Search results for: drug prediction
3325 pH-Responsive Carrier Based on Polymer Particle
Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi
Abstract:
pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer
Procedia PDF Downloads 1843324 Association of Genetically Proxied Cholesterol-Lowering Drug Targets and Head and Neck Cancer Survival: A Mendelian Randomization Analysis
Authors: Danni Cheng
Abstract:
Background: Preclinical and epidemiological studies have reported potential protective effects of low-density lipoprotein cholesterol (LDL-C) lowering drugs on head and neck squamous cell cancer (HNSCC) survival, but the causality was not consistent. Genetic variants associated with LDL-C lowering drug targets can predict the effects of their therapeutic inhibition on disease outcomes. Objective: We aimed to evaluate the causal association of genetically proxied cholesterol-lowering drug targets and circulating lipid traits with cancer survival in HNSCC patients stratified by human papillomavirus (HPV) status using two-sample Mendelian randomization (MR) analyses. Method: Single-nucleotide polymorphisms (SNPs) in gene region of LDL-C lowering drug targets (HMGCR, NPC1L1, CETP, PCSK9, and LDLR) associated with LDL-C levels in genome-wide association study (GWAS) from the Global Lipids Genetics Consortium (GLGC) were used to proxy LDL-C lowering drug action. SNPs proxy circulating lipids (LDL-C, HDL-C, total cholesterol, triglycerides, apoprotein A and apoprotein B) were also derived from the GLGC data. Genetic associations of these SNPs and cancer survivals were derived from 1,120 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) and 2,570 non-HPV-driven HNSCC patients in VOYAGER program. We estimated the causal associations of LDL-C lowering drugs and circulating lipids with HNSCC survival using the inverse-variance weighted method. Results: Genetically proxied HMGCR inhibition was significantly associated with worse overall survival (OS) in non-HPV-drive HNSCC patients (inverse variance-weighted hazard ratio (HR IVW), 2.64[95%CI,1.28-5.43]; P = 0.01) but better OS in HPV-positive OPSCC patients (HR IVW,0.11[95%CI,0.02-0.56]; P = 0.01). Estimates for NPC1L1 were strongly associated with worse OS in both total HNSCC (HR IVW,4.17[95%CI,1.06-16.36]; P = 0.04) and non-HPV-driven HNSCC patients (HR IVW,7.33[95%CI,1.63-32.97]; P = 0.01). A similar result was found that genetically proxied PSCK9 inhibitors were significantly associated with poor OS in non-HPV-driven HNSCC (HR IVW,1.56[95%CI,1.02 to 2.39]). Conclusion: Genetically proxied long-term HMGCR inhibition was significantly associated with decreased OS in non-HPV-driven HNSCC and increased OS in HPV-positive OPSCC. While genetically proxied NPC1L1 and PCSK9 had associations with worse OS in total and non-HPV-driven HNSCC patients. Further research is needed to understand whether these drugs have consistent associations with head and neck tumor outcomes.Keywords: Mendelian randomization analysis, head and neck cancer, cancer survival, cholesterol, statin
Procedia PDF Downloads 1003323 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1123322 The Use of Venous Glucose, Serum Lactate and Base Deficit as Biochemical Predictors of Mortality in Polytraumatized Patients: Acomparative with Trauma and Injury Severity Score and Acute Physiology and Chronic Health Evalution IV
Authors: Osama Moustafa Zayed
Abstract:
Aim of the work: To evaluate the effectiveness of venous glucose, levels of serum lactate and base deficit in polytraumatized patients as simple parameters to predict the mortality in these patients. Compared to the predictive value of Trauma and injury severity (TRISS) and Acute Physiology And Chronic Health Evaluation IV (APACHE IV). Introduction: Trauma is a serious global health problem, accounting for approximately one in 10 deaths worldwide. Trauma accounts for 5 million deaths per year. Prediction of mortality in trauma patients is an important part of trauma care. Several trauma scores have been devised to predict injury severity and risk of mortality. The trauma and injury severity score (TRISS) was most common used. Regardless of the accuracy of trauma scores, is based on an anatomical description of every injury and cannot be assigned to the patients until a full diagnostic procedure has been performed. So we hypothesized that alterations in admission glucose, lactate levels and base deficit would be an early and easy rapid predictor of mortality. Patient and Method: a comparative cross-sectional study. 