe₂O₃ have been synthesized by novel hydrazine method and tested for their gas sensing, photocatalytic and bactericidal activities and the behavior found to be enhanced when the oxides in the thin film forms, that obtained in a specially built spray pyrolysis reactor. Hydrazine method is novel in the sense, say, the UV absorption edge of the white pigment grade wide band gap (~3.2eV) TiO₂ and ZnO shifted to the visible region turning into yellowish particles, indicating modification occurring the band structure. The absorption in the visible region makes these oxides visible light sensitive photocatalysis in degrading pollutants, especially the organic dyes which otherwise increase the chemical oxygen demand of the drinking water, enabling the process feasible not under the harsh energetic UV radiation regime. The electromagnetic radiations on irradiation produce electron-hole pairs Semiconductor + hν → e⁻ + h⁺ The electron-hole pairs thus produced form Reactive Oxygen Species, ROS, on the surface of the semiconductors, O₂(adsorbed)+e⁻ → O₂• - superoxide ion OH-(surface)+h⁺ →•OH - Hydroxyl radical The ROS attack the organic material and micro-organisms. Our antibacterial studies indicate the metal oxides control the Biological Oxygen Demand (BOD) of drinking water which had beyond the safe level normally found in the municipal supply. Metal oxides in the thin film form show overall enhanced properties and the films are reusable. The results of the photodegradation and antibactericidal studies are discussed. Gas sensing studies too have been done to find the versatility of the multifunctional metal oxides.

Keywords: hydrazine method, visible light sensitive, photo-degradation of dyes, water/airborne pollutant

Procedia PDF Downloads 157
99 Synthesis and Characterization of Water Soluble Ferulic Acid-Grafted Chitosan

Authors: Sarekha Woranuch, Rangrong Yoksan

Abstract:

Chitosan is a derivative of chitin, which is a second most naturally abundant polysaccharide found in crab shells, shrimp shells, and squid pens. The applications of chitosan in pharmaceutical, cosmetics, food and packaging industries have been reported owing to its general recognition as safe, excellent biodegradability and biocompatibility, as well as ability to form films, membranes, gels, beads, fibers and particles. Nevertheless, chitosan is an amino polysaccharide consisting of strong inter- and intramolecular hydrogen bonds which limit its solubility in neutral pH water resulting in restricted utilization. Chemical modification is an alternative way to impede hydrogen bond formation. The objective of the present research is to improve water solubility and antioxidant activity of chitosan by grafting with ferulic acid. Ferulic acid was grafted onto chitosan at the C-2 position via a carbodiimide-mediated coupling reaction. Different mole ratios of chitosan to ferulic acid (i.e. 1.0:0.0, 1.0:0.5, 1.0:1.0, 1.0:1.5, 1.0:2.0, and 1.0:2.5) and various reaction temperatures (i.e. 40, 60, and 80 °C) were used. The reaction was performed at different times (i.e. 1.5, 3.0, 4.5, and 6.0 h). The obtained ferulic acid-grafted chitosan was characterized by FTIR and 1H NMR technique. The influences of ferulic acid on crystallinity, solubility and radical scavenging activity of chitosan were also investigated. Ferulic acid grafted chitosan was successfully synthesized as confirmed from (i) the appearance of FTIR absorption band at 1517 cm-1 belonging to C=C aromatic ring of ferulic acid and the increased C–H stretching band intensity and (ii) the appearance of proton signals at δ = 6.31-7.67 ppm ascribing to methine protons of ferulic acid. The condition in which the reaction temperature of 60°C, reaction time of 3 h and the mole ratio of chitosan to ferulic acid of 1:1 gave the highest ferulic acid substitution degree, i.e. 0.37. The resulting ferulic acid grafted chitosan was soluble in water (1.3 mg/mL) due to its reduced crystallinity as compared with chitosan and also exhibited 90% greater radical scavenging activity than chitosan. The result suggested the utilization of ferulic acid grafted chitosan as an antioxidant material.

Keywords: antioxidant property, chitosan, ferulic acid, grafting

Procedia PDF Downloads 447
98 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan

Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte

Abstract:

The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.

