Search results for: nickel selenide hybrids
505 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: current density, duty cycle, microstructure, nickel, pulse frequency
Procedia PDF Downloads 369504 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam
Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani
Abstract:
Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology
Procedia PDF Downloads 85503 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes
Authors: Negin Bayat, Nahid HasanZadeh
Abstract:
Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment
Procedia PDF Downloads 19502 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources
Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani
Abstract:
Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel
Procedia PDF Downloads 358501 Examination of the Water and Nutrient Utilization of Maize Hybrids on Chernozem Soil
Authors: L. G. Karancsi
Abstract:
The research was set up on chernozem soil at the Látókép AGTC MÉK research area of the University of Debrecen in Hungary. We examined the yield, the yield production per 1kg NPK fertilizer and the water and nutrient utilization of hybrid PR37N01 and PR37M81 in 2013. We found that PR37N01 produced the most yield at the level of N120+P (17,476kg ha-1) while PR37M81 reached the highest yield at level N150+PK (16,754kg ha-1). Studies related to yield production per 1kg NPK indicated that the best results were achieved at level N30+PK compared to the control treatment. Yield production per 1kg NPK was17.6kg kg-1 by P37N01 and 44.2kg kg-1 by PR37M81. By comparing the water utilization of hybrids we found that the worst water utilization results were reached in the control treatment (PR37N01: 26.2kg mm-1, PR37M81: 19.5kg mm-1). The best water utilization values were produced at level N120+PK in the case of hybrid PR37N01 (32.1kg mm-1) and at N150+PK in the case of hybrid PR37M81 (30.8kg mm-1). We established the values of the nutrient reaction and the fertilizer optimum of hybrids. We discovered a strong relationship between the amount of fertilizer applied and the yield produced (r2= 0.8228–0.9515). The best nutrient response was induced by hybrid PR37N01, while the weakest results were reached by hybrid PR37M81.Keywords: hybrid, maize, nutrient, yield, water utilization
Procedia PDF Downloads 413500 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden
Authors: Suchhanda Ghosh, A. K. Paul
Abstract:
Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden
Procedia PDF Downloads 191499 Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane
Authors: Ali Zazi, Ouiza Cherifi
Abstract:
The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ .Keywords: cerium, cobalt, heterogeneous catalysis, hydrogen, methane, steam reforming, synthesis gas
Procedia PDF Downloads 192498 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide
Procedia PDF Downloads 308497 Use of Simultaneous Electron Backscatter Diffraction and Energy Dispersive X-Ray Spectroscopy Techniques to Characterize High-Temperature Oxides Formed on Nickel-Based Superalloys Exposed to Super-Critical Water Environment
Authors: Mohsen Sanayei, Jerzy Szpunar, Sami Penttilä
Abstract:
Exposure of Nickel-based superalloys to high temperature and harsh environment such as Super-Critical Water (SCW) environment leads to the formation of oxide scales composed of multiple and complex phases that are difficult to differentiate with conventional analysis techniques. In this study, we used simultaneous Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray Spectroscopy (EDS) to analyze the complex oxide scales formed on several Nickel-based Superalloys exposed to high temperature SCW. Multi-layered structures of Iron, Nickel, Chromium and Molybdenum oxides and spinels were clearly identified using the simultaneous EBSD-EDS analysis technique. Furthermore, the orientation relationship between the oxide scales and the substrate has been investigated.Keywords: electron backscatter diffraction, energy dispersive x-ray spectroscopy, superalloy, super-critical water
Procedia PDF Downloads 316496 Influence of Nitrogen Doping on the Catalytic Activity of Ni-Incorporated Carbon Nanofibers for Alkaline Direct Methanol Fuel Cells
Authors: Mohamed H. El-Newehy, Badr M. Thamer, Nasser A. M. Barakat, Mohammad A.Abdelkareem, Salem S. Al-Deyab, Hak Y. Kim
Abstract:
In this study, the influence of nitrogen doping on the electrocatalytic activity of carbon nanofibers with nickel nanoparticles toward methanol oxidation is introduced. The modified carbon nanofibers have been synthesized from calcination of electrospun nanofiber mats composed of nickel acetate tetrahydrate, poly(vinyl alcohol) and urea in argon atmosphere at 750oC. The utilized physicochemical characterizations indicated that the proposed strategy leads to form carbon nanofibers having nickel nanoparticles and doped by nitrogen. Moreover, due to the high-applied voltage during the electrospinning process, the utilized urea chemically bonds with the polymer matrix, which leads to form nitrogen-doped CNFs after the calcination process. Investigation of the electrocatalytic activity indicated that nitrogen doping NiCNFs strongly enhances the oxidation process of methanol as the current density increases from 52.5 to 198.5 mA/cm2 when the urea content in the original electrospun solution was 4 wt% urea. Moreover, the nanofibrous morphology exhibits distinct impact on the electrocatalytic activity. Also, nitrogen-doping enhanced the stability of the introduced Ni-based electrocatalyst. Overall, the present study introduces effective and simple strategy to modify the electrocatalytic activity of the nickel-based materials.Keywords: electrospinning, methanol electrooxidation, fuel cells, nitrogen-doping, nickel
