Search results for: stochastic reward net
541 Comparison of Impulsivity Trait in Males and Females: Exploring the Sex Difference in Impulsivity
Authors: Pinhas Dannon, Aviv Weinstein
Abstract:
Impulsivity is raising major interest clinically because it is associated with various clinical conditions such as delinquency, antisocial behavior, suicide attempts, aggression, and criminal activity. The evolutionary perspective argued that impulsivity relates to self-regulation and it has predicted that female individuals should have evolved a greater ability to inhibit pre-potent responses. There is supportive evidence showing that female individuals have better performance on cognitive tasks measuring impulsivity such as delay in gratification and delayed discounting mainly in childhood. During adolescence, brain imaging studies using diffusion tensor imaging on white matter architecture indicated contrary to the evolutionary perspective hypothesis, that young adolescent male individuals may be less vulnerable than age-matched female individuals to risk- and reward- related maladaptive behaviors. In adults, the results are mixed presumably owing to hormonal effects on neuro-biological mechanisms of reward. Consequently, female individuals were less impulsive than male individuals only during fertile stages of the menstrual cycle. Finally, there is evidence the serotonin (5-HT) system is more involved in the impulsivity of men than in that of women. Overall, there seem to be sex differences in impulsivity but these differences are more pronounced in childhood and they are later subject to maturational and hormonal changes during adolescence and adulthood and their effects on the brain, cognition, and behavior.Keywords: impulse control, male population, female population, gender differences, reward, neurocognitive tests
Procedia PDF Downloads 343540 Regularization of Gene Regulatory Networks Perturbed by White Noise
Authors: Ramazan I. Kadiev, Arcady Ponosov
Abstract:
Mathematical models of gene regulatory networks can in many cases be described by ordinary differential equations with switching nonlinearities, where the initial value problem is ill-posed. Several regularization methods are known in the case of deterministic networks, but the presence of stochastic noise leads to several technical difficulties. In the presentation, it is proposed to apply the methods of the stochastic singular perturbation theory going back to Yu. Kabanov and Yu. Pergamentshchikov. This approach is used to regularize the above ill-posed problem, which, e.g., makes it possible to design stable numerical schemes. Several examples are provided in the presentation, which support the efficiency of the suggested analysis. The method can also be of interest in other fields of biomathematics, where differential equations contain switchings, e.g., in neural field models.Keywords: ill-posed problems, singular perturbation analysis, stochastic differential equations, switching nonlinearities
Procedia PDF Downloads 194539 Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs
Authors: H. M. Soroush
Abstract:
The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models.Keywords: number of late jobs, scheduling, single server, stochastic
Procedia PDF Downloads 497538 Low Cost Inertial Sensors Modeling Using Allan Variance
Authors: A. A. Hussen, I. N. Jleta
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.Keywords: Allan variance, accelerometer, gyroscope, stochastic errors
Procedia PDF Downloads 442537 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes
Authors: Nadarajah I. Ramesh
Abstract:
Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model
Procedia PDF Downloads 278536 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models
Authors: Katja Ignatieva, Patrick Wong
Abstract:
We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo
Procedia PDF Downloads 104535 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach
Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo
Abstract:
Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation
Procedia PDF Downloads 186534 Calibration of Hybrid Model and Arbitrage-Free Implied Volatility Surface
Authors: Kun Huang
Abstract:
This paper investigates whether the combination of local and stochastic volatility models can be calibrated exactly to any arbitrage-free implied volatility surface of European option. The risk neutral Brownian Bridge density is applied for calibration of the leverage function of our Hybrid model. Furthermore, the tails of marginal risk neutral density are generated by Generalized Extreme Value distribution in order to capture the properties of asset returns. The local volatility is generated from the arbitrage-free implied volatility surface using stochastic volatility inspired parameterization.Keywords: arbitrage free implied volatility, calibration, extreme value distribution, hybrid model, local volatility, risk-neutral density, stochastic volatility
Procedia PDF Downloads 267533 A Stochastic Volatility Model for Optimal Market-Making
Authors: Zubier Arfan, Paul Johnson
Abstract:
The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading
Procedia PDF Downloads 150532 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 220531 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 432530 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow
Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng
Abstract:
The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.Keywords: area-based traffic, car-following model, micro-simulation, stochastic modeling
Procedia PDF Downloads 147529 Multi-Period Supply Chain Design under Uncertainty
Authors: Amir Azaron
Abstract:
In this research, a stochastic programming approach is developed for designing supply chains with uncertain parameters. Demands and selling prices of products at markets are considered as the uncertain parameters. The proposed mathematical model will be multi-period two-stage stochastic programming, which takes into account the selection of retailer sites, suppliers, production levels, inventory levels, transportation modes to be used for shipping goods, and shipping quantities among the entities of the supply chain network. The objective function is to maximize the chain’s net present value. In order to maximize the chain’s NPV, the sum of first-stage investment costs on retailers, and the expected second-stage processing, inventory-holding and transportation costs should be kept as low as possible over multiple periods. The effects of supply uncertainty where suppliers are unreliable will also be investigated on the efficiency of the supply chain.Keywords: supply chain management, stochastic programming, multiobjective programming, inventory control
Procedia PDF Downloads 295528 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.Keywords: decentralized, optimal control, output, singular perturb
Procedia PDF Downloads 370527 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates
Authors: Abeer Amayri, Akif A. Bulgak
Abstract:
Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.Keywords: global supply chains, quality, stochastic programming, supplier selection
Procedia PDF Downloads 458526 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 386525 Research on Transverse Ecological Compensation Mechanism in Yangtze River Economic Belt Based on Evolutionary Game Theory
Authors: Tingyu Zhang
Abstract:
The cross-basin ecological compensation mechanism is key to stimulating active participation in ecological protection across the entire basin. This study constructs an evolutionary game model of cross-basin ecological compensation in the Yangtze River Economic Belt (YREB), introducing a central government constraint and incentive mechanism (CGCIM) to explore the conditions for achieving strategies of protection and compensation that meet societal expectations. Furthermore, using a water quality-water quantity model combined with factual data from the YREB in 2020, the amount of ecological compensation is calculated. The results indicate that the stability of the evolutionary game model of the upstream and downstream governments in the YREB is closely related to the CGCIM. When the sum of the central government's reward amount to the upstream government and the penalty amount to both sides simultaneously is greater than 39.948 billion yuan, and the sum of the reward amount to the downstream government and the penalty amount to only the lower reaches is greater than 1.567 billion yuan, or when the sum of the reward amount to the downstream government and the penalty amount to both sides simultaneously is greater than 1.567 billion yuan, and the sum of the reward amount to the upstream government and the penalty amount to only the upstream government is greater than 399.48 billion yuan, the protection and compensation become the only evolutionarily stable strategy for the evolutionary game system composed of the upstream and downstream governments in the YREB. At this point, the total ecological compensation that the downstream government of the YREB should pay to the upstream government is 1.567 billion yuan, with Hunan paying 0.03 billion yuan, Hubei 2.53 billion yuan, Jiangxi 0.18 billion yuan, Anhui 1.68 billion yuan, Zhejiang 0.75 billion yuan, Jiangsu 6.57 billion yuan, and Shanghai 3.93 billion yuan. The research results can provide a reference for promoting the improvement and perfection of the cross-basin ecological compensation system in the YREB.Keywords: ecological compensation, evolutionary game model, central government constraint and incentive mechanism, Yangtze river economic belt
Procedia PDF Downloads 64524 Innovation Knowledge Management for Public Sector in the Thailand
Authors: Supattra Kanchanopast
Abstract:
This article presents the process of change for innovation in the Thai public sector in order to create higher client satisfaction. Change management should concern the potentiality of the change agent or leader, the long-term vision or policy (political side) of the organization, the communication within the organization, suitable organizational culture and structure, preparedness of the personnel, and the fitness of the reward system. Sustaining innovation creation is not sophisticated, as traditionally believed. A basic management principle of identifying clarified and motivating goals needs to be followed by creating support systems after implementation and by ensuring the stakeholders’ benefit, derived from the innovation projects. Finally, creating an amiable atmosphere among the practitioners, including effective evaluation and reward schemes, will support the innovation. However, none of these will ever take place unless support is gained from the leaders of those organizations, and from the staff and clients involved also as well.Keywords: change management, client satisfaction, innovation management, Thai public sector
Procedia PDF Downloads 252523 An Accelerated Stochastic Gradient Method with Momentum
Authors: Liang Liu, Xiaopeng Luo
Abstract:
In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum
Procedia PDF Downloads 162522 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 247521 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable
Authors: Seon Soon Choi
Abstract:
The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable
Procedia PDF Downloads 410520 Sibling Relationship of Adults with Intellectual Disability in China
Authors: Luyin Liang
Abstract:
Although sibling relationship has been viewed as one of the most important family relationships that significantly impacted on the quality of life of both adults with Intellectual Disability (AWID) and their brothers/sisters, very few research have been done to investigate this relationship in China. This study investigated Chinese siblings of AWID’s relational motivations in sibling relationship and their determining factors. Quantitative research method has been adopted and 284 samples were recruited in this study. Siblings of AWID’s two types of relational motivations, including obligatory motivations and discretionary motivations were examined. Their emotional closeness, senses of responsibility, experiences of ID stigma, and expectancy of self-reward in sibling relationship were measured by validated scales. Personal, and familial-social demographic characteristics were also investigated. Linear correlation test and standard multiple regression analysis were the major statistical methods that have been used to analyze the data. The findings of this study showed that all the measured factors, including siblings of AWID’s emotional closeness, their senses of responsibility, experiences of ID stigma, and self-reward expectations had significant relationships with their both types of motivations. However, when these factors were grouped together to measure each type of these motivations, the prediction results were varied. The order of factors that best predict siblings of AWID’s obligatory motivations was: their senses of responsibility, emotional closeness, experiences of ID stigma, and their expectancy of self-reward, whereas the order of these factors that best determine siblings of AWID’s discretionary motivations was: their self-reward expectations, experiences of ID stigma, senses of responsibility, and emotional closeness. Among different demographic characteristics, AWID’s disability condition, their siblings’ age, gender, marital status, number of children, both siblings’ living arrangements and family financial status were found to have significant impacts on siblings of AWID’s both types of motivations in sibling relationship. The results of this study could enhance social work practitioners’ understandings about the needs and challenges of siblings of AWID. Suggestions on advocacies for policy changes and services improvements for these siblings were discussed in this study.Keywords: sibling relationship, intellectual disability, adults, China
Procedia PDF Downloads 409519 Singular Stochastic Control Model with Carrying Capacity of Population Management Policy for Squirrels in Durian Orchards
Authors: Sasiwimol Auepong, Raywat Tanadkithirun
Abstract:
In this work, the problem that squirrels ruin durian, which is an economical fruit in Thailand, is considered. We seek the strategy for the durian farmers to eliminate the squirrels under the consideration that squirrels also provide ecosystem service. The population dynamics of squirrels are constructed to have carrying capacity since we consider the population in a confined area. A performance index indicating the total benefit of a given elimination strategy is provided. It comprises the cost of countermeasures, the loss of resources, and the ecosystem service provided by squirrels. The optimal performance index is numerically solved through the variational inequality using the finite difference method. The optimal strategy to control the squirrel population is also given numerically.Keywords: controlled stochastic differential equation, durian, finite difference method, performance index, singular stochastic control model, squirrel
Procedia PDF Downloads 90518 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines
Authors: S. O. Oyamakin, A. U. Chukwu
Abstract:
Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic
Procedia PDF Downloads 480517 The Effect of Music on Consumer Behavior
Authors: Lara Ann Türeli, Özlem Bozkurt
Abstract:
There is a biochemical component to listening to music. The type of music listened to can lead to different levels of neurotransmitter and biochemical activity within the brain, resulting in brain stimulation and different moods. Therefore, music plays an important role in neuromarketing and consumer behavior. The quality of a commercial can be measured by the effect the music has on its audience. Thus, understanding how music can affect the brain can provide better marketing strategies for all businesses. The type of music used plays an important role in how a person responds to certain experiences. In the context of marketing and consumer behavior, music can determine whether a person will be intrigued to buy something. Depending on the type of music listened to by an individual; the music may trigger the release of pleasurable neurotransmitters such as dopamine. Dopamine is a neurotransmitter that plays an important role in reward pathways in the brain. When an individual experiences a pleasurable activity, increased levels of dopamine are produced, eventually leading to the formation of new reward pathways. Consequently, the increased dopamine activity within the brain triggered by music can result in new reward pathways along the dopamine pathways in the brain. Selecting pleasurable music for commercials can result in long-term brain stimulation, increasing consumerism. The effect of music on consumerism should be considered not only in commercials but also in the atmosphere it creates within stores. The type of music played in a store can affect consumer behavior and intention. Specifically, the rhythm, pitch, and pace of music can contribute to the mood of the song. The background music in a store can determine the consumer’s emotional presence and consequently affect their intentions. In conclusion, understanding the physiological, psychological, and neurochemical basis of the effect of music on brain stimulation is essential to understand consumer behavior. The role of dopamine in the formation of reward pathways as a result of music directly contributes to consumer behavior and the tendency of a commercial or store to leave a long-term effect on the consumer. The careful consideration of the pitch, pace, and rhythm of a song in the selection of music can not only help companies predict the behavior of a consumer but also determine the behavior of a consumer.Keywords: sensory processing, neuropsychology, dopamine, neuromarketing
