Search results for: features extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5556

Search results for: features extraction

4686 Speeding-up Gray-Scale FIC by Moments

Authors: Eman A. Al-Hilo, Hawraa H. Al-Waelly

Abstract:

In this work, fractal compression (FIC) technique is introduced based on using moment features to block indexing the zero-mean range-domain blocks. The moment features have been used to speed up the IFS-matching stage. Its moments ratio descriptor is used to filter the domain blocks and keep only the blocks that are suitable to be IFS matched with tested range block. The results of tests conducted on Lena picture and Cat picture (256 pixels, resolution 24 bits/pixel) image showed a minimum encoding time (0.89 sec for Lena image and 0.78 of Cat image) with appropriate PSNR (30.01dB for Lena image and 29.8 of Cat image). The reduction in ET is about 12% for Lena and 67% for Cat image.

Keywords: fractal gray level image, fractal compression technique, iterated function system, moments feature, zero-mean range-domain block

Procedia PDF Downloads 493
4685 Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae

Authors: Malith Premarathne, Shehan Bandara, Kaushalya G. Batawala, Thilini U. Ariyadasa

Abstract:

The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard.

Keywords: biodiesel, lipid extraction, microalgae, pre-treatment

Procedia PDF Downloads 178
4684 Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis

Authors: Abu Yousuf, Maksudur Rahman Khan, Ahasanul Karim, Amirul Islam, Minhaj Uddin Monir, Sharmin Sultana, Domenico Pirozzi

Abstract:

Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate.

Keywords: biodiesel, electroporation, microbial lipids, transesterification

Procedia PDF Downloads 281
4683 A Security Study for Smart Metering Systems

Authors: Musaab Hasan, Farkhund Iqbal, Patrick C. K. Hung, Benjamin C. M. Fung, Laura Rafferty

Abstract:

In modern societies, the smart cities concept raised simultaneously with the projection towards adopting smart devices. A smart grid is an essential part of any smart city as both consumers and power utility companies benefit from the features provided by the power grid. In addition to advanced features presented by smart grids, there may also be a risk when the grids are exposed to malicious acts such as security attacks performed by terrorists. Considering advanced security measures in the design of smart meters could reduce these risks. This paper presents a security study for smart metering systems with a prototype implementation of the user interfaces for future works.

Keywords: security design, smart city, smart meter, smart grid, smart metering system

Procedia PDF Downloads 336
4682 HPTLC Fingerprinting of steroidal glycoside of leaves and berries of Solanum nigrum L. (Inab-us-salab/makoh)

Authors: Karishma Chester, Sarvesh K. Paliwal, Sayeed Ahmad

Abstract:

Inab-us-salab also known as Solanum nigrum L. (Family: Solanaceae), is an important Indian medicinal plant and have been used in various unani traditional formulations for hepato-protection. It has been reported to contain significant amount of steroidal glycosides such as solamargine and solasonine as well as their aglycone part solasodine. Being important pharmacologically active metabolites of several members of solanaceae, these markers have been attempted various times for their extraction and quantification but separately for glycoside and aglycone part because of their opposite polarity. Here, we propose for the first time its fractionation and fingerprinting of aglycone (solasodine) and glycosides (solamargine and solasonine) in leaves and berries of S. nigrum using solvent extraction and fractionation followed by HPTLC analysis. The fingerprinting was done using silica gel 60F254 HPTLC plates as stationary phase and chloroform: methanol: acetone: 0.5% ammonia (7: 2.5: 1: 0.4 v/v/v/v) as mobile phase at 400 nm, after derivatization with antimony tri chloride reagent for identification of steroidal glycoside. The statistical data obtained can further be validated and can be used routinely for quality control of various solanaceous drugs reported for these markers as well as traditional formulations containing those plants as an ingredient.

Keywords: solanum nigrum, solasodine, solamargine, solasonine, quantification

Procedia PDF Downloads 398
4681 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 222
4680 Robust Noisy Speech Identification Using Frame Classifier Derived Features

Authors: Punnoose A. K.