Keywords: nanoparticles, whiskers, chitosan, chromium

Procedia PDF Downloads 125
97 Active Exopolysaccharides Based Edible Coating Enriched with Red Seaweed (Gracilaria gracilis) Extract for Improved Preservation of Shrimp Quality during Refrigerated Storage

Authors: Rafik Balti, Mohamed Ben Mansour, Abdellah Arhaliass, Anthony Masse

Abstract:

Unfortunately, shrimps are highly perishable and they start deteriorating immediately after death owing to their high water content and nutritional components. Currently, there has been an increasing interest in bioactive edible films and coatings to preserve the freshness and quality of foods. In this study, active edible coatings from microalgal exopolysaccharides (EPS) enriched with different concentrations of Red Seaweed Extract (RSE) (0.5, 1 and 1.5 % (w/v)) were developed and their effects on the quality changes of white shrimp during refrigerated storage (4 ± 1 °C) were examined over a period of 8 days. The control and the coated shrimp samples were analyzed periodically for microbiological (total viable bacteria, psychrotrophic bacteria, and enterobacteriaceae counts), chemical (pH, TVB-N, TMA-N, PV, TBARS), textural and sensory characteristics. The results indicated that the coating with a mixture of EPS and RSE could significantly decrease the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and thiobarbituric acid reactive substances (TBARS) (p < 0.05). With storage, EPS coatings containing RSE at both levels (1 and 1.5 %) were more effective in inhibiting the microbial species studied, specially psychrotrophic bacteria. Also, EPS + RSE coated samples had lower polyphenol oxidase (PPO) activity and lipid oxidation (p < 0.05) toward the end of storage. Textural and color properties of coated shrimp were generally more acceptable. Sensory scores indicated no significant changes in all samples during storage. The obtained results indicate that the edible EPS coating solutions enriched with RSE have noticeable effects on the quality and shelf life of shrimps when compared to control group. Finally, the present work demonstrates the effectiveness of EPS enriched coatings, offering a promising alternative to preserve more better the quality characteristics and to extend the shelf life of shrimp during the refrigerated storage

Keywords: active coating, exopolysaccharides, red seaweed, refrigerated storage, white shrimp

Procedia PDF Downloads 199
96 Paradigm Shift of the World Is Globalization: Identity Crisis, Violence and Cultural War

Authors: Shahla Bukhtair

Abstract:

A paradigm presents a consensus view of a particular or collective community, accepted into by the members of that community, either consciously pronounced or, more likely, simply assumed and not intentionally acknowledged but is articulated. Paradigm shift is based on the behavioral attitude of the community. Change is inexorable. The world is suffering with the innovative creation of globalization. Media boosted this paradigm shift all over the world. Globalization is a vigorous process which impacts differentially on various cultures around the world. The outcome of the globalization is permeates cultural boundaries and in the process results in the spread of Western ideologies and values across the world. The term flourished in 20th century. Globalization is regarded as having substantial impact on such crises through its encouragement of conflicts rather than conciliation; through opportunities of expression, various groups get benefit with it. Identity crisis refers to inflexible mechanism i.e. cultural and political conflicts among polarized groups, which struggle with each other over the definition of a national identity. Violence is not only a kind of physical but it also psychological as well. Due to identity crisis, a person is having an issue of fear, anxiety, and lack of security. Everything has negative and positive aspects. Newspaper columns, magazine articles, films, made-for-TV movies, television special reports, and talk shows are all public arenas where images of political agenda of their own interest are constructed, debated, and reproduced. From these resources, individuals construct their own conceptions of what is normal and acceptable. This bias affects images in the media, and in turn has a negative effect on public development in a society. This paper investigates the relationship between globalization and cultural war, identity crisis and the role of violence. Objectives: - To determine which type of media plays an important role in shaping perceptions and attitudes of public negatively; - To analyze the impact of globalization on identity crisis, violence and global culture (positive and negative).

Keywords: paradigm shift, globalization, identity crisis, cultural war

Procedia PDF Downloads 345
95 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

Authors: Farideh Namvar, Rosfarizan Mohamed

Abstract:

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.

Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed

Procedia PDF Downloads 306
94 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 335
93 Group Attachment Based Intervention® Reduces Toddlers' Fearfulness

Authors: Kristin Lewis, Howard Steele, Anne Murphy, Miriam Steele, Karen Bonuck, Paul Meissner

Abstract:

The present study examines data collected during the randomized control trial (RCT) of the Group Attachment-Based Intervention (GABI©), a trauma-informed, attachment-based intervention aimed at promoting healthy parent-child relationships that support child development. Families received treatment at Treatment Center and were randomly assigned to either the GABI condition or the treatment as usual condition, a parenting class called Systematic Training for Effective Parenting (STEP). Significant improvements in the parent-child relationship have been reported for families participating in GABI, but not in the STEP control group relying on Coding Interactive Behavior (CIB) as applied to 5-minute video-films of mothers and their toddlers in a free play context. This report considers five additional attachment-relevant 'clinical codes' that were also applied to the 5-minute free play sessions. Seventy-two parent-child dyads (38 in GABI and 34 in STEP) were compared to one another at intake and end-of-treatment, on these five-point dimensions: two-parent codes—the dissociation and ignoring; two child codes—simultaneous display of contradictory behavior and fear; and one parent-child code, i.e., role reversal. Overall, scores were low for these clinical codes; thus, a binary measure was computed contrasting no evidence with some evidence of each clinical code. Crosstab analyses indicate that child fear at end-of-treatment was significantly lower among children who participated in GABI (7% or 3 children) as compared to those whose mothers participated in STEP (29% or 10 children) Chi Sq= 6.57 (1), p < .01. Discussion focuses on the potential for GABI to reduce childhood fearfulness and so enhance the child's health.

Keywords: coding interactive behavior, clinical codes, group attachment based intervention, GABI, attachment, fear

Procedia PDF Downloads 108
92 Ray’s Use of the Liminal Space and the Female Gaze: A Reading of Oscillating Moralities in ‘Charulata’ and ‘Bimala’

Authors: Rajlekha Sil

Abstract:

This paper aims to investigate Ray’s portrayal of liminality and the female gaze in ‘Charulata’ (1964) and ‘Ghare Baire’ (1984), both of which primarily articulates the stories of two women (Charu and Bimala respectively), entangled within the cobwebs of their seething, unfulfilled sexuality, amidst a newly-globalised urban culture, punctuated with political turmoils and ideological conflicts. Their tempestuous interactions with the societal space, both tangible and intangible, that surrounds them, and the men in their lives makes them dwell in a liminal space, filled with an ambiguous sense of virtue. In Ray’s films, this sexual ambivalence is characterised by the liminality between the scenic and extrascenic spaces, which, in turn, defines the female gaze as the director’s lenses paint a picture of the new wave of socio-political and socio-cultural movements in early twentieth-century Bengal. Brinda Bose’s essay on ‘Modernity, Globality, Sexuality, and the City: A Reading of Indian Cinema’, analyses the ‘necessary’ process of urbanisation as a marker of ‘moral degeneracy of the nation easily analogous with female sexual transgression/ promiscuity with the nation personified as a woman, by using the concept of the liminal space, a site of both empowerment through transgression and containment through regulation.’ My paper, however, would focus on the liminal space propagated by Ray through his contrasting depiction of scenic and extrascenic spaces to satiate the equivocal voices in Charu and Bimala, along with their way of ‘gazing’ into an equally disheveled society - a gaze that helps them transcend the barriers of politics and urbanization into a state of universal uniformity, symmetrical with their sexual immorality. The first section of the paper would explore Ray’s usage of these theatrical spaces through his character sketches, shots and dialogues, while the second section of the paper would delve into the ‘female gaze’ on a newly revolutionised society.

Keywords: satyajit ray, space, gaze, female sexuality, charulata, ghare baire

Procedia PDF Downloads 77
91 Multimedia Container for Autonomous Car

Authors: Janusz Bobulski, Mariusz Kubanek

Abstract:

The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.

