Search results for: nitrification inhibitor and nitrogen use efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7670

Search results for: nitrification inhibitor and nitrogen use efficiency

7610 Quantum Chemical Calculations Synthesis and Corrosion Inhibition Efficiency of Nonionic Surfactants on API X65 Steel Surface under H2s Environment

Authors: E. G. Zaki, M. A. Migahed, A. M. Al-Sabagh, E. A. Khamis

Abstract:

Inhibition effect of four novel nonionic surfactants based on sulphonamide, of linear alkyl benzene sulphonic acid (LABS), was reacted with 1 mole triethylenetetramine, tetraethylenepentamine then Ethoxylation of amide X 65 type carbon steel in oil wells formation water under H2S environment was investigated by electrochemical measurements. Scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) were used to characterize the steel surface. The results showed that these surfactants act as a corrosion inhibitor in and their inhibition efficiencies depend on the ethylene oxide content in the system. The obtained results showed that the percentage inhibition efficiency (η%) was increased by increasing the inhibitor concentration until the critical micelle concentration (CMC) reached The quantum chemistry calculations were carried out to study the molecular geometry and electronic structure of obtained derivatives. The energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital has been calculated using the theoretical computations to reflect the chemical reactivity and kinetic stability of compounds.

Keywords: corrosion, surfactants, steel surface, quantum

Procedia PDF Downloads 361
7609 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 100
7608 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition

Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake

Abstract:

Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.

Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond

Procedia PDF Downloads 297
7607 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 195
7606 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 401
7605 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture

Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main

Abstract:

Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.

Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture

Procedia PDF Downloads 125
7604 Treatment Process of Sludge from Leachate with an Activated Sludge System and Extended Aeration System

Authors: A. Chávez, A. Rodríguez, F. Pinzón

Abstract:

Society is concerned about measures of environmental, economic and social impacts generated in the solid waste disposal. These places of confinement, also known as landfills, are locations where problems of pollution and damage to human health are reduced. They are technically designed and operated, using engineering principles, storing the residue in a small area, compact it to reduce volume and covering them with soil layers. Problems preventing liquid (leachate) and gases produced by the decomposition of organic matter. Despite planning and site selection for disposal, monitoring and control of selected processes, remains the dilemma of the leachate as extreme concentration of pollutants, devastating soil, flora and fauna; aggressive processes requiring priority attention. A biological technology is the activated sludge system, used for tributaries with high pollutant loads. Since transforms biodegradable dissolved and particulate matter into CO2, H2O and sludge; transform suspended and no Settleable solids; change nutrients as nitrogen and phosphorous; and degrades heavy metals. The microorganisms that remove organic matter in the processes are in generally facultative heterotrophic bacteria, forming heterogeneous populations. Is possible to find unicellular fungi, algae, protozoa and rotifers, that process the organic carbon source and oxygen, as well as the nitrogen and phosphorus because are vital for cell synthesis. The mixture of the substrate, in this case sludge leachate, molasses and wastewater is maintained ventilated by mechanical aeration diffusers. Considering as the biological processes work to remove dissolved material (< 45 microns), generating biomass, easily obtained by decantation processes. The design consists of an artificial support and aeration pumps, favoring develop microorganisms (denitrifying) using oxygen (O) with nitrate, resulting in nitrogen (N) in the gas phase. Thus, avoiding negative effects of the presence of ammonia or phosphorus. Overall the activated sludge system includes about 8 hours of hydraulic retention time, which does not prevent the demand for nitrification, which occurs on average in a value of MLSS 3,000 mg/L. The extended aeration works with times greater than 24 hours detention; with ratio of organic load/biomass inventory under 0.1; and average stay time (sludge age) more than 8 days. This project developed a pilot system with sludge leachate from Doña Juana landfill - RSDJ –, located in Bogota, Colombia, where they will be subjected to a process of activated sludge and extended aeration through a sequential Bach reactor - SBR, to be dump in hydric sources, avoiding ecological collapse. The system worked with a dwell time of 8 days, 30 L capacity, mainly by removing values of BOD and COD above 90%, with initial data of 1720 mg/L and 6500 mg/L respectively. Motivating the deliberate nitrification is expected to be possible commercial use diffused aeration systems for sludge leachate from landfills.

