Search results for: regional deposition
2496 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition
Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram
Abstract:
In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.Keywords: charge carrier diffusion lengths, Methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition
Procedia PDF Downloads 4592495 Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition
Authors: Najmul Hasan, Shiping Li, Chunli Liu
Abstract:
The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO.Keywords: surface modification, CO2 reduction, Au deposition, Gas-liquid interfacial plasma
Procedia PDF Downloads 902494 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate
Authors: Renu Kumari, Jyotsna Dutta Majumdar
Abstract:
In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite
Procedia PDF Downloads 3222493 An enhanced Framework for Regional Tourism Sustainable Adaptation to Climate Change
Authors: Joseph M. Njoroge
Abstract:
The need for urgent adaptation have triggered tourism stakeholders and research community to develop generic adaptation framework(s) for national, regional and or local tourism desti-nations. Such frameworks have been proposed to guide the tourism industry in the adaptation process with an aim of reducing tourism industry’s vulnerability and to enhance their ability to cope to climate associated externalities. However research show that current approaches are far from sustainability since the adaptation options sought are usually closely associated with development needs-‘business as usual’-where the implication of adaptation to social justice and environmental integrity are often neglected. Based on this view there is a need to look at adaptation beyond addressing vulnerability and resilience to include the need for adaptation to enhance social justice and environmental integrity. This paper reviews the existing adaptation frameworks/models and evaluates their suitability in enhancing sustainable adaptation for regional tourist destinations. It is noted that existing frameworks contradicts the basic ‘principles of sustainable adaptation’. Further attempts are made to propose a Sustainable Regional Tourism Adaptation Framework (SRTAF) to assist regional tourism stakeholders in the achieving sustainable adaptation.Keywords: sustainable adaptation, sustainability principles, sustainability portfolio, Regional Tourism
Procedia PDF Downloads 3952492 Regional Advantages Analysis: An Interactive Approach of Comparative and Competitive Advantages
Authors: Abdolrasoul Ghasemi, Ali Arabmazar Yazdi, Yasaman Boroumand, Aliasghar Banouei
Abstract:
In regional studies, choosing an appropriate approach to analyze regional success or failure has always been a challenge. Hence, this study introduces an innovative approach to establish a link between regional success and failure in the past as well as the potential success of a region in the future. The former can be sought in the historical evaluation of comparative advantages, while the latter is portrayed as competitive advantage analysis with a forward-looking approach. Based on the interaction of comparative and competitive advantages, activities are classified into four groups, including activities with no advantage, hidden advantage, fragile advantage and synergistic advantage. In analyzing the comparative advantage of activities, the location quotient method is applied, and in analyzing their competitive advantage, Porter`s diamond model using the survey method is applied. According to the results, the share of no advantage, fragile advantage, hidden advantage and synergic advantage activities are respectively 10%, 42%, 16%, and 32%. Also, to achieve economic development in regional activities, our model provides various levels of priority. First, the activities with synergistic advantage should be prioritized, then the ones with hidden advantage, and finally the activities with fragile advantage.Keywords: regional advantage, comparative advantage, competitive advantage, Porter's diamond model
Procedia PDF Downloads 3532491 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering
Authors: Amani Alotaibi
Abstract:
3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization
Procedia PDF Downloads 22490 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements
Authors: Maria Pintea, Nigel Mason
Abstract:
Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging
Procedia PDF Downloads 1092489 Optical Characterization of Lead Sulphide Thin Films Grown by Chemical Bath Deposition
Authors: Ekpekpo Arthur
Abstract:
Thin films can either be conductive or dielectric (non-conductive). It is formed through atom/molecules state or formed after decomposing the materials into atomic/molecular scale by physical or chemical processes. In this study, thin films of Lead Sulphide were deposited on glass substrate prepared from lead acetate and thiourea solution using chemical bath deposition (CBD). The glass slides were subjected to the pretreatment by soaking them in a solution of 50% sulphuric acid and 50% nitric acid. Lead sulphide was deposited at different parameters such as deposition time and temperature. The optical properties of the thin films were determined from spectroscopy measurements of absorbance and reflectance. Optical studies show that the band gap of lead sulphide ranges between 0.41 eV to 300K.Keywords: lead sulphide, spectroscopy, absorbance, reflectance