282 Polytraumatized patients attended to the Emergency Department(ED) of the Suez Canal university Hospital constituted. The period from 1/1/2012 to 1/4/2013 was included. Results: We found that the best cut off value of TRISS probability of survival score for prediction of mortality among poly-traumatized patients is = 90, with 77% sensitivity and 89% specificity using area under the ROC curve (0.89) at (95%CI). APACHE IV demonstrated 67% sensitivity and 95% specificity at 95% CI at cut off point 99. The best cutoff value of Random Blood Sugar (RBS) for prediction of mortality was>140 mg/dl, with 89%, sensitivity, 49% specificity. The best cut off value of base deficit for prediction of mortality was less than -5.6 with 64% sensitivity, 93% specificity. The best cutoff point of lactate for prediction of mortality was > 2.6 mmol/L with 92%, sensitivity, 42% specificity. Conclusion: According to our results from all evaluated predictors of mortality (laboratory and scores) and mortality based on the estimated cutoff values using ROC curves analysis, the highest risk of mortality was found using a cutoff value of 90 in TRISS score while with laboratory parameters the highest risk of mortality was with serum lactate > 2.6 . Although that all of the three parameter are accurate in predicting mortality in poly-traumatized patients and near with each other, as in serum lactate the area under the curve 0.82, in BD 0.79 and 0.77 in RBS.Keywords: APACHE IV, emergency department, polytraumatized patients, serum lactate
Procedia PDF Downloads 2953321 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach
Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota
Abstract:
Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics
Procedia PDF Downloads 5003320 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids
Authors: Caroline E. Mendes, Alberto C. Badino
Abstract:
Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa were obtained using the dynamic pressure-step method, while was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.Keywords: bubble column, internal loop airlift, gas hold-up, kLa
Procedia PDF Downloads 2743319 Development of Extemporaneous Pediatric Syrup of Prednisone
Authors: Amel Chenafa, Sihem Boulenouar, Linda Aoued, Imane Sediri, Ismahan Djebbar, Mohamed Adil Selka
Abstract:
Introduction: The specialties intended for adults are often inadequate marketed for pediatric use, such as for a galenic form or in the dosage. For an industrial, development of a pediatric drug is confronted to various problems. So, the hospital pharmacies have to respond to adaptation needs of pharmaceutical forms for pediatric use. The objective of our work is to develop an oral form of prednisone for pediatric use since no adapted form to children is commercialized. Materials and Methods: Therefore an extemporaneous syrup of prednisone was prepared at the concentration of 0,5mg/ml from 5mg tablets and stored in amber glass bottles. Organoleptic and microbiological stability was studied in two temperatures: 5°C and 25°C, and evaluated at D0, D15, and D30. Results: No organoleptic changes have been detected on the syrup conserved at 25 and 5°C. The results show that there is no presence of bacteria, yeasts, and molds in the syrups stored at both temperatures during the analysis period. Conclusion: Sheltered from light, the developed syrup of prednisone remained stable at room temperature and/or refrigerator for 30 days.Keywords: extemporaneous syrup, pediatric drug, prednisone, stability
Procedia PDF Downloads 3863318 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy
Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets
Abstract:
Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery
Procedia PDF Downloads 3753317 Calibration of Site Effect Parameters in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