Abstract:

This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.

Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering

Procedia PDF Downloads 127
4679 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model

Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu

Abstract:

In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.

Keywords: road edge lines extraction, energy function, intersection fracture, Snake model

Procedia PDF Downloads 338
4678 Recovery of Polyphenolic Phytochemicals From Greek Grape Pomace (Vitis Vinifera L.)

Authors: Christina Drosou, Konstantina E. Kyriakopoulou, Andreas Bimpilas, Dimitrios Tsimogiannis, Magdalini C. Krokida

Abstract:

Rationale: Agiorgitiko is one of the most widely-grown and commercially well-established red wine varieties in Greece. Each year viticulture industry produces a large amount of waste consisting of grape skins and seeds (pomace) during a short period. Grapes contain polyphenolic compounds which are partially transferred to wine during winemaking. Therefore, winery wastes could be an alternative cheap source for obtaining such compounds with important antioxidant activity. Specifically, red grape waste contains anthocyanins and flavonols which are characterized by multiple biological activities, including cardioprotective, anti-inflammatory, anti-carcinogenic, antiviral and antibacterial properties attributed mainly to their antioxidant activity. Ultrasound assisted extraction (UAE) is considered an effective way to recover phenolic compounds, since it combines the advantage of mechanical effect with low temperature. Moreover, green solvents can be used in order to recover extracts intended for used in the food and nutraceutical industry. Apart from the extraction, pre-treatment process like drying can play an important role on the preservation of the grape pomace and the enhancement of its antioxidant capacity. Objective: The aim of this study is to recover natural extracts from winery waste with high antioxidant capacity using green solvents so they can be exploited and utilized as enhancers in food or nutraceuticals. Methods: Agiorgitiko grape pomace was dehydrated by air drying (AD) and accelerated solar drying (ASD) in order to explore the effect of the pre-treatment on the recovery of bioactive compounds. UAE was applied in untreated and dried samples using water and water: ethanol (1:1) as solvents. The total antioxidant potential and phenolic content of the extracts was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and Folin-Ciocalteu method, respectively. Finally, the profile of anthocyanins and flavonols was specified using HPLC-DAD analysis. The efficiency of processes was determined in terms of extraction yield, antioxidant activity, phenolic content and the anthocyanins and flavovols profile. Results & Discussion: The experiments indicated that the pre-treatment was essential for the recovery of highly nutritious compounds from the pomace as long as the extracts samples showed higher phenolic content and antioxidant capacity. Water: ethanol (1:1) was considered a more effective solvent on the recovery of phenolic compounds. Moreover, ASD grape pomace extracted with the solvent system exhibited the highest antioxidant activity (IC50=0.36±0.01mg/mL) and phenolic content (TPC=172.68±0.01mgGAE/g dry extract), followed by AD and untreated pomace. The major compounds recovered were malvidin3-O-glucoside and quercetin3-O-glucoside according to the HPLC analysis. Conclusions: Winery waste can be exploited for the recovery of nutritious compounds using green solvents such as water or ethanol. The pretreatment of the pomace can significantly affect the concentration of phenolic compounds, while UAE is considered a highly effective extraction process.

Keywords: agiorgitico grape pomace, antioxidants, phenolic compounds, ultrasound assisted extraction

Procedia PDF Downloads 394
4677 Biorefinery as Extension to Sugar Mills: Sustainability and Social Upliftment in the Green Economy

Authors: Asfaw Gezae Daful, Mohsen Alimandagari, Kathleen Haigh, Somayeh Farzad, Eugene Van Rensburg, Johann F. Görgens

Abstract:

The sugar industry has to 're-invent' itself to ensure long-term economic survival and opportunities for job creation and enhanced community-level impacts, given increasing pressure from fluctuating and low global sugar prices, increasing energy prices and sustainability demands. We propose biorefineries for re-vitalisation of the sugar industry using low value lignocellulosic biomass (sugarcane bagasse, leaves, and tops) annexed to existing sugar mills, producing a spectrum of high value platform chemicals along with biofuel, bioenergy, and electricity. Opportunity is presented for greener products, to mitigate climate change and overcome economic challenges. Xylose from labile hemicellulose remains largely underutilized and the conversion to value-add products a major challenge. Insight is required on pretreatment and/or extraction to optimize production of cellulosic ethanol together with lactic acid, furfural or biopolymers from sugarcane bagasse, leaves, and tops. Experimental conditions for alkaline and pressurized hot water extraction dilute acid and steam explosion pretreatment of sugarcane bagasse and harvest residues were investigated to serve as a basis for developing various process scenarios under a sugarcane biorefinery scheme. Dilute acid and steam explosion pretreatment were optimized for maximum hemicellulose recovery, combined sugar yield and solids digestibility. An optimal range of conditions for alkaline and liquid hot water extraction of hemicellulosic biopolymers, as well as conditions for acceptable enzymatic digestibility of the solid residue, after such extraction was established. Using data from the above, a series of energy efficient biorefinery scenarios are under development and modeled using Aspen Plus® software, to simulate potential factories to better understand the biorefinery processes and estimate the CAPEX and OPEX, environmental impacts, and overall viability. Rigorous and detailed sustainability assessment methodology was formulated to address all pillars of sustainability. This work is ongoing and to date, models have been developed for some of the processes which can ultimately be combined into biorefinery scenarios. This will allow systematic comparison of a series of biorefinery scenarios to assess the potential to reduce negative impacts on and maximize the benefits of social, economic, and environmental factors on a lifecycle basis.

Keywords: biomass, biorefinery, green economy, sustainability

Procedia PDF Downloads 514
4676 Recovery and Εncapsulation of Μarine Derived Antifouling Agents

Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas

Abstract:

Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.

Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction

Procedia PDF Downloads 342
4675 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 260
4674 Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves

Authors: Sanjit Kumar Paul, A. A. Mamun, M. R. Amin

Abstract:

The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation.

Keywords: dust acoustic waves, dusty plasma, Boltzmann distributed electrons, charge fluctuation

Procedia PDF Downloads 639
4673 Short Answer Grading Using Multi-Context Features

Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan

Abstract:

Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.

Keywords: artificial intelligence, intelligent systems, natural language processing, text mining

Procedia PDF Downloads 133
4672 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: bioeconomy, lipids, microalgae, proteins, saccharides

Procedia PDF Downloads 246
4671 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
4670 Iron Extraction from Bog Iron Ore in Early French Colonial America

Authors: Yves Monette, Brad Loewen, Louise Pothier

Abstract:

This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice.

Keywords: bog iron ore, extractive metallurgy, French colonial America, Montreal, scanning electron microscopy (SEM)

Procedia PDF Downloads 354
4669 Hiveopolis - Honey Harvester System

Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios

Abstract:

Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.

Keywords: honey harvesting, honeybee, hiveopolis, nitinol

Procedia PDF Downloads 108
4668 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
4667 Value Adding of Waste Biomass of Capsicum and Chilli Crops for Medical and Health Supplement Industries

Authors: Mursleen Yasin, Sunil Panchal, Michelle Mak, Zhonghua Chen

Abstract:

“The use of agricultural and horticultural waste to obtain beneficial products. Thus reduce its environmental impact and help the general population.” Every year 20 billion dollars of food is wasted in the world. All the energy, resources, nutrients and metabolites are lost to the landfills as well. On farm production losses are a main issue in agriculture. Almost 25% vegetables never leave the farm because they are not considered perfect for supermarkets and treated as waste material along with the rest of the plant parts. For capsicums, this waste is 56% of the total crop. Capsicum genus is enriched with a group of compounds called capsaicinoids which are a source of spiciness of these fruits. Capsaicin and dihydrocapsaicin are the major members comprising almost 90% of this group. The major production and accumulation site is the non-edible part of fruit i.e., placenta. Other parts of the plant, like stem, leaves, pericarp and seeds, also contain these pungent compounds. Capsaicinoids are enriched with properties like analgesic, antioxidants, anti-inflammatory, antibacterial, anti-virulence anti-carcinogenic, chemo preventive, chemotherapeutic, antidiabetic etc. They are also effective in treating problems related to gastrointestinal tract, lowering cholesterol and triglycerides in obesity. The aim of the study is to develop a standardised technique for capsaicinoids extraction and to identify better nutrient treatment for fruit and capsaicinoids yield. For research 3 capsicum and 2 chilli varieties were grown in a high-tech glass house facility in Sydney, Australia. Plants were treated with three levels of nutrient treatments i.e., EC 1.8, EC 2.8 and EC 3.8 in order to check its effect on fruit yield and capsaicinoids concentration. Solvent extraction procedure is used with 75% ethanol to extract these secondary metabolites. Physiological, post-harvest and waste biomass measurement and metabolomic analysis are also performed. The results showed that EC 2.8 gave the better fruit yield of capsicums, and those fruits have the higher capsaicinoids concentration. For chillies, higher EC levels had better results than lower treatment. The UHPLC analysis is done to quantify the compounds, and a decrease in capsaicin concentration is observed with the crop maturation. The outcome of this project is a sustainable technique for extraction of capsaicinoids which can easily be adopted by farmers. In this way, farmers can help in value adding of waste by extracting and selling capsaicinoids to nutraceutical and pharmaceutical industries and also earn some secondary income from the 56% waste of capsicum crop.

Keywords: capsaicinoids, plant waste, capsicum, solvent extraction, waste biomass

Procedia PDF Downloads 79
4666 Optimising the Reservoir Operation Using Water Resources Yield and Planning Model at Inanda Dam, uMngeni Basin

Authors: O. Nkwonta, B. Dzwairo, F. Otieno, J. Adeyemo

Abstract:

The effective management of water resources is of great importance to ensure the supply of water resources to support changing water requirements over a selected planning horizon and in a sustainable and cost-effective way. Essentially, the purpose of the water resources planning process is to balance the available water resources in a system with the water requirements and losses to which the system is subjected. In such situations, water resources yield and planning model can be used to solve those difficulties. It has an advantage over other models by managing model runs, developing a representative system network, modelling incremental sub-catchments, creating a variety of standard system features, special modelling features, and run result output options.

Keywords: complex, water resources, planning, cost effective, management

Procedia PDF Downloads 451
4665 Deasphalting of Crude Oil by Extraction Method

Authors: A. N. Kurbanova, G. K. Sugurbekova, N. K. Akhmetov

Abstract:

The asphaltenes are heavy fraction of crude oil. Asphaltenes on oilfield is known for its ability to plug wells, surface equipment and pores of the geologic formations. The present research is devoted to the deasphalting of crude oil as the initial stage refining oil. Solvent deasphalting was conducted by extraction with organic solvents (cyclohexane, carbon tetrachloride, chloroform). Analysis of availability of metals was conducted by ICP-MS and spectral feature at deasphalting was achieved by FTIR. High contents of asphaltenes in crude oil reduce the efficiency of refining processes. Moreover, high distribution heteroatoms (e.g., S, N) were also suggested in asphaltenes cause some problems: environmental pollution, corrosion and poisoning of the catalyst. The main objective of this work is to study the effect of deasphalting process crude oil to improve its properties and improving the efficiency of recycling processes. Experiments of solvent extraction are using organic solvents held in the crude oil JSC “Pavlodar Oil Chemistry Refinery. Experimental results show that deasphalting process also leads to decrease Ni, V in the composition of the oil. One solution to the problem of cleaning oils from metals, hydrogen sulfide and mercaptan is absorption with chemical reagents directly in oil residue and production due to the fact that asphalt and resinous substance degrade operational properties of oils and reduce the effectiveness of selective refining of oils. Deasphalting of crude oil is necessary to separate the light fraction from heavy metallic asphaltenes part of crude oil. For this oil is pretreated deasphalting, because asphaltenes tend to form coke or consume large quantities of hydrogen. Removing asphaltenes leads to partly demetallization, i.e. for removal of asphaltenes V/Ni and organic compounds with heteroatoms. Intramolecular complexes are relatively well researched on the example of porphyinous complex (VO2) and nickel (Ni). As a result of studies of V/Ni by ICP MS method were determined the effect of different solvents-deasphalting – on the process of extracting metals on deasphalting stage and select the best organic solvent. Thus, as the best DAO proved cyclohexane (C6H12), which as a result of ICP MS retrieves V-51.2%, Ni-66.4%? Also in this paper presents the results of a study of physical and chemical properties and spectral characteristics of oil on FTIR with a view to establishing its hydrocarbon composition. Obtained by using IR-spectroscopy method information about the specifics of the whole oil give provisional physical, chemical characteristics. They can be useful in the consideration of issues of origin and geochemical conditions of accumulation of oil, as well as some technological challenges. Systematic analysis carried out in this study; improve our understanding of the stability mechanism of asphaltenes. The role of deasphalted crude oil fractions on the stability asphaltene is described.

Keywords: asphaltenes, deasphalting, extraction, vanadium, nickel, metalloporphyrins, ICP-MS, IR spectroscopy

Procedia PDF Downloads 242
4664 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 41
4663 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language

Authors: Daleesha M. Viswanathan, Sumam Mary Idicula

Abstract:

Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.

Keywords: orientation features, discrete feature vector, HMM., Indian sign language

Procedia PDF Downloads 372
4662 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
4661 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 48
4660 Experiencing an Unknown City: Environmental Features as Pedestrian Wayfinding Clues through the City of Swansea, UK

Authors: Hussah Alotaishan

Abstract:

In today’s globally-driven modern cities diverse groups of new visitors face various challenges when attempting to find their desired location if culture and language are barriers. The most common way-showing tools such as directional and identificational signs are the most problematic and their usefulness can be limited or even non-existent. It is argued new methods should be implemented that could support or replace such conventional literacy and language dependent way-finding aids. It has been concluded in recent research studies that local urban features in complex pedestrian spaces are worthy of further study in order to reveal if they do function as way-showing clues. Some researchers propose a more comprehensive approach to the complex perception of buildings, façade design and surface patterns, while some have been questioning whether we necessarily need directional signs or can other methods deliver the same message but in a clearer manner for a wider range of users. This study aimed to test to what extent do existent environmental and urban features through the city center area of Swansea in the UK facilitate the way-finding process of a first time visitor. The three-hour experiment was set to attempt to find 11 visitor attractions ranging from recreational, historical, educational and religious locations. The challenge was attempting to find as many as possible when no prior geographical knowledge of their whereabouts was established. The only clues were 11 pictures representing each of the locations that had been acquired from the city of Swansea official website. An iPhone and a heart-rate tracker wristwatch were used to record the route was taken and stress levels, and take record photographs of destinations or decision-making points throughout the journey. This paper addresses: current limitations in understanding the ways that the physical environment can be intentionally deployed to facilitate pedestrians while finding their way around, without or with a reduction in language dependent signage; investigates visitor perceptions of their surroundings by indicating what urban elements manifested an impact on the way-finding process. The initial findings support the view that building facades and street features, such as width, could facilitate the decision-making process if strategically employed. However, more importantly, the anticipated features of a specific place construed from a promotional picture can also be misleading and create confusion that may lead to getting lost.

Keywords: pedestrian way-finding, environmental features, urban way-showing, environmental affordance

Procedia PDF Downloads 173
4659 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 114
4658 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization

Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder

Abstract:

Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.

Keywords: chars, porous, water holding capacity, combustion process

Procedia PDF Downloads 363
4657 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 87