Keywords: sludge, landfill, leachate, SBR

Procedia PDF Downloads 264
7603 Field Deployment of Corrosion Inhibitor Developed for Sour Oil and Gas Carbon Steel Pipelines

Authors: Jeremy Moloney

Abstract:

A major oil and gas operator in western Canada producing approximately 50,000 BOE per day of sour fluids was experiencing increased water production along with decreased oil production over several years. The higher water volumes being produced meant an increase in the operator’s incumbent corrosion inhibitor (CI) chemical requirements but with reduced oil production revenues. Thus, a cost-effective corrosion inhibitor solution was sought to deliver enhanced corrosion mitigation of the carbon steel pipeline infrastructure but at reduced chemical injection dose rates. This paper presents the laboratory work conducted on the development of a corrosion inhibitor under the operator’s simulated sour operating conditions and then subsequent field testing of the product. The new CI not only provided extremely good levels of general and localized corrosion inhibition and outperformed the incumbent CI under the laboratory test conditions but did so at vastly lower concentrations. In turn, the novel CI product facilitated field chemical injection rates to be optimized and reduced by 40% compared with the incumbent whilst maintaining superior corrosion protection resulting in significant cost savings and associated sustainability benefits for the operator.

Keywords: carbon steel, sour gas, hydrogen sulphide, localized corrosion, pitting, corrosion inhibitor

Procedia PDF Downloads 76
7602 Effect of Chemical, Organic and Biological Nitrogen on Yield and Yield Components of Soybean Cultivars

Authors: Hamid Hatami

Abstract:

This experiment was included two cultivars i.e. Habbit and L17 (Main factor) with six fertilizer treatments i.e. control, seed inoculated with rhyzobium, base nitrogen + top-dress urea at R2 stage, base nitrogen + seed inoculated with rhyzobium + top-dress nitrogen at R2 stage, seed treated with humax + top-dress humax at R2 stage, base nitrogen + seed treated with humax + top-dress humax at R2 stage (sub factors ), as split-plot on the basis of RCBD with 3 replications at 2014. Treatment fertilizer of base nitrogen + seed treated with humax + top- dress humax at R2 stage and base nitrogen + top-dress urea in R2 stage had a significant superiority than the other fertilizer treatment in biological yield. L17 and Habbit with base nitrogen + seed treated with humax + top-dress humax in R2 stage and yield economical 5600 and 5767 kg/ha respectively, showed the most economical yield and Habbit cultivar with control and economical yield 3085 kg/ha showed the least economical yield among all the treatments. Results showed that fertilizer treatment of base nitrogen + seed treated with humax + top-dress humax in R2 stage and Habbit variety were suitable in this study.

Keywords: soybean, humax, rhyzobium, habbit

Procedia PDF Downloads 446
7601 Interaction of Steel Slag and Zeolite on Ammonium Nitrogen Removal and Its Illumination on a New Carrier Filling Configuration for Constructed Wetlands

Authors: Hongtao Zhu, Dezhi Sun

Abstract:

Nitrogen and phosphorus are essential nutrients for biomass growth. But excessive nitrogen and phosphorus can contribute to accelerated eutrophication of lakes and rivers. Constructed wetland is an efficient and eco-friendly wastewater treatment technology with low operating cost and low-energy consumption. Because of high affinity with ammonium ion, zeolite, as a common substrate, is applied in constructed wetlands worldwide. Another substrate seen commonly for constructed wetlands is steel slag, which has high contents of Ca, Al, or Fe, and possesses a strong affinity with phosphate. Due to the excellent ammonium removal ability of zeolite and phosphate removal ability of steel slag, they were considered to be combined in the substrate bed of a constructed wetland in order to enhance the simultaneous removal efficiencies of nitrogen and phosphorus. In our early tests, zeolite and steel slag were combined with each other in order to simultaneously achieve a high removal efficiency of ammonium-nitrogen and phosphate-phosphorus. However, compared with the results when only zeolite was used, the removal efficiency of ammonia was sharply decreased when zeolite and steel slag were used together. The main objective of this study was to establish an overview of the interaction of steel slag and zeolite on ammonium nitrogen removal. The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second order reaction had a better fitness than pseudo-first order reaction. Changing pH value from 7 to 12 would result in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak at pH7. High Ca2+ concentration in solution could also inhibit the adsorption of ammonium onto zeolite. The mechanism for steel slag inhibiting the ammonium adsorption capacity of zeolite includes: on one hand, OH- released from steel slag can react with ammonium ions to produce molecular form ammonia (NH3∙H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration that zeolite and steel slag are placed sequentially was proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that the novel filling configuration was superior to the other two contrast filling configurations in terms of ammonium removal.