The creation of a seismic prediction model that considers all the regional variations and perfectly adjusts its results to the response spectra is very complicated. To achieve statistically acceptable results, it is necessary to process a sufficiently robust data set, and even if high efficiencies are achieved, this model will only work properly in this region. However, when using it in other regions, differences are found due to different parameters that have not been calibrated to other regions, such as the site effect. The fact that impedance contrasts, as well as other factors belonging to the site, have a great influence on the local response is well known, which is why this work, using the residual method, is intended to establish a regional calibration of the corresponding parameters site effect for the Spain region in the global GMPM BSSA 14.Keywords: GMPM, seismic prediction equations, residual method, response spectra, impedance contrast
Procedia PDF Downloads 843316 Impect of Human on Prey of Birds in North West Rajasthan
Authors: Dau Lal Bohra, Sradha Vyas
Abstract:
Bird species are already showing climate-related changes in the dates they migrate and breed, and in the timing of other key life-history events. Treats of feeding managements raptors have performed important ecological, traditional and aesthetic functions throughout the Indian subcontinent. The declines in India result from elevated adult and juvenile mortality, and low breeding success. The widespread and rapid pattern of declines, i.e. in all areas irrespective of habitat or protection status suggest that persecution through shooting or poisoning, whilst important at a local scale, are unlikely to have caused the declines. A mass killing of several species of vultures in the Indian subcontinent over the last two decades is largely blamed on the presence of a drug. Veterinary diclofenac caused an unprecedented decline in South Asia’s Gyps vulture populations, with some species declining by more than 97% between 1992 and 2007. Veterinary diclofenac causes renal failure in vultures, and killed tens of millions of such birds in the Indian sub-continent. The drug was finally banned there for veterinary purposes in 2006. This drug is now ‘a global problem’ threatening many vulnerable birds of prey. Recently, stappe eagles are also susceptible to veterinary diclofenac, effectively increasing the potential threat level, and the risks for European biodiversity. Steppe eagles are closely related with golden eagles (Aquila chrysaetus), imperial eagles (Aquila heliaca) and Spanish imperial eagles (Aquila adalberti), and all these species scavenge opportunistically on carcasses throughout their range. The Spanish imperial eagle, considered Vulnerable at global level, is now particularly at risk, due to the availability of diclofenac in Spain. These findings strengthen the case for banning veterinary diclofenac across. From year 2011 to 2014 more than 300 hundred birds dead in jorbeer, Bikaner. Now, with unequivocal evidence that this veterinary drug can cause a much wider impact on Europe´s biodiversity, it is time for action – please ban diclofenac human brand also in multi-dose vial from market.Keywords: mortility, prey of birds, diclofenac, Rajasthan
Procedia PDF Downloads 3743315 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 1783314 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet
Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry
Abstract:
Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride
Procedia PDF Downloads 2403313 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets
Authors: Simone Galati, Adriano Troia
Abstract:
Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.Keywords: cavitation, drug delivery, nanodroplets, ultra-sound
Procedia PDF Downloads 1103312 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 3203311 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens
Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader
Abstract:
In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles
Procedia PDF Downloads 4943310 Electrospinning of Nanofibrous Meshes and Surface-Modification for Biomedical Application
Authors: Hyuk Sang Yoo, Young Ju Son, Wei Mao, Myung Gu Kang, Sol Lee
Abstract:
Biomedical applications of electrospun nanofibrous meshes have been received tremendous attentions because of their unique structures and versatilities as biomaterials. Incorporation of growth factors in fibrous meshes can be performed by surface-modification and encapsulation. Those growth factors stimulate differentiation and proliferation of specific types of cells and thus lead tissue regenerations of specific cell types. Topographical cues of electrospun nanofibrous meshes also increase differentiation of specific cell types according to alignments of fibrous structures. Wound healing treatments of diabetic ulcers were performed using nanofibrous meshes encapsulating multiple growth factors. Aligned nanofibrous meshes and those with random configuration were compared for differentiating mesenchymal stem cells into neuronal cells. Thus, nanofibrous meshes can be applied to drug delivery carriers and matrix for promoting cellular proliferation.Keywords: nanofiber, tissue, mesh, drug