Procedia PDF Downloads 435495 Development of High Temperature Mo-Si-B Based In-situ Composites
Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz
Abstract:
The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.Keywords: molybdenum, composites, in-situ, mmc
Procedia PDF Downloads 66494 Removal of Nickel and Zinc Ions from Aqueous Solution by Graphene Oxide and Graphene Oxide Functionalized Glycine
Abstract:
In this study, removal of Nickel and Zinc by graphene oxide and functionalized graphene oxide–gelaycin surfaces was examined. Amino group was added to surface of graphene oxide to produced functionalized graphene oxide–gelaycin. Effect of contact time and initial concentration of Ni (II) and Zn(II) ions were studied. Results showed that with increase of initial concentration of Ni (II) and Zn(II) adsorption capacity was increased. After 50 min has not a large change at adsorption capacity therefore, 50 min was selected as optimaze time. Scanning electron microscope (SEM) and fourier transform infrared (FT-IR) spectroscopy spectra used for the analysis confirmed the successful fictionalization of the Graphene oxide surface. Adsorption experiments of Ni (II) and Zn(II) ions graphene oxide and functionalized graphene oxide–gelaycin surfaces fixed at 298 K and pH=6. The Pseudo Firs-order and the Pseudo Second-order (types I, II, III and IV) kinetic models were tested for adsorption process and results showed that the kinetic parameters best fits with to type (I) of pseudo-second-order model because presented low X2 values and also high R2 values.Keywords: graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic, graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic
Procedia PDF Downloads 307493 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials
Authors: I. Kerti, G. Sezen, S. Daglilar
Abstract:
This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide
Procedia PDF Downloads 348492 Biological Applications of CNT Inherited Polyaniline Nano-Composites
Authors: Yashfeen Khan, Anees Ahmad
Abstract:
In the last few decades, nano-composites have been the topic of interest. Presently, the modern era enlightens the synthesis of hybrid nano-composites over their individual counterparts because of higher application potentials and synergism. Recently, CNT hybrids have demonstrated their pronounced capability as effective sorbents for the removal of heavy metal ions (the root trouble) and organic contaminants due to their high specific surface area, enhanced reactivity, and sequestration characteristics. The present abstract discusses removal efficiencies of organic, inorganic pollutants through CNT/PANI/ composites. It also represents the widespread applications of CNT like monitoring biological systems, biosensors, as heat resources for treating cancer, fire retardant applications of polymer/CNT composites etc. And considering the same, this article aims to brief the scenario of CNT-PANI nano-composites.Keywords: biosensors, CNT, hybrids, polyaniline, synergism
Procedia PDF Downloads 377491 Hydrometallurgical Recovery of Cobalt, Nickel, Lithium, and Manganese from Spent Lithium-Ion Batteries
Authors: E. K. Hardwick, L. B. Siwela, J. G. Falconer, M. E. Mathibela, W. Rolfe
Abstract:
Lithium-ion battery (LiB) demand has increased with the advancement in technologies. The applications include electric vehicles, cell phones, laptops, and many more devices. Typical components of the cathodes include lithium, cobalt, nickel, and manganese. Recycling the spent LiBs is necessary to reduce the ecological footprint of their production and use and to have a secondary source of valuable metals. A hydrometallurgical method was investigated for the recovery of cobalt and nickel from LiB cathodes. The cathodes were leached using a chloride solution. Ion exchange was then used to recover the chloro-complexes of the metals. The aim of the research was to determine the efficiency of a chloride leach, as well as ion exchange operating capacities that can be achieved for LiB recycling, and to establish the optimal operating conditions (ideal pH, temperature, leachate and eluant, flowrate, and reagent concentrations) for the recovery of the cathode metals. It was found that the leaching of the cathodes could be hindered by the formation of refractory metal oxides of cathode components. A reducing agent was necessary to improve the leaching rate and efficiency. Leaching was achieved using various chloride-containing solutions. The chloro-complexes were absorbed by the ion exchange resin and eluted to produce concentrated cobalt, nickel, lithium, and manganese streams. Chromatographic separation of these elements was achieved. Further work is currently underway to determine the optimal operating conditions for the recovery by ion exchange.Keywords: cobalt, ion exchange, leachate formation, lithium-ion batteries, manganese, nickel
Procedia PDF Downloads 98490 Effects of Nickel and Inoculation with Three Isolates of Ectomycorrhizal Fungus Pisolithus on Eucalyptus urophylla S. T. Blake Seedlings