Keywords: ammonium nitrogen, constructed wetlands, steel slag, zeolite

Procedia PDF Downloads 242
7600 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils

Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen

Abstract:

The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.

Keywords: biological nitrogen fixation, inoculation, rhizobium, soybean

Procedia PDF Downloads 166
7599 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption

Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad

Abstract:

Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.

Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly

Procedia PDF Downloads 70
7598 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)

Authors: Mostafa Heidari

Abstract:

Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.

Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen

Procedia PDF Downloads 436
7597 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to ‎an Environmentally Safe Product: Corrosion Inhibitor and Biocide

Authors: Mohamed A. Hegazy

Abstract:

Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in ‎aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.

Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB

Procedia PDF Downloads 119
7596 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution

Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti

Abstract:

Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.

Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation

Procedia PDF Downloads 512
7595 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells

Authors: Neha Singh

Abstract:

Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.

Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell

Procedia PDF Downloads 97
7594 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO

Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho

Abstract:

SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.

Keywords: water treatment, water thermal energy, energy saving, RO, SBR

Procedia PDF Downloads 511
7593 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 253
7592 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 334
7591 Influence of Nitrogen Fertilization on the Yields and Grain Quality of Winter Wheat under Different Environmental Conditions

Authors: Alicja Sułek, Grażyna Cacak-Pietrzak, Marta Wyzińska, Anna Nieróbca

Abstract:

In 2013/2014 and 2014/2015, a field experiment was conducted in two locations: Osiny and Wielichowo (Poland). The two-factor experiment was based on the method of randomized subblocks, in three replications. The first factor (A) was dose of nitrogen fertilization (two levels). The second factor (B) was nine winter wheat cultivars. It was found that winter wheat cultivars exhibited different reactions to higher nitrogen fertilization depending on the years and localities. Only KWS Dacanto cultivar under all growing conditions showed a significant increase in grain yield after the application of a higher level of nitrogen fertilization. The increase in nitrogen fertilization influenced the increase in gluten proteins content in wheat grain, but these changes were statistically significant only in the first year of the study. The quality of gluten does not depend on nitrogen fertilization. The quality of wheat grain depends on cultivars.

Keywords: fertilization, grain quality, winter wheat, yield

Procedia PDF Downloads 195
7590 How Much the Role of Fertilizers Management and Wheat Planting Methods on Its Yield Improvement?

Authors: Ebrahim Izadi-Darbandi, Masoud Azad, Masumeh Dehghan

Abstract:

In order to study the effects of nitrogen and phosphoruse management and wheat sowing method on wheat yield, two experiments was performed as factorial, based on completely randomized design with three replications at Research Farm, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran in 2009. In the first experiment nitrogen application rates (100kg ha-1, 200 kg ha-1, 300 kg ha-1), phosphorus application rates (100 kg ha-1, 200 kg ha-1) and two levels of their application methods (Broadcast and Band) were studied. The second experiment treatments included of wheat sowing methods (single-row with 30 cm distance and twine row on 60 cm width ridges), as main plots and nitrogen and phosphorus application methods (Broadcast and Band) as sub plots (150 kg ha-1). Phosphorus and nitrogen sources for fertilization at both experiment were respectively super phosphate, applied before wheat sowing and incorporated with soil and urea, applied in two phases (50% pre plant) and (50%) near wheat shooting. Results from first experiment showed that the effect of fertilizers application methods were significant (p≤0.01) on wheat yield increasing. Band application of phosphorus and nitrogen were increased biomass and seed yield of wheat with nine and 15% respectively compared to their broadcast application. The interaction between the effects of nitrogen and phosphorus application rate with phosphorus and nitrogen application methods, showed that band application of fertilizers and the rate of application of 200kg/ha phosphorus and 300kg/ha nitrogen were the best methods in wheat yield improvement. The second experiment also showed that the effect of wheat sowing method and fertilizers application methods were significant (p≤0.01) on wheat seed and biomass yield improvement. Wheat twine row on 60 cm width ridges sowing method, increased its biomass and seed yield for 22% and 30% respectively compared to single-row with 30 cm. Wheat sowing method and fertilizers application methods interaction indicated that band application of fertilizers and wheat twine row on 60 cm width ridges sowing method was the best treatment on winter wheat yield improvement. In conclusion these results indicated that nitrogen and phosphorus management in wheat and modifying wheat sowing method have important role in increasing fertilizers use efficiency.

Keywords: band application, broadcast application, rate of fertilizer application, wheat seed yield, wheat biomass yield

Procedia PDF Downloads 454
7589 Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor

Authors: Małgorzata Drzewiecka, Tomasz Śliwiński, Maciej Radek

Abstract:

The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.

Keywords: melanoma, hdac, parp inhibitor, valproic acid

Procedia PDF Downloads 73
7588 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 349
7587 The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study

Authors: Fatimah Al-Hayazi, Ehteram. A. Noor, Aisha H. Moubaraki

Abstract:

The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained.

Keywords: corrosion, inhibition of steel, hydrochloric acid, thermodynamic study

Procedia PDF Downloads 93
7586 An Evaluation of Solubility of Wax and Asphaltene in Crude Oil for Improved Flow Properties Using a Copolymer Solubilized in Organic Solvent with an Aromatic Hydrocarbon

Authors: S. M. Anisuzzaman, Sariah Abang, Awang Bono, D. Krishnaiah, N. M. Ismail, G. B. Sandrison

Abstract:

Wax and asphaltene are high molecular weighted compounds that contribute to the stability of crude oil at a dispersed state. Transportation of crude oil along pipelines from the oil rig to the refineries causes fluctuation of temperature which will lead to the coagulation of wax and flocculation of asphaltenes. This paper focuses on the prevention of wax and asphaltene precipitate deposition on the inner surface of the pipelines by using a wax inhibitor and an asphaltene dispersant. The novelty of this prevention method is the combination of three substances; a wax inhibitor dissolved in a wax inhibitor solvent and an asphaltene solvent, namely, ethylene-vinyl acetate (EVA) copolymer dissolved in methylcyclohexane (MCH) and toluene (TOL) to inhibit the precipitation and deposition of wax and asphaltene. The objective of this paper was to optimize the percentage composition of each component in this inhibitor which can maximize the viscosity reduction of crude oil. The optimization was divided into two stages which are the laboratory experimental stage in which the viscosity of crude oil samples containing inhibitor of different component compositions is tested at decreasing temperatures and the data optimization stage using response surface methodology (RSM) to design an optimizing model. The results of experiment proved that the combination of 50% EVA + 25% MCH + 25% TOL gave a maximum viscosity reduction of 67% while the RSM model proved that the combination of 57% EVA + 20.5% MCH + 22.5% TOL gave a maximum viscosity reduction of up to 61%.