Procedia PDF Downloads 3393309 Healthcare Professionals' Perspectives on Warfarin Therapy at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR
Authors: Vanlounni Sibounheuang, Wanarat Anusornsangiam, Pattarin Kittiboonyakun, Chanthanom Manithip
Abstract:
In worldwide, one of the most common use of oral anticoagulant is warfarin. Its margin between therapeutic inhibition of clot formation and bleeding complications is narrow. Mahosot Hospital, warfarin clinic had not been established yet. The descriptive study was conducted by investigating drug-related problems of outpatients using warfarin, the value of the international normalized ratio (INR) higher than normal ranges (25.40 % of the total 272 outpatients) were mostly identified at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. This result led to the present study conducting qualitative interviews in order to help establish a warfarin clinic at Mahosot Hospital for the better outcomes of patients using warfarin. The purpose of this study was to explore perspectives of healthcare professional providing services for outpatients using warfarin. The face to face, in-depth interviews were undertaken among nine healthcare professionals (doctor=3, nurse=3, pharmacist=3) working at out-patient clinic, Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. The interview guides were developed, and they were validated by the experts in the fields of qualitative research. Each interview lasted approximately 20 minutes. Three major themes emerged; healthcare professional’s experiences of current practice problems with warfarin therapy, healthcare professionals’ views of medical problems related to patients using warfarin, and healthcare professionals’ perspectives on ways of service improvement. All healthcare professionals had the same views that it’s difficult to achieve INR goal for individual patients because of some important patient barriers especially lack of knowledge about to use warfarin properly and safety, patients not regularly follow-up due to problems with transportations and financial support. Doctors and nurses agreed to have a pharmacist running a routine warfarin clinic and provided counselling to individual patients on the following points: how to take drug properly and safety, drug-drug and food-drug interactions, common side effects and how to manage them, lifestyle modifications. From the interviews, some important components of the establishment of a warfarin clinic included financial support, increased human resources, improved the system of keeping patients’ medical records, short course training for pharmacists. This study indicated the acceptance of healthcare professionals on the important roles of pharmacists and the feasibility of setting up warfarin clinic by working together with the multidisciplinary health care team in order to help improve health outcomes of patients using warfarin at Mahosot Hospital, Lao PDR.Keywords: perspectives, healthcare professional, warfarin therapy, Mahosot Hospital
Procedia PDF Downloads 1003308 Optimizing the Effectiveness of Docetaxel with Solid Lipid Nanoparticles: Formulation, Characterization, in Vitro and in Vivo Assessment
Authors: Navid Mosallaei, Mahmoud Reza Jaafari, Mohammad Yahya Hanafi-Bojd, Shiva Golmohammadzadeh, Bizhan Malaekeh-Nikouei
Abstract:
Background: Docetaxel (DTX), a potent anticancer drug derived from the European yew tree, is effective against various human cancers by inhibiting microtubule depolymerization. Solid lipid nanoparticles (SLNs) have gained attention as drug carriers for enhancing drug effectiveness and safety. SLNs, submicron-sized lipid-based particles, can passively target tumors through the "enhanced permeability and retention" (EPR) effect, providing stability, drug protection, and controlled release while being biocompatible. Methods: The SLN formulation included biodegradable lipids (Compritol and Precirol), hydrogenated soy phosphatidylcholine (H-SPC) as a lipophilic co-surfactant, and Poloxamer 188 as a non-ionic polymeric