Authors: N. S. Aggangan, B. Dell, P. Jeffries
Abstract:
Two moderately nickel-tolerant isolates of Pisolithus were compared with a non-Ni tolerant isolate for the ability to increase the growth of Eucalyptus urophylla seedlings in the presence of nickel (Ni) in pots in a glasshouse. Seedlings, either inoculated with mycorrhizal fungi or uninoculated, were transplanted into pots containing 3 kg steam-pasteurized yellow sand amended with five concentrations of nickel (0, 6, 12, 24 and 48 mg Ni kg-1 soil). Within a day after transplanting, all seedlings subjected to Ni rates greater than 12 mg Ni kg-1 showed symptoms of wilting and all died within two weeks. At lower nickel concentrations, inoculation with all 3 Pisolithus strains increased rates of seedling survival after 12 weeks. Inoculation with all 3 isolates Pisolithus significantly increased the growth of plants in Ni-free soils between 2 to 4 fold dependent on isolate. However, seedlings growing in soils containing 12 mg Ni kg-1 grew poorly, mycorrhizal development was inhibited and no beneficial effects of inoculation were noted. In contrast, in soils containing 6mg Ni kg-1, inoculated seedlings did not show the reduced root growth and severe toxicity symptoms (chlorosis on young leaves and shoot tips) of uninoculated seedlings. Only the Ni-tolerant Pisolithus strains conferred a significant growth benefit compared to non-inoculated controls, and plants inoculated with one of these strains grew twice the size as those inoculated with the other Ni-tolerant strain. Inorganic plant analysis revealed that inoculation increased plant growth through improved P uptake but did not prevent Ni uptake. However, toxicity may have been minimized by dilution due to an increase in plant biomass. The results suggest that only one of the Ni-tolerant strains of Pisolithus has the potential to improve the growth and survival of E. urophylla seedlings in serpentine soils in the Philippines.Keywords: ectomycorrhizas, Eucalyptus urophylla, nickel tolerance, pisolithus
Procedia PDF Downloads 302489 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6
Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett
Abstract:
We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable
Procedia PDF Downloads 236488 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water
Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri
Abstract:
This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)
Procedia PDF Downloads 459487 Effects of Foliar Application of Glycine Betaine under Nickel Toxicity of Oat (Avena Sativa L.)
Authors: Khizar Hayat Bhatti, Fiza Javed, Misbah Zafar
Abstract:
Oat (Avena sativa L.) is a major cereal plant belonging to the family Poaceae. It is a very important source of carbohydrates, starch, minerals, vitamins and proteins that are beneficial for general health. Plants grow in the heavy metals contaminated soils that results in decline in growth. Glycine betaine application may improve plant growth, survival and resistance to metabolic disturbances due to stresses. Heavy metals, like nickels, have been accumulated for a long time in the soil because of industrial waste and sewage. The experiment was intended to alleviate the detrimental effects of heavy metal nickel stress on two oat varieties ‘Sgd-2011 and Hay’ using Glycine betain. Nickel was induced through soil application while GB was applied as foliar spray. After 10 days of nickel treatment, an exogenous spray of glycine betaine on the intact plant leaves. Data analysis was carried out using a Completely Randomized Design (CRD) with three replications in this study. For the analysis of all the data of the current research, Mini-Tab 19 software was used to compare the mean value of all treatments and Microsoft Excel software for generating the bars graphs. Significant accelerated plant growth was recorded when Ni exposed plants were treated with GB. Based on data findings, 3mM GB caused significant recovery from Ni stress doses. Overall results also demonstrated that the sgd-2011 variety of oats had the greatest outcomes for all parameters.Keywords: CRD, foliar spray method, glycine betaine, heavy metals, nickel, ROS
Procedia PDF Downloads 6486 Identification of Synthetic Hybrids of 4-Thiazolidinone-Bromopyrrole Alkaloid as HIV-1 RT Inhibitors
Authors: Rajesh A. Rane, Shital S. Naphade, Rajshekhar Karpoormath
Abstract:
Thiozolidin-4-one, a mimic of thiazolobenzimidazole (TBZ) has drawn many attentions due to its potent and selective inhibition against the HIV-1 and low toxicity by binding to the allosteric site of the reverse transcriptase (RT) as a non-nucleoside RT inhibitor (NNRTI). Similarly, marine bromopyrrole alkaloids are well known for their diverse array of anti-infective properties. Hence, we have reported synthesis and in vitro HIV-1 RT inhibitory activity of a series of 4-thiazolidinone-bromopyrrole alkaloid hybrids tethered with amide linker. The results of in vitro HIV-1 RT kit assay showed that some of the compounds, such as 4c, 4d, and 4i could effectively inhibit RT activity. Among them, compounds 4c having 4-chlorophenyl substituted 4-thiazolidione ring was the best one with the IC50 value of 0.26 µM. The sturdy emerges with key structure-activity relationship that pyrrole-NH-free core benefited inhibition against HIV-1 RT inhibition. This study identified conjugate 4c with potent activity and selectivity as promising compound for further drug development to HIV.Keywords: antiviral drugs, bromopyrrole alkaloids, HIV-1 RT inhibition, 4-thiazolidinone
