Search results for: architectural design learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18727

Search results for: architectural design learning

17857 Teachers’ Reactions, Learning, Organizational Support, and Use of Lesson Study for Transformative Assessment

Authors: Melaku Takele Abate, Abbi Lemma Wodajo, Adula Bekele Hunde

Abstract:

This study aimed at exploring mathematics teachers' reactions, learning, school leaders’ support, and use of the Lesson Study for Transformative Assessment (LSforTA) program ideas in practice. The LSforTA program was new, and therefore, a local and grounded approach was needed to examine teachers’ knowledge and skills acquired using LSforTA. So, a design-based research approach was selected to evaluate and refine the LSforTA approach. The results showed that LSforTA increased teachers' knowledge and use of different levels of mathematics assessment tasks. The program positively affected teachers' practices of transformative assessment and enhanced their knowledge and skills in assessing students in a transformative way. The paper concludes how the LSforTA procedures were adapted in response to this evaluation and provides suggestions for future development and research.

Keywords: classroom assessment, feedback practices, lesson study, mathematics, design-based research

Procedia PDF Downloads 55
17856 Grounding Chinese Language Vocabulary Teaching and Assessment in the Working Memory Research

Authors: Chan Kwong Tung

Abstract:

Since Baddeley and Hitch’s seminal research in 1974 on working memory (WM), this topic has been of great interest to language educators. Although there are some variations in the definitions of WM, recent findings in WM have contributed vastly to our understanding of language learning, especially its effects on second language acquisition (SLA). For example, the phonological component of WM (PWM) and the executive component of WM (EWM) have been found to be positively correlated with language learning. This paper discusses two general, yet highly relevant WM findings that could directly affect the effectiveness of Chinese Language (CL) vocabulary teaching and learning, as well as the quality of its assessment. First, PWM is found to be critical for the long-term learning of phonological forms of new words. Second, EWM is heavily involved in interpreting the semantic characteristics of new words, which consequently affects the quality of learners’ reading comprehension. These two ideas are hardly discussed in the Chinese literature, both conceptual and empirical. While past vocabulary acquisition studies have mainly focused on the cognitive-processing approach, active processing, ‘elaborate processing’ (or lexical elaboration) and other effective learning tasks and strategies, it is high time to balance the spotlight to the WM (particularly PWM and EWM) to ensure an optimum control on the teaching and learning effectiveness of such approaches, as well as the validity of this language assessment. Given the unique phonological, orthographical and morphological properties of the CL, this discussion will shed some light on the vocabulary acquisition of this Sino-Tibetan language family member. Together, these two WM concepts could have crucial implications for the design, development, and planning of vocabularies and ultimately reading comprehension teaching and assessment in language education. Hopefully, this will raise an awareness and trigger a dialogue about the meaning of these findings for future language teaching, learning, and assessment.

Keywords: Chinese Language, working memory, vocabulary assessment, vocabulary teaching

Procedia PDF Downloads 346
17855 Intergenerational Technology Learning in the Family

Authors: Chih-Chun Wu

Abstract:

Learning information and communication technologies (ICT) helps people survive in current society. For the internet generation also referred as digital natives, learning new technology is like breathing; however, for the elder generations also called digital immigrants, including parents and grandparents, learning new technology could be challenged and frustrated. While majority research focused on the effects of elders’ ICT learning, less attention was paid to the help that the elders got from their other family members while learning ICT. This study utilized the anonymous questionnaire to survey 3,749 undergraduates and demonstrated that families are great places for intergenerational technology learning to be carried out. Results from this study confirmed that in the family, the younger generation both helped set up technology products and educated the elder ones needed technology knowledge and skills. The family elder members in this study applied to those who lived under the same roof with relative relations. Results from this study revealed that 2,331 (62.2%) and 2,656 (70.8%) undergraduates revealed that they helped their family elder members set up and taught them how to use LINE respectively. In addition, 1,481 (49.1%) undergraduates helped their family elder members set up, and 2,222 (59.3%) taught them. When it came to Apps, 2,527 (67.4%) helped their family elder members download them, and 2,876 (76.7%) taught how to use them. As for search engine, 2,317 (61.8%) undergraduates taught their family elders. Furthermore, 3,118 (83.2%), 2,639 (70.4%) and 2,004 (53.7%) undergraduates illustrated that they taught their family elder members smartphones, computers and tablets respectively. Meanwhile, only 904 (24.2%) undergraduates taught their family elders how to make a doctor appointment online. This study suggests to making good use of intergenerational technology learning in the family, since it increases family elders’ technology capital, and thus strengthens our country’s human capital and competitiveness.