stabilizer. Two SLN preparation techniques, probe sonication and microemulsion, were assessed. Characterization encompassed SLNs' morphology, particle size, zeta potential, matrix, and encapsulation efficacy. In-vitro cytotoxicity and cellular uptake studies were conducted using mouse colorectal (C-26) and human malignant melanoma (A-375) cell lines, comparing SLN-DTX with Taxotere®. In-vivo studies evaluated tumor inhibitory efficacy and survival in mice with colorectal (C-26) tumors, comparing SLNDTX withTaxotere®. Results: SLN-DTX demonstrated stability, with an average size of 180 nm and a low polydispersity index (PDI) of 0.2 and encapsulation efficacy of 98.0 ± 0.1%. Differential scanning calorimetry (DSC) suggested amorphous encapsulation of DTX within SLNs. In vitro studies revealed that SLN-DTX exhibited nearly equivalent cytotoxicity to Taxotere®, depending on concentration and exposure time. Cellular uptake studies demonstrated superior intracellular DTX accumulation with SLN-DTX. In a C-26 mouse model, SLN-DTX at 10 mg/kg outperformed Taxotere® at 10 and 20 mg/kg, with no significant differences in body weight changes and a remarkably high survival rate of 60%. Conclusion: This study concludes that SLN-DTX, prepared using the probe sonication, offers stability and enhanced therapeutic effects. It displayed almost same in vitro cytotoxicity to Taxotere® but showed superior cellular uptake. In a mouse model, SLN-DTX effectively inhibited tumor growth, with 10 mg/kg outperforming even 20 mg/kg of Taxotere®, without adverse body weight changes and with higher survival rates. This suggests that SLN-DTX has the potential to reduce adverse effects while maintaining or enhancing docetaxel's therapeutic profile, making it a promising drug delivery strategy suitable for industrialization.Keywords: docetaxel, Taxotere®, solid lipid nanoparticles, enhanced permeability and retention effect, drug delivery, cancer chemotherapy, cytotoxicity, cellular uptake, tumor inhibition
Procedia PDF Downloads 823307 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections
Authors: Ravneil Nand
Abstract:
Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse
Procedia PDF Downloads 3353306 Numerical Prediction of Entropy Generation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.Keywords: heat exchangers, porous medium, second law approach, turbulent flow
Procedia PDF Downloads 3003305 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka
Authors: Sakshi Dhumale, Madhushree C., Amba Shetty
Abstract:
The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability
Procedia PDF Downloads 583304 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics
Authors: Arindam Pramanik, Parimal Karmakar
Abstract:
We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery
Procedia PDF Downloads 4843303 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 1083302 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 4213301 Pharmacogenetics Study of Dapsone-Induced Severe Cutaneous Adverse Reactions and HLA Class I Alleles in Thai Patients
Authors: Patompong Satapornpong, Therdpong Tempark, Pawinee Rerknimitr, Jettanong Klaewsongkram, Chonlaphat Sukasem
Abstract:
Dapsone (4, 4’-diaminodiphenyl sulfone, DDS) is broadly used for the treatment of inflammatory diseases and infections such as; leprosy, Pneumocystis jiroveci pneumonia in patients with HIV infection, neutrophilic dermatoses, dermatitis herpetiformis and autoimmune bullous disease. The severe cutaneous adverse drug reactions (SCARs) including, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are rare but severe life-threatening adverse drug reactions. Dapsone is one of many culprit drugs induced SJS, TEN and DRESS. Notwithstanding, to our knowledge, there are no studies of the association of HLA class I alleles and dapsone-induced SCARs in non-leprosy Thai patients. This investigation was a prospective cohort study, which performed in a total of 45 non-leprosy patients. Fifteen patients of dapsone-induced SCARs were classified as following the RegiSCAR criteria, and 30 dapsone-tolerant controls were exposed to dapsone more than 6 months without any evidence of cutaneous reactions. The genotyping of HLA-A, -B and –C were performed using sequence-specific oligonucleotides (PCR-SSOs). The Ethics Committee of Ramathibodi hospital, Mahidol University, approved this study. Among all HLA class I alleles, HLA-A*24:07, HLA-B*13:01, HLA-B*15:02, HLA-C*03:04 