Search results for: gait analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27897

Search results for: gait analysis

27837 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez

Abstract:

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

Keywords: hard disk drive, energy harvesting, voice coil motor, energy harvester, gait motions

Procedia PDF Downloads 349
27836 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany

Authors: Knol Hester, Müller Swantje, Danchenko Natalya

Abstract:

Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.

Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment

Procedia PDF Downloads 131
27835 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia

Authors: Ching-Yu Liao, Ju-Joan Wong

Abstract:

Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.

Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology

Procedia PDF Downloads 29
27834 Testing the Possibility of Healthy Individuals to Mimic Fatigability in Multiple Sclerotic Patients

Authors: Emmanuel Abban Sagoe

Abstract:

A proper functioning of the Central Nervous System ensures that we are able to accomplish just about everything we do as human beings such as walking, breathing, running, etc. Myelinated neurons throughout the body which transmit signals at high speeds facilitate these actions. In the case of MS, the body’s immune system attacks the myelin sheath surrounding the neurons and overtime destroys the myelin sheaths. Depending upon where the destruction occurs in the brain symptoms can vary from person to person. Fatigue is, however, the biggest problem encountered by an MS sufferer. It is very often described as the bedrock upon which other symptoms of MS such challenges in balance and coordination, dizziness, slurred speech, etc. may occur. Classifying and distinguishing between perceptions based fatigue and performance based fatigability is key to identifying appropriate treatment options for patients. Objective methods for assessing motor fatigability is also key to providing clinicians and physiotherapist with critical information on the progression of the symptom. This study tested if the Fatigue Index Kliniken Schmieder assessment tool can detect fatigability as seen in MS patients when healthy subjects with no known history of neurological pathology mimic abnormal gaits. Thirty three healthy adults between ages 18-58years volunteered as subjects for the study. The subjects, strapped with RehaWatch sensors on both feet, completed 6 gait protocols of normal and mimicked fatigable gaits for 60 seconds per each gait and at 1.38889m/s treadmill speed following clear instructions given.

Keywords: attractor attributes, fatigue index Kliniken Schmieder, gait variability, movement pattern

Procedia PDF Downloads 122
27833 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 46
27832 Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running

Authors: Seyed Hamed Mousavi, Juha M. Hijmans, Reza Rajabi, Ron Diercks, Johannes Zwerver, Henk van der Worp

Abstract:

Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running.

Keywords: reliability, running, sagittal plane, two dimensional

Procedia PDF Downloads 200
27831 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground

Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech

Abstract:

Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.

Keywords: center of mass, perturbation, posture, uneven ground, walking

Procedia PDF Downloads 178
27830 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization

Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman

Abstract:

The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.

Keywords: preview control, Nao robot, model predictive control

Procedia PDF Downloads 127
27829 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 144
27828 Proposed Solutions Based on Affective Computing

Authors: Diego Adrian Cardenas Jorge, Gerardo Mirando Guisado, Alfredo Barrientos Padilla

Abstract:

A system based on Affective Computing can detect and interpret human information like voice, facial expressions and body movement to detect emotions and execute a corresponding response. This data is important due to the fact that a person can communicate more effectively with emotions than can be possible with words. This information can be processed through technological components like Facial Recognition, Gait Recognition or Gesture Recognition. As of now, solutions proposed using this technology only consider one component at a given moment. This research investigation proposes two solutions based on Affective Computing taking into account more than one component for emotion detection. The proposals reflect the levels of dependency between hardware devices and software, as well as the interaction process between the system and the user which implies the development of scenarios where both proposals will be put to the test in a live environment. Both solutions are to be developed in code by software engineers to prove the feasibility. To validate the impact on society and business interest, interviews with stakeholders are conducted with an investment mind set where each solution is labeled on a scale of 1 through 5, being one a minimum possible investment and 5 the maximum.