Keywords: intergenerational technology learning, adult technology learning, family technology learning, ICT learning

Procedia PDF Downloads 235
17854 The Motivating and Demotivating Factors at the Learning of English Center in Thailand

Authors: Bella Llego

Abstract:

This study aims to investigate the motivating and de-motivating factors that affect the learning ability of students attending the English Learning Center in Thailand. The subjects of this research were 20 students from the Hana Semiconductor Co., Limited. The data were collected by using questionnaire and analyzed using the SPSS program for the percentage, mean and standard deviation. The research results show that the main motivating factor in learning English at Hana Semiconductor Co., Ltd. is that it would help the employees to communicate with foreign customers and managers. Other reasons include the need to read and write e-mails, and reports in English, as well as to increase overall general knowledge. The main de-motivating factor is that there is a lot of vocabulary to remember when learning English. Another de-motivating factor is that when homework is given, the students have no time to complete the tasks required of them at the end of the working day.

Keywords: de-motivating, English learning center, motivating, student communicate

Procedia PDF Downloads 225
17853 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.

Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent

Procedia PDF Downloads 178
17852 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study

Authors: S. Rawashdi, D. Bshouty

Abstract:

This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.

Keywords: awakeness, awareness, learning mathematics, pupils

Procedia PDF Downloads 141
17851 Teaching Health in an Online 3D Virtual Learning Environment

Authors: Nik Siti Hanifah Nik Ahmad

Abstract:

This research discuss about teaching cupping therapy or hijama by using an online 3D Virtual Learning Environment. The experimental platform was using of flash and Second Life as 2D and 3D comparison. 81 samples have been used in three experiments with 21 in the first and 30 in each second and third. The design of the presentation was tested in five categories such as effectiveness, ease of use, efficacy, aesthetic and users’ satisfaction. The results from three experiments had shown promising outcome for usage of the technique to be implement in teaching Cupping Therapy as well as other alternative or conventional medicine knowledge especially for training.

Keywords: medical and health, cupping therapy or hijama, second life, online 3D VLE, virtual worlds

Procedia PDF Downloads 423
17850 Student-Created Videos to Foster Active Learning in Heat Transfer Course

Authors: W.Appamana, S. Jantasee, P. Siwarasak, T. Mueansichai, C. Kaewbuddee

Abstract:

Heat transfer is important in chemical engineering field. We have to know how to predict rates of heat transfer in a variety of process situations. Therefore, heat transfer learning is one of the greatest challenges for undergraduate students in chemical engineering. To enhance student learning in classroom, active-learning method was proposed in a single classroom, using problems based on videos and creating video, think-pair-share and jigsaw technique. The result shows that active learning method can prevent copying of the solutions manual for students and improve average examination scores about 5% when comparing with students in traditional section. Overall, this project represents an effective type of class that motivates student-centric learning while enhancing self-motivation, creative thinking and critical analysis among students.

Keywords: active learning, student-created video, self-motivation, creative thinking

Procedia PDF Downloads 235
17849 Intelligent Software Architecture and Automatic Re-Architecting Based on Machine Learning

Authors: Gebremeskel Hagos Gebremedhin, Feng Chong, Heyan Huang

Abstract:

Software system is the combination of architecture and organized components to accomplish a specific function or set of functions. A good software architecture facilitates application system development, promotes achievement of functional requirements, and supports system reconfiguration. We describe three studies demonstrating the utility of our architecture in the subdomain of mobile office robots and identify software engineering principles embodied in the architecture. The main aim of this paper is to analyze prove architecture design and automatic re-architecting using machine learning. Intelligence software architecture and automatic re-architecting process is reorganizing in to more suitable one of the software organizational structure system using the user access dataset for creating relationship among the components of the system. The 3-step approach of data mining was used to analyze effective recovery, transformation and implantation with the use of clustering algorithm. Therefore, automatic re-architecting without changing the source code is possible to solve the software complexity problem and system software reuse.