Procedia PDF Downloads 459485 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide
Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu
Abstract:
This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide
Procedia PDF Downloads 237484 Correlation between the Sowing Date and Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and Photosynthesis
Authors: Enikő Bene
Abstract:
Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Agricultural Center of University of Debrecen, in 2012-2014. The thesis contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences leaf area index and activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying effects of each other, develop average yieldsKeywords: sowing date, hybrid, leaf area index, photosynthetic capacity
Procedia PDF Downloads 334483 Nickel Substituted Cobalt Ferrites via Ceramic Rout Approach: Exploration of Structural, Optical, Dielectric and Electrochemical Behavior for Pseudo-Capacitors
Authors: Talat Zeeshan
Abstract:
Nickel doped cobalt ferrites 〖(Co〗_(1-x) Ni_x Fe_2 O_4) has been synthesized with the variation of Ni dopant (x=0.0, 0.25, 0.50, 0.75) by ball milling route at 150 RPM for 3hrs. The impact of nickel on Co ferrites has been investigated by using various approaches of characterization such as XRD (X-Ray diffraction), SEM (Scanning electron microscopy, FTIR (Fourier transform infrared spectroscopy), UV-Vis spectroscopy, LCR meter and CV (Cyclic voltammetry). The cubic structure of the nanoparticles confirmed by the XRD data, the increase in Ni dopant reduces the crystallite size. FTIR spectroscopy has been employed in order to analyze various functional groups. The agglomerated morphology of the particles has been observed by SEM images.. UV-Vis analysis reveals that the optical energy bandgap progressively rises with nickel doping, from 1.50 eV to 2.02 eV. The frequency range of 20 Hz to 20 MHz has been used for dielectric evaluation, where dielectric parameters such as AC conductivity, tan loss, and dielectric constant are examined. When the frequency of the applied AC field rises the AC conductivity increases, while the dielectric constant and tan loss constantly decrease. The pseudocapacitive behavior revealed by the CV curve showed that at high scan rates, specific capacitance values (Cs) are low, whereas at low scan rates, they are high. At the low scan rate of 10 mVs-1, the maximum specific capacitance of 244.4 Fg-1 has been attained at x = 0.75. Nickel doped cobalt ferrites electrodes have incredible electrochemical characteristics that make them a promising option for pseudo capacitor applications.Keywords: lattice parameters, crystallite size, pseudo capacitor, band gap: magnetic material, energy band gap
Procedia PDF Downloads 17482 Investigation Of The Catalyst's Effect On Nickel Sulfide Thin Films
Authors: Randa Slatnia
Abstract:
In this study, the nanostructured stable phase identification elaborated by nickel nitrate hyxahydrate and thiourea compounds. After the preparation of the solution (Stirred mixture with methanol as solvent), a deposition of eight layers of this solution on a glass substrate and annealed at 300 °C for energy applications. The annealed sample was analyzed by X-ray Grazing incidence diffraction (GID) with a Bruker D8 Advance diffractometer using Cu Kα1 radiation at 40 kV and 40 mA (1600 W) and Scanning electron microscopy (Thermo Fisher environmental SEM). The results of XRD-GID analysis for the prepared sample showed the formation of an identified stable phase NiS2 and the XRD-GID pattern of the elaborated sample with eight layers prepared solution and annealed show wide and characteristic peaks of the NiS2 with cubic structure (ICDD card no. PDF 01-078-4702). The morphology of the NiS2 thin films confirmed by XRD-GID analysis was investigated by ESEM showed a surface with a uniform and homogeneous distribution nanostructure.Keywords: nickel sulfide, thin films, XRD, ESEM
Procedia PDF Downloads 83481 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 407480 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 499479 Study of the Morphological and Optical Properties of Nanometric NiO
Authors: Nassima Hamzaoui, Mostefa Ghamnia
Abstract:
Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.Keywords: films, NiO, AFM, X-ray diffraction
Procedia PDF Downloads 60478 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys
Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso
Abstract:
Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys
Procedia PDF Downloads 132477 The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys
Authors: Evgeniya Popova, Vladimir Lesnikov, Nikolay Popov
Abstract:
High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied.Keywords: single crystal nickel alloys, complex heat-resistant coatings, structure, phase composition, properties
Procedia PDF Downloads 418476 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation
Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour
Abstract:
In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38⸗ N, 42°52´02⸗ E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).Keywords: deficit irrigation, growth, sorghum-sudangrass hybrid, yield
Procedia PDF Downloads 138