Keywords: asphaltene, ethylene-vinyl acetate, methylcyclohexane, toluene, wax

Procedia PDF Downloads 411
7585 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 353
7584 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 65
7583 Evaluation of Calendula officinalis L. Flower Dry Weight, Flower Diameter, and Number of Flower in Plant Variabilities under Effect of Compost and Nitrogen Different Levels in Four Harvest

Authors: Amin Rezazadeh, Parisa Farahpour, Arezoo Rezazadeh, Morteza Sam Deliri

Abstract:

In order to investigate the effects of nitrogen and compost different levels on qualitative and quantitative performance of Calendula officinalis L. herb, an experiment was carried out in the research field of Chalous Azad University in 2011-2012. The experiment was done in factorial form as a randomized complete block design, in three replicates. Treatments consisted of nitrogen and compost. Considered nitrogen levels consisted of N0=0, N1=50, N2=100 kg/ha and compost levels were including C0=0, C1=6, C2=12 ton/ha. Investigated characteristics consisted of flower dry weight, number of flowers in plant, flower diameter. The results showed, nitrogen and compost treatments had statistically significant influence (p ≤ 0.01) on studied characteristics. Flower dry weight, flower diameter and number of flower in plant characteristics has been studied in four harvest; as, the performance of these characteristics had increasing procedure from the first harvest up to the forth harvest; and, in the fourth harvest, it has reached to its` maximum level. As, up to the forth harvest, the maximum flower dry weight, flower diameter and number of flower in plant obtained by C1× N2 (C1=6 ton/ha compost and N2=100 kg/ha nitrogen) treatment.

Keywords: calendula, compost, nitrogen, flavonoid

Procedia PDF Downloads 380
7582 Degradation of EE2 by Different Consortium of Enriched Nitrifying Activated Sludge

Authors: Pantip Kayee

Abstract:

17α-ethinylestradiol (EE2) is a recalcitrant micropollutant which is found in small amounts in municipal wastewater. But these small amounts still adversely affect for the reproductive function of aquatic organisms. Evidence in the past suggested that full-scale WWTPs equipped with nitrification process enhanced the removal of EE2 in the municipal wastewater. EE2 has been proven to be able to be transformed by ammonia oxidizing bacteria (AOB) via co-metabolism. This research aims to clarify the EE2 degradation pattern by different consortium of ammonia oxidizing microorganism (AOM) including AOA (ammonia oxidizing archaea) and investigate contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM. The result showed that AOA or AOB of N. oligotropha cluster in enriched nitrifying activated sludge (NAS) from 2mM and 5mM, commonly found in municipal WWTPs, could degrade EE2 in wastewater via co-metabolism. Moreover, the investigation of the contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM demonstrated that the new synthesized AMO enzyme may perform ammonia oxidation rather than the existing AMO enzyme or the existing AMO enzyme may has a small amount to oxidize ammonia.

Keywords: 17α-ethinylestradiol, nitrification, ammonia oxidizing bacteria, ammonia oxidizing archaea

Procedia PDF Downloads 283
7581 Comparison of Nitrogen Dioxide Pollution for Different Commuting Modes in Kaunas

Authors: A. Dėdelė, A. Miškinytė

Abstract:

The assessment of air pollution exposure in different microenvironments is important for better understanding the relationship between health effects caused by air pollution. The recent researches revealed that the level of air pollution in transport microenvironment contributes considerably to the total exposure of air pollution. The aim of the study was to determine air pollution of nitrogen dioxide and to assess the exposure of NO2 dependence on the chosen commuting mode using a global positioning system (GPS). The same travel destination was chosen and 30 rides in three different commuting modes: cycling, walking, and public transport were made. Every different mean of transport is associated with different route. GPS device and travel diary data were used to track all routes of different commuting modes. Air pollution of nitrogen dioxide was determined using the ADMS-Urban dispersion model. The average annual concentration of nitrogen dioxide was modeled for 2011 year in Kaunas city. The geographical information systems were used to visualize the travel routes, to create maps indicating the route of different commuting modes and to combine modelled nitrogen dioxide data. The results showed that there is a significant difference between the selected commuting mode and the exposure of nitrogen dioxide. The concentrations in the microenvironments were 22.4 μg/m3, 21.4 μg/m3, and 25.9 μg/m3 for cycling, walking and public transport respectively. Of all the modes of commuting, the highest average exposure of nitrogen dioxide was found travelling by public transport, while the lowest average concentration of NO2 was determined by walking.

Keywords: nitrogen dioxide, dispersion model, commuting mode, GPS

Procedia PDF Downloads 429