Search results for: game prediction
1988 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 711987 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 701986 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1211985 The Effects of Cooling during Baseball Games on Perceived Exertion and Core Temperature
Authors: Chih-Yang Liao
Abstract:
Baseball is usually played outdoors in the warmest months of the year. Therefore, baseball players are susceptible to the influence of the hot environment. It has been shown that hitting performance is increased in games played in warm weather, compared to in cold weather, in Major League Baseball. Intermittent cooling during sporting events can prevent the risk of hyperthermia and increase endurance performance. However, the effects of cooling during baseball games played in a hot environment are unclear. This study adopted a cross-over design. Ten Division I collegiate male baseball players in Taiwan volunteered to participate in this study. Each player played two simulated baseball games, with one day in between. Five of the players received intermittent cooling during the first simulated game, while the other five players received intermittent cooling during the second simulated game. The participants were covered in neck and forehand regions for 6 min with towels that were soaked in icy salt water 3 to 4 times during the games. The participants received the cooling treatment in the dugout when they were not on the field for defense or hitting. During the 2 simulated games, the temperature was 31.1-34.1°C and humidity was 58.2-61.8%, with no difference between the two games. Ratings of perceived exertion, thermal sensation, tympanic and forehead skin temperature immediately after each defensive half-inning and after cooling treatments were recorded. Ratings of perceived exertion were measured using the Borg 10-point scale. The thermal sensation was measured with a 6-point scale. The tympanic and skin temperature was measured with infrared thermometers. The data were analyzed with a two-way analysis of variance with repeated measurement. The results showed that intermitted cooling significantly reduced ratings of perceived exertion and thermal sensation. Forehead skin temperature was also significantly decreased after cooling treatments. However, the tympanic temperature was not significantly different between the two trials. In conclusion, intermittent cooling in the neck and forehead regions was effective in alleviating the perceived exertion and heat sensation. However, this cooling intervention did not affect the core temperature. Whether intermittent cooling has any impact on hitting or pitching performance in baseball players warrants further investigation.Keywords: baseball, cooling, ratings of perceived exertion, thermal sensation
Procedia PDF Downloads 1431984 Intelligent Platform for Photovoltaic Park Operation and Maintenance
Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou
Abstract:
A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance
Procedia PDF Downloads 491983 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation
Procedia PDF Downloads 3671982 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 921981 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3581980 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle
Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine
Abstract:
Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty
Procedia PDF Downloads 1371979 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2731978 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction
Authors: Saurabh Kumar
Abstract:
In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth
Procedia PDF Downloads 291977 The Effect of Relocating a Red Deer Stag on the Size of Its Home Range and Activity
Authors: Erika Csanyi, Gyula Sandor
Abstract:
In the course of the examination, we sought to answer the question of how and to what extent the home range and daily activity of a deer stag relocated from its habitual surroundings changes. We conducted the examination in two hunting areas in Hungary, about 50 km from one another. The control area was in the north of Somogy County, while the sample area was an area of similar features in terms of forest cover, tree stock, agricultural structure, altitude above sea level, climate, etc. in the south of Somogy County. Three middle-aged red deer stags were captured with rocket nets, immobilized and marked with GPS-Plus Collars manufactured by Vectronic Aerospace Gesellschaft mit beschränkter Haftung. One captured species was relocated. We monitored deer movements over 24-hour periods at 3 months. In the course of the examination, we analysed the behaviour of the relocated species and those that remained in their original habitat, as well as the temporal evolution of their behaviour. We examined the characteristics of the marked species’ daily activities and the hourly distance they covered. We intended to find out the difference between the behaviour of the species remaining in their original habitat and of those relocated to a more distant, but similar habitat. In summary, based on our findings, it can be established that such enforced relocations to a different habitat (e.g., game relocation) significantly increases the home range of the species in the months following relocation. Home ranges were calculated using the full data set and the minimum convex polygon (MCP) method. Relocation did not increase the nocturnal and diurnal movement activity of the animal in question. Our research found that the home range of the relocated species proved to be significantly higher than that of those species that were not relocated. The results have been presented in tabular form and have also been displayed on a map. Based on the results, it can be established that relocation inherently includes the risk of falling victim to poaching, vehicle collision. It was only in the third month following relocation that the home range of the relocated species subsided to the level of those species that were not relocated. It is advisable to take these observations into consideration in relocating red deer for nature conservation or game management purposes.Keywords: Cervus elaphus, home range, relocation, red deer stag