Keywords: intelligence, software architecture, re-architecting, software reuse, High level design

Procedia PDF Downloads 120
17848 Concept of the Active Flipped Learning in Engineering Mechanics

Authors: Lin Li, Farshad Amini

Abstract:

The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamics

Keywords: active learning, engineering mechanics, flipped classroom, performance

Procedia PDF Downloads 294
17847 Subtitled Based-Approach for Learning Foreign Arabic Language

Authors: Elleuch Imen

Abstract:

In this paper, it propose a new approach for learning Arabic as a foreign language via audio-visual translation, particularly subtitling. The approach consists of developing video sequences appropriate to different levels of learning (from A1 to C2) containing conversations, quizzes, games and others. Each video aims to achieve a specific objective, such as the correct pronunciation of Arabic words, the correct syntactic structuring of Arabic sentences, the recognition of the morphological characteristics of terms and the semantic understanding of statements. The subtitled videos obtained can be incorporated into different Arabic second language learning tools such as Moocs, websites, platforms, etc.

Keywords: arabic foreign language, learning, audio-visuel translation, subtitled videos

Procedia PDF Downloads 61
17846 Towards a Sustainable High Population Density Urban Intertextuality – Program Re-Configuration Integrated Urban Design Study in Hangzhou, China

Authors: Xuan Li, Lei Xu

Abstract:

By the end of 2014, China has an urban population of 749 million, reaching the urbanization rate of 54.77%. Dense and vertical urban structure has become a common choice for China and most of the densely populated Asian countries for sustainable development. This paper focuses on the most conspicuous urban change period in China, from 2000 to 2010, during which China's population shifted the fastest from rural region to cities. On one hand, the 200 million nationwide "new citizen" along with the 456 million "old citizen" explored in the new-century city for new urban lifestyle and livable built environment; On the other hand, however, large-scale rapid urban constructions are confined to the methods of traditional two-dimensional architectural thinking. Human-oriented design and system thinking have been missing in this intricate postmodern urban condition. This phenomenon, especially the gap and spark between the solid, huge urban physical system and the rich, subtle everyday urban life, will be studied in depth: How the 20th-century high-rise residential building "spontaneously" turned into an old but expensive multi-functional high-rise complex in the 21st century city center; how 21st century new/late 20th century old public buildings with the same function integrated their different architectural forms into the new / old city center? Finally the paper studies cases in Hangzhou: 1) Function Evolve–downtown high-rise residential building “International Garden” and “Zhongshan Garden” (1999). 2) Form Compare–Hangzhou Theater (1998) vs Hangzhou Grand Theatre (2004), Hangzhou City Railway Station (1999) vs Hangzhou East Railway Station (2013). The research aims at the exploring the essence of city from the building form dispel and urban program re-configuration approach, gaining a better consideration of human behavior through compact urban design effort for improving urban intertextuality, searching for a sustainable development path in the crucial time of urban population explosion in China.

Keywords: architecture form dispel, compact urban design, urban intertextuality, urban program re-configuration

Procedia PDF Downloads 500
17845 Metacognition Skill on Collaborative Study with Self Evaluation

Authors: Suratno

Abstract:

Metacognition thinking skills should be developed early on in learning. The aim of research builds metacognition thinking skills through collaborative learning with self-evaluation. Approach to action research study involving 32 middle school students in Jember Indonesia. Indicators metacognition skills consist of planning, information management strategies, comprehension monitoring, and debugging strategies. Data were analyzed by t test and analysis of instructional videos. Results of the study here were significant differences in metacognition skills before and after the implementation of collaborative learning with self-evaluation. Analysis instructional video showing the difference artifacts of student learning activities to learning before and after implementation of collaborative learning with self-evaluation. Self-evaluation makes students familiar practice thinking skills metacognition.