and HLA-C*03:09 were significantly associated with dapsone-induced SCARs (OR = 10.55, 95% CI = 1.06 – 105.04, p = 0.0360; OR = 56.00, 95% CI = 8.27 – 379.22, p = 0.0001; OR = 7.00, 95% CI = 1.17 – 42.00, p = 0.0322; OR = 6.00, 95% CI = 1.24 – 29.07, p = 0.0425 and OR = 17.08, 95% CI = 0.82 – 355.45, p = 0.0321, respectively). Furthermore, HLA-B*13:01 allele had strong association with dapsone-induced SJS-TEN and DRESS when compared with dapsone-tolerant controls (OR = 42.00, 95% CI = 2.88 – 612.31, p = 0.0064 and OR = 63.00, 95% CI = 7.72 – 513.94 and p = 0.0001, respectively). Consequently, HLA-B*13:01 might serve as a pharmacogenetic marker for screening before initiating the therapy with dapsone for prevention of dapsone-induced SCARs.Keywords: dapsone-induced SCARs, HLA-B*13:01, HLA class I alleles, severe cutaneous adverse reactions, Thai
Procedia PDF Downloads 2333300 Prediction of Childbearing Orientations According to Couples' Sexual Review Component
Authors: Razieh Rezaeekalantari
Abstract:
Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.Keywords: couples referring, health center, sexual review component, parenting orientations
Procedia PDF Downloads 2193299 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy
Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu
Abstract:
Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR
Procedia PDF Downloads 693298 Analytical Study of Data Mining Techniques for Software Quality Assurance
Authors: Mariam Bibi, Rubab Mehboob, Mehreen Sirshar
Abstract:
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques which have been reported during the survey which enhance the quality of the product through software defect prediction and by locating the missing software requirements. Some mining techniques were proposed to assess the individual performance indicators in collaborative environment to reduce errors at individual level. The basic intention is to produce a product with zero or few defects thereby producing a best product quality wise. In the analysis of survey the techniques like Genetic algorithm, artificial neural network, classification and clustering techniques and decision tree are studied. After analysis it has been discovered that these techniques contributed much to the improvement and enhancement of the quality of the product.Keywords: data mining, defect prediction, missing requirements, software quality
Procedia PDF Downloads 4683297 Formulation and Optimization of Topical 5-Fluorouracil Microemulsions Using Central Compisite Design
Authors: Sudhir Kumar, V. R. Sinha
Abstract:
Water in oil topical microemulsions of 5-FU were developed and optimized using face centered central composite design. Topical w/o microemulsion of 5-FU were prepared using sorbitan monooleate (Span 80), polysorbate 80 (Tween 80), with different oils such as oleic acid (OA), triacetin (TA), and isopropyl myristate (IPM). The ternary phase diagrams designated the microemulsion region and face centered central composite design helped in determining the effects of selected variables viz. type of oil, smix ratio and water concentration on responses like drug content, globule size and viscosity of microemulsions. The CCD design exhibited that the factors have statistically significant effects (p<0.01) on the selected responses. The actual responses showed excellent agreement with the predicted values as suggested by the CCD with lower residual standard error. Similarly, the optimized values were found within the range as predicted by the model. Furthermore, other characteristics of microemulsions like pH, conductivity were investigated. For the optimized microemulsion batch, ex-vivo skin flux, skin irritation and retention studies were performed and compared with marketed 5-FU formulation. In ex vivo skin permeation studies, higher skin retention of drug and minimal flux was achieved for optimized microemulsion batch then the marketed cream. Results confirmed the actual responses to be in agreement with predicted ones with least residual standard errors. Controlled release of drug was achieved for the optimized batch with higher skin retention of 5-FU, which can further be utilized for the treatment of many dermatological disorders.Keywords: 5-FU, central composite design, microemulsion, ternanry phase diagram
Procedia PDF Downloads 4793296 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 153