Procedia PDF Downloads 4312488 Entrepreneurial Ecosystems and Innovation Systems: An Appraisal of Literature
Authors: Jose Carlos Rodriguez, Mario Gomez
Abstract:
In the last years, the concept of entrepreneurial ecosystems has gained popularity. It reveals the importance of a supportive community and adequate economic environment for entrepreneurial activity, and thus the possibility of developing a different perspective on the innovation system. On the other hand, the (regional/technology) innovation system approach lacks in its analyses the presence of an entrepreneur as a key actor that develops innovations. In this regard, this paper examines the foundations of both theoretical approaches (the entrepreneurial ecosystems and the regional/technology systems of innovation) and their contributions to understand entrepreneurial activity at different levels of analyses, namely national, regional or local. The paper makes a literature review on both perspectives of innovation stressing the role played by entrepreneurs in these theoretical approaches. It concludes remarking that the regional/technology innovation systems approach and the entrepreneurial ecosystem approach have established themselves in their own right, but the regional/technology innovation system approach is a predecessor of the entrepreneurial ecosystem approach.Keywords: entrepreneurial ecosystems, innovation systems, entrepreneurial activity, comparative analysis
Procedia PDF Downloads 1842487 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation
Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo
Abstract:
The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment
Procedia PDF Downloads 3222486 Regional Competitiveness and Innovation in the Tourism Sector: A Systematic Review and Bibliometric Analysis
Authors: Sérgio J. Teixeira, João J. Ferreira
Abstract:
Tourism frequently gets identified as one of the sectors with the greatest potential for expansion on a global scale and hence conveying the importance of attempting to better understand the regional factors of competitiveness prevailing in this sector. This study’s objective essentially strives to provide a mapping of the scientific publications and the intellectual knowledge therein contained while conveying past research trends and identifying potential future lines of research in the fields of regional competitiveness and tourism innovation. This correspondingly deploys a systematic review of the literature in keeping with the bibliometric approach based upon VOSviewer software, with a particular focus on drafting maps for visualising the underlying intellectual structure. This type of analysis encapsulates the number of articles published and their annual number of citations for the period between 1900 and 2016 as registered by the Web of Science database. The results demonstrate how the intellectual structure on regional competitiveness divides essentially into three major categories: regional competitiveness, tourism innovation, and tourism clusters. Thus, the main contribution of this study arises out of identifying the main research trends in this field and the respective shortcomings and specific needs for future scientific research in the field of regional competitiveness and innovation in tourism.Keywords: regional competitiveness, tourism cluster, bibliometric studies, tourism innovation, systematic review
Procedia PDF Downloads 2342485 A Regional Innovation System Model Based on the Systems Thinking Approach
Authors: Samara E., Kilintzis P., Katsoras E., Martinidis G.
Abstract:
Regions play an important role in the global economy by driving research and innovation policies through a major tool, the Regional Innovation System (RIS). RIS is a social system that encompasses the systematic interaction of the various organizations that comprise it in order to improve local knowledge and innovation. This article describes the methodological framework for developing and validating a RIS model utilizing system dynamics. This model focuses on the functional structure of the RIS, separating it in six diverse, interacting sub-systems.Keywords: innovations, regional development, systems thinking, social system
Procedia PDF Downloads 732484 Chemical Bath Deposition Technique of CdS Used in Closed Space Sublimation of CdTe Solar Cell
Authors: Z. Mahmood, F. U. Babar, S. Naz, H. U. Rehman
Abstract:
Cadmium Sulphide (CdS) was deposited on a Tec 15 glass substrate with the help of CBD (chemical bath deposition process) and then cadmium telluride CdTe was deposited on CdS with the help of CSS (closed spaced sublimation technique) for the construction of a solar cell. The thicknesses of all the deposited materials were measured with the help of Ellipsometry. The IV graphs were drawn in order to observe the current voltage output. The efficiency of the cell was graphed with the fill factor as well (graphs not given here). The efficiency came out to be approximately 16.5 % and the CIGS (copper-indium–gallium-selenide) maximum efficiency is 20 %. The efficiency of a solar cell can further be enhanced by adapting quality materials, good experimental devices and proper procedures. The grain size was analyzed with the help of scanning electron microscope using RBS (Rutherford backscattering spectroscopy).Keywords: Chemical Bath Deposition Technique (CBD), cadmium sulphide (CdS), CdTe, CSS (Closed Space Sublimation)