Keywords: metacognition, collaborative, evaluation, thinking skills

Procedia PDF Downloads 362
17844 The Role of Industrial Design in Fashion

Authors: Rojean Ghafariasar, Leili Nosrati

Abstract:

The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.

Keywords: fashion, design, industrial design, crossover design

Procedia PDF Downloads 93
17843 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 141
17842 Identifying Physiological Markers That Are Sensitive to Cognitive Load in Preschoolers

Authors: Priyashri Kamlesh Sridhar, Suranga Nanayakkara

Abstract:

Current frameworks in assessment follow lesson delivery and rely heavily on test performance or teacher’s observations. This, however, neglects the underlying cognitive load during the learning process. Identifying the pivotal points when the load occurs helps design effective pedagogies and tools that respond to learners’ cognitive state. There has been limited research on quantifying cognitive load in preschoolers, real-time. In this study, we recorded electrodermal activity and heart rate variability (HRV) from 10 kindergarteners performing executive function tasks and Johnson Woodcock test of cognitive abilities. Preliminary findings suggest that there are indeed sensitive task-dependent markers in skin conductance (number of SCRs and average amplitude of SCRs) and HRV (mean heart rate and low frequency component) captured during the learning process.

Keywords: early childhood, learning, methodologies, pedagogies

Procedia PDF Downloads 320
17841 Implementation of Knowledge and Attitude Management Based on Holistic Approach in Andragogy Learning, as an Effort to Solve the Environmental Problems of Post-Coal Mining Activity

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of the problem after the environmental damage due to coal mining activities defined as the province of East Kalimantan corridor masterplan economic activity accelerated the expansion of Indonesia's economic development (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest postes group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post-coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental Issue

Procedia PDF Downloads 208
17840 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 175
17839 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling

Procedia PDF Downloads 501
17838 Self-Efficacy in Online Vocal Learning: Current Situation, Influencing Factors and Optimization Strategies

Authors: Tianyou Wang

Abstract:

Students' own intrinsic motivation is the main source of energy for learning activities, and their self-efficacy becomes a key factor affecting the learning effect. In today's increasingly common situation of online vocal music teaching, virtualized teaching scenarios have brought a considerable impact on students' personal efficacy. Since personal efficacy is the result of the interaction between environmental factors and subject characteristics, an empirical study was conducted to investigate the changes in students' self-efficacy, influencing factors, and characteristics in online vocal teaching scenarios based on the three dimensions of teachers, students, and technology. One hundred valid questionnaires were studied through a quantitative survey. The results showed that students' personal efficacy was significantly lower in online learning environments compared to offline vocal teaching and showed significant differences due to factors such as gender and class type; students' self-efficacy in online vocal teaching was significantly affected by factors such as technological environment, teaching style, and information technology ability. Based on the results of the study, it is recommended to pay attention to inquiry and practice in the teaching design, use singing projects as the teaching organization, grasp the learning process with the orientation of problem-solving, push the applicable vocal music teaching resources in time, lead students to explore and refine the problems and push students to learn independently according to the goals and plans.

Keywords: vocal pedagogy, self-efficacy, online learning, intrinsic motivation, information technology

Procedia PDF Downloads 58
17837 Organizational Learning Strategies for Building Organizational Resilience

Authors: Stephanie K. Douglas, Gordon R. Haley

Abstract:

Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.