Procedia PDF Downloads 1371976 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 4821975 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 3911974 Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique
Authors: Ravi Soni, Irfan Pathan, Manish Pande
Abstract:
The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results.Keywords: Coupled Eulerian-Lagrangian Technique, fluid structure interaction, spillage prediction, stagnation pressure
Procedia PDF Downloads 3791973 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 911972 Impact of Gaming Environment in Education
Authors: Md. Ataur Rahman Bhuiyan, Quazi Mahabubul Hasan, Md. Rifat Ullah
Abstract:
In this research, we did explore the effectiveness of the gaming environment in education and compared it with the traditional education system. We take several workshops in both learning environments. We measured student’s performance by providing a grading score (by professional academics) on their attitude in different criteria. We also collect data from survey questionnaires to understand student’s experiences towards education and study. Finally, we examine the impact of the different learning environments by applying statistical hypothesis tests, the T-test, and the ANOVA test.Keywords: gamification, game-based learning, education, statistical analysis, human-computer interaction
Procedia PDF Downloads 2301971 The Prediction of Reflection Noise and Its Reduction by Shaped Noise Barriers
Authors: I. L. Kim, J. Y. Lee, A. K. Tekile
Abstract:
In consequence of the very high urbanization rate of Korea, the number of traffic noise damages in areas congested with population and facilities is steadily increasing. The current environmental noise levels data in major cities of the country show that the noise levels exceed the standards set for both day and night times. This research was about comparative analysis in search for optimal soundproof panel shape and design factor that can minimize sound reflection noise. In addition to the normal flat-type panel shape, the reflection noise reduction of swelling-type, combined swelling and curved-type, and screen-type were evaluated. The noise source model Nord 2000, which often provides abundant information compared to models for the similar purpose, was used in the study to determine the overall noise level. Based on vehicle categorization in Korea, the noise levels for varying frequency from different heights of the sound source (directivity heights of Harmonize model) have been calculated for simulation. Each simulation has been made using the ray-tracing method. The noise level has also been calculated using the noise prediction program called SoundPlan 7.2, for comparison. The noise level prediction was made at 15m (R1), 30 m (R2) and at middle of the road, 2m (R3) receiving the point. By designing the noise barriers by shape and running the prediction program by inserting the noise source on the 2nd lane to the noise barrier side, among the 6 lanes considered, the reflection noise slightly decreased or increased in all noise barriers. At R1, especially in the cases of the screen-type noise barriers, there was no reduction effect predicted in all conditions. However, the swelling-type showed a decrease of 0.7~1.2 dB at R1, performing the best reduction effect among the tested noise barriers. Compared to other forms of noise barriers, the swelling-type was thought to be the most suitable for reducing the reflection noise; however, since a slight increase was predicted at R2, further research based on a more sophisticated categorization of related design factors is necessary. Moreover, as swellings are difficult to produce and the size of the modules are smaller than other panels, it is challenging to install swelling-type noise barriers. If these problems are solved, its applicable region will not be limited to other types of noise barriers. Hence, when a swelling-type noise barrier is installed at a downtown region where the amount of traffic is increasing every day, it will both secure visibility through the transparent walls and diminish any noise pollution due to the reflection. Moreover, when decorated with shapes and design, noise barriers will achieve a visual attraction than a flat-type one and thus will alleviate any psychological hardships related to noise, other than the unique physical soundproofing functions of the soundproof panels.Keywords: reflection noise, shaped noise barriers, sound proof panel, traffic noise
Procedia PDF Downloads 5091970 Using Soil Texture Field Observations as Ordinal Qualitative Variables for Digital Soil Mapping
Authors: Anne C. Richer-De-Forges, Dominique Arrouays, Songchao Chen, Mercedes Roman Dobarco
Abstract:
Most of the digital soil mapping (DSM) products rely on machine learning (ML) prediction models and/or the use or pedotransfer functions (PTF) in which calibration data come from soil analyses performed in labs. However, many other observations (often qualitative, nominal, or ordinal) could be used as proxies of lab measurements or as input data for ML of PTF predictions. DSM and ML are briefly described with some examples taken from the literature. Then, we explore the potential of an ordinal qualitative variable, i.e., the hand-feel soil texture (HFST) estimating the mineral particle distribution (PSD): % of clay (0-2µm), silt (2-50µm) and sand (50-2000µm) in 15 classes. The PSD can also be measured by lab measurements (LAST) to determine the exact proportion of these particle-sizes. However, due to cost constraints, HFST are much more numerous and spatially dense than LAST. Soil texture (ST) is a very important soil parameter to map as it is controlling many of the soil properties and functions. Therefore, comes an essential question: is it possible to use HFST as a proxy of LAST for calibration and/or validation of DSM predictions of ST? To answer this question, the first step is to compare HFST with LAST on a representative set where both information are available. This comparison was made on ca 17,400 samples representative of a French region (34,000 km2). The accuracy of HFST was assessed, and each HFST class was characterized by a probability distribution function (PDF) of its LAST values. This enables to randomly replace HFST observations by LAST values while respecting the PDF previously calculated and results in a very large increase of observations available for the calibration or validation of PTF and ML predictions. Some preliminary results are shown. First, the comparison between HFST classes and LAST analyses showed that accuracies could be considered very good when compared to other studies. The causes of some inconsistencies were explored and most of them were well explained by other soil characteristics. Then we show some examples applying these relationships and the increase of data to several issues related to DSM. The first issue is: do the PDF functions that were established enable to use HSFT class observations to improve the LAST soil texture prediction? For this objective, we replaced all HFST for topsoil by values from the PDF 100 time replicates). Results were promising for the PTF we tested (a PTF predicting soil water holding capacity). For the question related to the ML prediction of LAST soil texture on the region, we did the same kind of replacement, but we implemented a 10-fold cross-validation using points where we had LAST values. We obtained only preliminary results but they were rather promising. Then we show another example illustrating the potential of using HFST as validation data. As in numerous countries, the HFST observations are very numerous; these promising results pave the way to an important improvement of DSM products in all the countries of the world.Keywords: digital soil mapping, improvement of digital soil mapping predictions, potential of using hand-feel soil texture, soil texture prediction
Procedia PDF Downloads 2251969 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms
Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen
Abstract:
Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.Keywords: decision support, computed tomography, coronary artery, machine learning
Procedia PDF Downloads 2291968 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 161967 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 801966 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong
Abstract:
To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation
Procedia PDF Downloads 1381965 Prediction of Concrete Hydration Behavior and Cracking Tendency Based on Electrical Resistivity Measurement, Cracking Test and ANSYS Simulation
Authors: Samaila Muazu Bawa
Abstract:
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were separately monitored using non-contact electrical resistivity apparatus, a plastic ring mould and penetration resistance method respectively. The results show highest resistivity of C30 at the beginning until reaching the acceleration point when C50 accelerated and overtaken the others, and this period corresponds to its final setting time range, from resistivity derivative curve, hydration process can be divided into dissolution, induction, acceleration and deceleration periods, restrained shrinkage crack and setting time tests demonstrated the earliest cracking and setting time of C50, therefore, this method conveniently and rapidly determines the concrete’s crack potential. The highest inflection time (ti), the final setting time (tf) were obtained and used with crack time in coming up with mathematical models for the prediction of concrete’s cracking age for the range being considered. Finally, ANSYS numerical simulations supports the experimental findings in terms of the earliest crack age of C50 and the crack location that, highest stress concentration is always beneath the artificially introduced expansion joint of C50.Keywords: concrete hydration, electrical resistivity, restrained shrinkage crack, ANSYS simulation
Procedia PDF Downloads 2401964 Prediction of Embankment Fires at Railway Infrastructure Using Machine Learning, Geospatial Data and VIIRS Remote Sensing Imagery
Authors: Jan-Peter Mund, Christian Kind
Abstract:
In view of the ongoing climate change and global warming, fires along railways in Germany are occurring more frequently, with sometimes massive consequences for railway operations and affected railroad infrastructure. In the absence of systematic studies within the infrastructure network of German Rail, little is known about the causes of such embankment fires. Since a further increase in these hazards is to be expected in the near future, there is a need for a sound knowledge of triggers and drivers for embankment fires as well as methodical knowledge of prediction tools. Two predictable future trends speak for the increasing relevance of the topic: through the intensification of the use of rail for passenger and freight transport (e.g..: doubling of annual passenger numbers by 2030, compared to 2019), there will be more rail traffic and also more maintenance and construction work on the railways. This research project approach uses satellite data to identify historical embankment fires along rail network infrastructure. The team links data from these fires with infrastructure and weather data and trains a machine-learning model with the aim of predicting fire hazards on sections of the track. Companies reflect on the results and use them on a pilot basis in precautionary measures.Keywords: embankment fires, railway maintenance, machine learning, remote sensing, VIIRS data
Procedia PDF Downloads 891963 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.Keywords: speed, Kriging, arterial, traffic volume
Procedia PDF Downloads 3531962 Systems Intelligence in Management (High Performing Organizations and People Score High in Systems Intelligence)
Authors: Raimo P. Hämäläinen, Juha Törmänen, Esa Saarinen
Abstract:
Systems thinking has been acknowledged as an important approach in the strategy and management literature ever since the seminal works of Ackhoff in the 1970´s and Senge in the 1990´s. The early literature was very much focused on structures and organizational dynamics. Understanding systems is important but making improvements also needs ways to understand human behavior in systems. Peter Senge´s book The Fifth Discipline gave the inspiration to the development of the concept of Systems Intelligence. The concept integrates the concepts of personal mastery and systems thinking. SI refers to intelligent behavior in the context of complex systems involving interaction and feedback. It is a competence related to the skills needed in strategy and the environment of modern industrial engineering and management where people skills and systems are in an increasingly important role. The eight factors of Systems Intelligence have been identified from extensive surveys and the factors relate to perceiving, attitude, thinking and acting. The personal self-evaluation test developed consists of 32 items which can also be applied in a peer evaluation mode. The concept and test extend to organizations too. One can talk about organizational systems intelligence. This paper reports the results of an extensive survey based on peer evaluation. The results show that systems intelligence correlates positively with professional performance. People in a managerial role score higher in SI than others. Age improves the SI score but there is no gender difference. Top organizations score higher in all SI factors than lower ranked ones. The SI-tests can also be used as leadership and management development tools helping self-reflection and learning. Finding ways of enhancing learning organizational development is important. Today gamification is a new promising approach. The items in the SI test have been used to develop an interactive card game following the Topaasia game approach. It is an easy way of engaging people in a process which both helps participants see and approach problems in their organization. It also helps individuals in identifying challenges in their own behavior and in improving in their SI.Keywords: gamification, management competence, organizational learning, systems thinking
Procedia PDF Downloads 961961 Scenario-Based Learning Using Virtual Optometrist Applications
Authors: J. S. M. Yang, G. E. T. Chua
Abstract:
Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios
Procedia PDF Downloads 1171960 Gamification of eHealth Business Cases to Enhance Rich Learning Experience
Authors: Kari Björn
Abstract:
Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.Keywords: engineering education, integrated curriculum, learning experience, learning outcomes
Procedia PDF Downloads 2401959 The Characteristics of Settlement Owing to the Construction of Several Parallel Tunnels with Short Distances
Authors: Lojain Suliman, Xinrong Liu, Xiaohan Zhou
Abstract:
Since most tunnels are built in crowded metropolitan settings, the excavation process must take place in highly condensed locations, including high-density cities. In this way, the tunnels are typically located close together, which leads to more interaction between the parallel existing tunnels, and this, in turn, leads to more settlement. This research presents an examination of the impact of a large-scale tunnel excavation on two forms of settlement: surface settlement and settlement surrounding the tunnel. Additionally, research has been done on the properties of interactions between two and three parallel tunnels. The settlement has been evaluated using three primary techniques: theoretical modeling, numerical simulation, and data monitoring. Additionally, a parametric investigation on how distance affects the settlement characteristic for parallel tunnels with short distances has been completed. Additionally, it has been observed that the sequence of excavation has an impact on the behavior of settlements. Nevertheless, a comparison of the model test and numerical simulation yields significant agreement in terms of settlement trend and value. Additionally, when compared to the FEM study, the suggested analytical solution exhibits reduced sensitivity in the settlement prediction. For example, the settlement of the small tunnel diameter does not appear clearly on the settlement curve, while it is notable in the FEM analysis. It is advised, however, that additional studies be conducted in the future employing analytical solutions for settlement prediction for parallel tunnels.Keywords: settlement, FEM, analytical solution, parallel tunnels
Procedia PDF Downloads 36