Procedia PDF Downloads 80516 Modelling Retirement Outcomes: An Australian Case Study
Authors: Colin O’Hare, Zili Zho, Thomas Sneddon
Abstract:
The Australian superannuation system has received high praise for its participation rates and level of funding in retirement yet it is only 25 years old. In recent years, with increasing longevity and persistent lower rates of investment return, how adequate will the funds accumulated through a superannuation system be? In this paper we take Australia as a case study and build a stochastic model of accumulation and decummulation of funds and determine the expected number of years a fund may last an individual in retirement.Keywords: component, mortality, stochastic models, superannuation
Procedia PDF Downloads 245515 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities
Authors: Haowen Xi
Abstract:
We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical timeKeywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations
Procedia PDF Downloads 132514 Two-Phase Sampling for Estimating a Finite Population Total in Presence of Missing Values
Authors: Daniel Fundi Murithi
Abstract:
Missing data is a real bane in many surveys. To overcome the problems caused by missing data, partial deletion, and single imputation methods, among others, have been proposed. However, problems such as discarding usable data and inaccuracy in reproducing known population parameters and standard errors are associated with them. For regression and stochastic imputation, it is assumed that there is a variable with complete cases to be used as a predictor in estimating missing values in the other variable, and the relationship between the two variables is linear, which might not be realistic in practice. In this project, we estimate population total in presence of missing values in two-phase sampling. Instead of regression or stochastic models, non-parametric model based regression model is used in imputing missing values. Empirical study showed that nonparametric model-based regression imputation is better in reproducing variance of population total estimate obtained when there were no missing values compared to mean, median, regression, and stochastic imputation methods. Although regression and stochastic imputation were better than nonparametric model-based imputation in reproducing population total estimates obtained when there were no missing values in one of the sample sizes considered, nonparametric model-based imputation may be used when the relationship between outcome and predictor variables is not linear.Keywords: finite population total, missing data, model-based imputation, two-phase sampling
Procedia PDF Downloads 131513 How Different Perceived Affordances of Game Elements Shape Motivation and Performance in Gamified Learning: A Cognitive Evaluation Theory Perspective
Authors: Kibbeum Na
Abstract:
Previous gamification research has produced mixed results regarding the effectiveness of gamified learning. One possible explanation for this is that individuals perceive the game elements differently. Cognitive Evaluation Theory posits that external rewards can boost or undermine intrinsic motivation, depending on whether the rewards are perceived as informational or controlling. This research tested the hypothesis that game elements can be perceived as either informational feedback or external reward, and the motivational impact differ accordingly. An experiment was conducted using an educational math puzzle to compare the motivation and performance as a result of different perceived affordances game elements. Participants were primed to perceive the game elements as either informational feedback or external reward, and the duration of an attempt to solve the unsolvable puzzle – amotivation indicator – and the puzzle score – a performance indicator–were measured with the game elements incorporated and then without the game elements. Badges and points were deployed as the main game elements. Results showed that, regardless of priming, a significant decrease in performance occurred when the game elements were removed, whereas the control group who solved non-gamified math puzzles maintained their performance. The undermined performance with gamification removal indicates that learners may perceive some game elements as controlling factors irrespective of the way they are presented. The results of the current study also imply that some game elements are better not being implemented to preserve long-term performance. Further research delving into the extrinsic reward-like nature of game elements and its impact on learning motivation is called for.Keywords: cognitive Evaluation Theory, game elements, gamification, motivation, motivational affordance, performance
Procedia PDF Downloads 106512 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard
Procedia PDF Downloads 249