Keywords: human resource development, human resource management, organizational learning, organizational resilience

Procedia PDF Downloads 138
17836 Energy Performance Gaps in Residences: An Analysis of the Variables That Cause Energy Gaps and Their Impact

Authors: Amrutha Kishor

Abstract:

Today, with the rising global warming and depletion of resources every industry is moving toward sustainability and energy efficiency. As part of this movement, it is nowadays obligatory for architects to play their part by creating energy predictions for their designs. But in a lot of cases, these predictions do not reflect the real quantities of energy in newly built buildings when operating. These can be described as ‘Energy Performance Gaps’. This study aims to determine the underlying reasons for these gaps. Seven houses designed by Allan Joyce Architects, UK from 1998 until 2019 were considered for this study. The data from the residents’ energy bills were cross-referenced with the predictions made with the software SefairaPro and from energy reports. Results indicated that the predictions did not match the actual energy usage. An account of how energy was used in these seven houses was made by means of personal interviews. The main factors considered in the study were occupancy patterns, heating systems and usage, lighting profile and usage, and appliances’ profile and usage. The study found that the main reasons for the creation of energy gaps were the discrepancies in occupant usage and patterns of energy consumption that are predicted as opposed to the actual ones. This study is particularly useful for energy-conscious architectural firms to fine-tune the approach to designing houses and analysing their energy performance. As the findings reveal that energy usage in homes varies based on the way residents use the space, it helps deduce the most efficient technological combinations. This information can be used to set guidelines for future policies and regulations related to energy consumption in homes. This study can also be used by the developers of simulation software to understand how architects use their product and drive improvements in its future versions.

Keywords: architectural simulation, energy efficient design, energy performance gaps, environmental design

Procedia PDF Downloads 119
17835 Designing and Evaluating Pedagogic Conversational Agents to Teach Children

Authors: Silvia Tamayo-Moreno, Diana Pérez-Marín

Abstract:

In this paper, the possibility of children studying by using an interactive learning technology called Pedagogic Conversational Agent is presented. The main benefit is that the agent is able to adapt the dialogue to each student and to provide automatic feedback. Moreover, according to Math teachers, in many cases students are unable to solve the problems even knowing the procedure to solve them, because they do not understand what they have to do. The hypothesis is that if students are helped to understand what they have to solve, they will be able to do it. Taken that into account, we have started the development of Dr. Roland, an agent to help students understand Math problems following a User-Centered Design methodology. The use of this methodology is proposed, for the first time, to design pedagogic agents to teach any subject from Secondary down to Pre-Primary education. The reason behind proposing a methodology is that while working on this project, we noticed the lack of literature to design and evaluate agents. To cover this gap, we describe how User-Centered Design can be applied, and which usability techniques can be applied to evaluate the agent.

Keywords: pedagogic conversational agent, human-computer interaction, user-centered design, natural language interface

Procedia PDF Downloads 325
17834 Phenomenology of Contemporary Cities: Abandoned Sites as Waiting Places, Bucharest, a Case Study

Authors: Luigi Pintacuda

Abstract:

What characterize the phenomenology of Bucharest is that all operations of modernization have never been completed, creating a city made up of fragments. Understood this fragmented nature, the traces and fractures, the acceptance of their scars must represent the basis for the design of development for Bucharest. From this insight comes a new analysis of this city: a city of two million inhabitants that does not need a project on an urban scale (as all other major projects for the city have failed), but, starting from the study of all these interstitial spaces of public property, it must find its own strategy, a strategy on a large-scale that reflects on the sites on an architectural one. It is a city composed by fragments, not waste, but places for the project: ‘waiting spaces’ for a possible continuation of the process of genesis of a city which is often incomplete.

Keywords: public spaces, traces fractures, urban design, urban development

Procedia PDF Downloads 253
17833 Unfolding Architectural Assemblages: Mapping Contemporary Spatial Objects' Affective Capacity

Authors: Panagiotis Roupas, Yota Passia

Abstract:

This paper aims at establishing an index of design mechanisms - immanent in spatial objects - based on the affective capacity of their material formations. While spatial objects (design objects, buildings, urban configurations, etc.) are regarded as systems composed of interacting parts, within the premises of assemblage theory, their ability to affect and to be affected has not yet been mapped or sufficiently explored. This ability lies in excess, a latent potentiality they contain, not transcendental but immanent in their pre-subjective aesthetic power. As spatial structures are theorized as assemblages - composed of heterogeneous elements that enter into relations with one another - and since all assemblages are parts of larger assemblages, their components' ability to engage is contingent. We thus seek to unfold the mechanisms inherent in spatial objects that allow to the constituent parts of design assemblages to perpetually enter into new assemblages. To map architectural assemblage's affective ability, spatial objects are analyzed in two axes. The first axis focuses on the relations that the assemblage's material and expressive components develop in order to enter the assemblages. Material components refer to those material elements that an assemblage requires in order to exist, while expressive components includes non-linguistic (sense impressions) as well as linguistic (beliefs). The second axis records the processes known as a-signifying signs or a-signs, which are the triggering mechanisms able to territorialize or deterritorialize, stabilize or destabilize the assemblage and thus allow it to assemble anew. As a-signs cannot be isolated from matter, we point to their resulting effects, which without entering the linguistic level they are expressed in terms of intensity fields: modulations, movements, speeds, rhythms, spasms, etc. They belong to a molecular level where they operate in the pre-subjective world of perceptions, effects, drives, and emotions. A-signs have been introduced as intensities that transform the object beyond meaning, beyond fixed or known cognitive procedures. To that end, from an archive of more than 100 spatial objects by contemporary architects and designers, we have created an effective mechanisms index is created, where each a-sign is now connected with the list of effects it triggers and which thoroughly defines it. And vice versa, the same effect can be triggered by different a-signs, allowing the design object to lie in a perpetual state of becoming. To define spatial objects, A-signs are categorized in terms of their aesthetic power to affect and to be affected on the basis of the general categories of form, structure and surface. Thus, different part's degree of contingency are evaluated and measured and finally, we introduce as material information that is immanent in the spatial object while at the same time they confer no meaning; they only convey some information without semantic content. Through this index, we are able to analyze and direct the final form of the spatial object while at the same time establishing the mechanism to measure its continuous transformation.

Keywords: affective mechanisms index, architectural assemblages, a-signifying signs, cartography, virtual

Procedia PDF Downloads 130
17832 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 272
17831 The Determinants of Senior Students, Behavioral Intention on the Blended E-Learning for the Ceramics Teaching Course at the Active Aging University

Authors: Horng-Jyh Chen, Yi-Fang Chen, Chien-Liang Lin

Abstract:

In this paper, the authors try to investigate the determinants of behavioral intention of the blended e-learning course for senior students at the Active Ageing University in Taiwan. Due to lower proficiency in the use of computers and less experience on learning styles of the blended e-learning course for senior students will be expected quite different from those for most young students. After more than five weeks course for two years the questionnaire survey is executed to collect data for statistical analysis in order to understand the determinants of the behavioral intention for senior students. The object of this study is at one of the Active Ageing University in Taiwan total of 84 senior students in the blended e-learning for the ceramics teaching course. The research results show that only the perceived usefulness of the blended e-learning course has significant positive relationship with the behavioral intention.

Keywords: Active Aging University, blended e-learning, ceramics teaching course, behavioral intention

Procedia PDF Downloads 410
17830 Learner-Centered E-Learning in English Language Classes in Vietnam: Teachers’ Challenges and Recommendations

Authors: Thi Chang Duyen Can

Abstract:

Althoughthe COVID-19 epidemic is under control, online education technology in Vietnam will still thrive in the learner-centered trend. Most of the Vietnamese students are now ready to familiarize themselves with and access to online learning. Even in some cases, online learning, if combined with new tools, is far more effective and exciting for students than some traditional instruction. However, little research has been conducted to explore Vietnamese teachers’ difficulties in moderating learner-centered E-learning. Therefore, the study employed the mixed method (n=9) to (i) uncover the challenges faced by Vietnamese teachers in English language online classes using learner-centred approach and (ii) propose the recommendations to improve the quality of online training in universities.

Keywords: learner-centered e-learning, english language classes, teachers' challenges, online learning

Procedia PDF Downloads 86
17829 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
17828 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model

Authors: Bruno Gontijo Batista

Abstract:

This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.

Keywords: ADHD, edutainment, SAwD, VCIA

Procedia PDF Downloads 192