Procedia PDF Downloads 3642483 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity
Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois
Abstract:
With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation
Procedia PDF Downloads 3252482 Deposition of Size Segregated Particulate Matter in Human Respiratory Tract and Their Health Effects in Glass City Residents
Authors: Kalpana Rajouriya, Ajay Taneja
Abstract:
Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, COPD, and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM10 (223.73 g/m⁻³), PM5.0 (44.955 g/m⁻³), PM2.5 (59.275 g/m⁻³), PM1.0 (33.02 g/m⁻³), PM0.5 (2.05 g/m⁻³), and PM0.25 (2.99 g/m⁻³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning, while NO2 was highest at the rural sites. The average concentrations of PM10 (6.08 and 2.73 times) PM2.5 exceeded the NAAQS and WHO guidelines. Particulate Matter deposition and health risk assessment was done by MPPD and USEPA model to know about the particulate matter toxicity in industrial residents. Health risk assessment results showed that Children are most likely to be affected by exposure of PM10 and PM2.5 and may have various non-carcinogenic and carcinogenic diseases. Deposition results inferred that the sensitive exposed population, especially 9 years old children, have high PM deposition as well as visualization and may be at risk of developing health-related problems from exposure to size-segregated PM. They will be discussed during presentation.Keywords: particulate matter, black carbon, NO2, deposition of PM, health risk
Procedia PDF Downloads 662481 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique
Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue
Abstract:
Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.Keywords: Atomic Layer Deposition (ALD), tungsten oxide, WO₃, two-dimensional semiconductors, single fundamental layer
Procedia PDF Downloads 2422480 Turkey’s Ideological and Identity Politics towards Iran in the Arab Uprising: The Case of Syrian Civil War
Authors: Cangul Altundas Akcay
Abstract:
With the beginning of the mass movement called as the Arab Uprising, Middle Eastern politics has demonstrated an influential shift which has been threatening the existence of the ruling regimes. In this environment, in particular, regional powers have desired to control regional politics, and to expand their regional influence. Bearing that in mind, Turkey and Iran, two significant regional powers, have engaged in competition so as to affect the shifted regional geopolitics. In this context, this paper aims to investigate how regional powers, especially non-Arab ones, have viewed each other in the Arab Uprising, whereby focusing on Turkish perspectives towards Iran. In other words, it will shed light on how Turkey has conducted foreign policy towards Iran during the Arab Uprising. To analyse this, Turkey’s ideological and identity politics towards Iran will be examined as one of its foreign policy approaches. The question is thus that how ideological and identity politics have determined Turkish foreign policy towards Iran in the Arab Uprising. To answer that, the Syrian civil war will be analysed as the case study in this qualitative study, hypothesising that Turkey, which has both Turkish identity and Sunni sect, has competed with Iran, which has both Farsi identity and Shia sect, over the Syrian civil war.Keywords: Arab uprising, ideological and identity politics, Iran, Turkey, Syrian civil war
Procedia PDF Downloads 3082479 The First Tendency in Foreign Policy: Theories, Motives, and Effects
Authors: Djehich Mohamed Yousri
Abstract:
In this paper, we explore the extent to which states seek to promote regional foreign policy. More specifically, the analytical feasibility is to find out exactly what countries seek to export, and how they have used their relations and foreign policies to enhance cooperation with other countries. The first part discusses the development of regional interests and theoretical approaches that attempted to explain the push for regionalism in the field of foreign policy. The second part of the paper presents the motives and mechanisms through which states spread the idea of regionalism in making foreign policy. Finally, we assess the implications of regionalism for the nature and practice of foreign policy, particularly with regard to the gains or constraints to which various actors are exposed in their regional endeavors. We conclude with some considerations that indicate that strengthening regionalism has become an additional and real program in the field of foreign policy analysis.Keywords: foreign policy, collective foreign policy, regionalization and foreign policy, regional foreign policy, foreign affairs
Procedia PDF Downloads 2462478 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition
Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma
Abstract:
It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth
Procedia PDF Downloads 3482477 Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches
Authors: Sergey M. Karabanov, Dmitry V. Suvorov
Abstract:
Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance.Keywords: contact resistance, electrode coating, electrolytic deposition, magnetically controlled MEMS
Procedia PDF Downloads 1822476 Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films
Authors: Cheng-Ying Li, Sheng-Yuan Chu
Abstract:
This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C.Keywords: RF sputtering, piezoelectricity, ZnO, Mg
Procedia PDF Downloads 412475 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model
Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle
Abstract:
In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model
Procedia PDF Downloads 1032474 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method
Authors: Karuna Tuchinda, Sasithon Bland
Abstract:
This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction
Procedia PDF Downloads 3732473 Characteristics of the Long-Term Regional Tourism Development in Georgia
Authors: Valeri Arghutashvili, Mari Gogochuri
Abstract:
Tourism industry development is one of the key priorities in Georgia, as it has positive influence on economic activities. Its contribution is very important for the different regions, as well as for the national economy. Benefits of the tourism industry include new jobs, service development, and increasing tax revenues, etc. The main aim of this research is to review and analyze the potential of the Georgian tourism industry with its long-term strategy and current challenges. To plan activities in a long-term development, it is required to evaluate several factors on the regional and on the national level. Factors include activities, transportation, services, lodging facilities, infrastructure and institutions. The major research contributions are practical estimates about regional tourism development which plays an important role in the integration process with global markets.Keywords: regional tourism, tourism industry, tourism in Georgia, tourism benefits
Procedia PDF Downloads 8312472 Electrical Properties of CVD-Graphene on SiC
Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault
Abstract:
In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide
Procedia PDF Downloads 6672471 Stream Channel Changes in Balingara River, Sulawesi Tengah
Authors: Muhardiyan Erawan, Zaenal Mutaqin
Abstract:
Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes.Keywords: Brice Index, erosion, deposition, gravel-bed, land cover change, sinuosity ratio, stream channel change
Procedia PDF Downloads 3282470 Key Factors for a Smart City
Authors: Marta Christina Suciu, Cristina Andreea Florea
Abstract:
The purpose of this paper is to highlight the relevance of building smart cities in the context of regional development and to analyze the important factors that make a city smart. These cities could be analyzed through the perspective of environment quality, the socio-cultural condition, technological applications and innovations, the vitality of the economic environment and public policies. Starting with these five sustainability domains, we will demonstrate the hypothesis that smart cities are the engine of the regional development. The aim of this paper is to assess the implications of smart cities, in the context of sustainable development, analyzing the benefits of developing creative and innovative cities. Regarding the methodology, it is used the systemic, logical and comparative analysis of important literature and data, also descriptive statistics and correlation analysis. In conclusion, we will define a direction on the regional development and competitiveness increasing.Keywords: creativity, innovation, regional development, smart city, sustainability, triple helix
Procedia PDF Downloads 4892469 Fabrication of Profile-Coated Rhodium X-Ray Focusing Mirror
Authors: Bing Shi, Raymond A. Conley, Jun Qian, Xianbo Shi, Steve Heald, Lahsen Assoufid
Abstract:
A pair of Kirkpatrick-Baez (KB) mirrors were designed and fabricated for experiments within a hard x-ray energy range lower than 20 kev at beamline 20-ID in a synchrotron radiation facility, Advanced Photon Source (APS). The KB mirrors were deposited with Rhodium thin films using a customized designed and self-built magnetron sputtering system. The purpose of these mirrors is to focus the x-ray beam down to 1 micron. This is the first pair of Rhodium-coated KB mirrors with elliptical shape that was fabricated using the profile coating technique. The profile coating technique is to coat the substrate with designed shape using masks during the deposition. The mirrors were equipped at the beamline and achieved the designed focusing requirement. The details of the mirror design, the fabrication process, and the customized magnetron sputtering deposition system will be discussed.Keywords: magnetron-sputtering deposition, focusing optics, x-ray, rhodium thin film
Procedia PDF Downloads 3742468 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 3692467 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition
Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya
Abstract:
A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films
Procedia PDF Downloads 253