Keywords: an autonomous car, image processing, lidar, obstacle detection

Procedia PDF Downloads 211
90 Evidence of Microplastic Pollution in the Río Bravo/Rio Grande (Mexico/US Border)

Authors: Stephanie Hernández-Carreón, Judith Virginia Ríos-Arana

Abstract:

Microplastics (MPs) are plastic particles smaller than 5 mm that has been detected in soil, air, organisms, and mostly water around the world. Most studies have focused on MPs detection in marine waters, and less so in freshwater, such is the case of Mexico, where studies about MPs in freshwaters are limited. One of the most important rivers in the country is The Rio Grande/Río Bravo, a natural border between Mexico and the United States. Its waters serve different purposes, such as fishing, habitat to endemic species, electricity generation, agriculture, and drinking water sources, among others. Despite its importance, the river’s waters have not been analyzed to determine the presence of MPs; therefore, the purpose of this research is to determine if the Rio Bravo/Rio Grande is polluted with microplastics. For doing so, three sites (Borderland, Casa de Adobe, and Guadalupe) along the El Paso-Juárez metroplex have been sampled: 30 L of water were filtered through a plankton net (64 µm) in each site and sediments-composed samples were collected. Water samples and sediments were 1) digested with a hydrogen peroxide solution (30%), 2) resuspended in a calcium chloride solution (1.5 g/cm3) to separate MPs, and 3) filtered through a 0.45 µm nitrocellulose membrane. Processed water samples were dyed with Nile Red (1 mg/ml ethanol) and analyzed by fluorescence microscopy. Two water samples have been analyzed until January 2023: Casa de Adobe and Borderland finding a concentration of 5.67 particles/L and 5.93 particles/L, respectively. Three types of particles were observed: fibers, fragments, and films, fibers being the most abundant. These data, as well as the data obtained from the rest of the samples, will be analyzed by an ANOVA (α=0.05). The concentrations and types of particles found in the Río Bravo correspond with other studies on rivers associated with urban environments and agricultural activities in China, where a range of 3.67—10.7 particles/L was reported in the Wei River. Even though we are in the early stages of the study, and three new sites will be sampled and analyzed in 2023 to provide more data about this issue in the river, this presents the first evidence of microplastic pollution in the Rio Grande.

Keywords: microplastics, fresh water, Rio Bravo, fluorescence microscopy

Procedia PDF Downloads 138
89 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels

Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan

Abstract:

Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.

Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)

Procedia PDF Downloads 220
88 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 40
87 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy

Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu

Abstract:

The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.

Keywords: composites, graphene, hydrothermal, renewable energy

Procedia PDF Downloads 486
86 'I Broke the Line Back to the Ancient Ones': Rethinking Intersectional Theory through Wounded Histories in Once Were Warriors (1994) and Whale Rider (2002).

Authors: Kerry Mackereth

Abstract:

Kimberle Crenshaw’s theory of intersectionality has become immensely influential in the fields of women’s and gender studies. However, intersectionality’s widespread use among feminist scholars and activists has been accompanied by critiques of its reliance upon subject categorization. These critiques are of particular import when connected to Wendy Brown’s characterization of identity politics as static 'wounded attachments'. Together, these critiques show how the gridlock model proposed by intersectionality’s primary metaphor, the traffic accident at the intersection, is useful for identifying discrimination but not for remembering historical injustices or imagining feminist and anti-racist resistance. Through the lens of New Zealand Maori film, focusing upon Once Were Warriors (1994) and Whale Rider (2002), this article examines how wounded histories need not be passively reproduced by contemporaneously oppressed groups. Instead, the metaphor of the traffic intersection should be complemented by the metaphor of the wound. Against Brown’s characterization of wounded attachments as negative, static identities, Gloria Anzaldua’s account of the borderland between the United States and Mexico as “una herida abierta”, an open wound, offers an alternative reading of the wound. Through Anzaldua’s and Hortense Spillers’ political thought, the wound is reconceptualized as not only a site of suffering but also as a regenerative space. The coexistence of deterioration and regeneration at the site of the wound underpins the narrative arc of both Once Were Warriors and Whale Rider. In both films, the respective child protagonists attempt to reconcile the pain of wounded histories with the imagination of cultural regeneration. The metaphor of the wound thus serves as an alternative theoretical resource for mapping experiences of oppression, one that enriches feminist theory by balancing the remembrance of historical grievance with the forging of hopeful political projects.

Keywords: gender theory, historical grievance, intersectionality, New Zealand film, postcolonialism

Procedia PDF Downloads 238