Keywords: affective computing, emotions, emotion detection, face recognition, gait recognition

Procedia PDF Downloads 367
27827 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation

Procedia PDF Downloads 179
27826 Acrylamide-Induced Thoracic Spinal Cord Axonopathy

Authors: Afshin Zahedi, Keivan Jamshidi

Abstract:

This study was conducted to determine the neurotoxic effects of different doses of ACR on the thoracic axons of the spinal cord of rat. To evaluate this hypothesis in the thoracic axons, amino-cupric silver staining technique of the de Olmos was conducted to define the histopathologic characteristic (argyrophilia) of axonal damage following ACR exposure. For this purpose 60 adult male rats (Wistar, approximately 250 g) were selected. Rats were hosed in polycarbonate boxes as two per each. Randomly assigned groups of rats (10 rats per exposure group, total 5 exposure groups as A, B, C, D and E) were exposed to 0.5, 5, 50, 100 and 500 mg/kg per day×11days intraperitoneal injection (IP injection) respectively. The remaining 10 rats were housed in group (F) as control group. Control rats received daily injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay (LHF) were determined. Weight gains were measured daily prior to injection. Gait scoring involved observation of spontaneous open field locomotion, included evaluations of ataxia, hopping, rearing and hind foot placement, and hindlimb foot splay were determined 3-4 times per week. Gait score was assigned from 1-4. After 11 days, two rats for silver stain, were randomly selected, dissected and proper samples were collected from thoracic portion of the spinal cord of rat. Results did show no neurological behavior in groups A, B and F, whereas severe neurotoxicity was observed in groups C and D. Rats in groups E died within 1-2 hours due to severe toxemia. In histopathological studies based on the de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups A, B and F, while moderate to severe argyrophilic changes were observed in different stained sections obtained from the thoracic portion of the spinal cord of rats belong to groups C and D.

Keywords: acrylamide, rat, axonopathy, argyrophily, de Olmos

Procedia PDF Downloads 340
27825 Inertial Motion Capture System for Biomechanical Analysis in Rehabilitation and Sports

Authors: Mario Sandro F. Rocha, Carlos S. Ande, Anderson A. Oliveira, Felipe M. Bersotti, Lucas O. Venzel

Abstract:

The inertial motion capture systems (mocap) are among the most suitable tools for quantitative clinical analysis in rehabilitation and sports medicine. The inertial measuring units (IMUs), composed by accelerometers, gyroscopes, and magnetometers, are able to measure spatial orientations and calculate displacements with sufficient precision for applications in biomechanical analysis of movement. Furthermore, this type of system is relatively affordable and has the advantages of portability and independence from external references. In this work, we present the last version of our inertial motion capture system, based on the foregoing technology, with a unity interface designed for rehabilitation and sports. In our hardware architecture, only one serial port is required. First, the board client must be connected to the computer by a USB cable. Next, an available serial port is configured and opened to establish the communication between the client and the application, and then the client starts scanning for the active MOCAP_S servers around. The servers play the role of the inertial measuring units that capture the movements of the body and send the data to the client, which in turn create a package composed by the ID of the server, the current timestamp, and the motion capture data defined in the client pre-configuration of the capture session. In the current version, we can measure the game rotation vector (grv) and linear acceleration (lacc), and we also have a step detector that can be abled or disabled. The grv data are processed and directly linked to the bones of the 3D model, and, along with the data of lacc and step detector, they are also used to perform the calculations of displacements and other variables shown on the graphical user interface. Our user interface was designed to calculate and present variables that are important for rehabilitation and sports, such as cadence, speed, total gait cycle, gait cycle length, obliquity and rotation, and center of gravity displacement. Our goal is to present a low-cost portable and wearable system with a friendly interface for application in biomechanics and sports, which also performs as a product of high precision and low consumption of energy.

Keywords: biomechanics, inertial sensors, motion capture, rehabilitation

Procedia PDF Downloads 140
27824 Cepstrum Analysis of Human Walking Signal

Authors: Koichi Kurita

Abstract:

In this study, we propose a real-time data collection technique for the detection of human walking motion from the charge generated on the human body. This technique is based on the detection of a sub-picoampere electrostatic induction current, generated by the motion, flowing through the electrode of a wireless portable sensor attached to the subject. An FFT analysis of the wave-forms of the electrostatic induction currents generated by the walking motions showed that the currents generated under normal and restricted walking conditions were different. Moreover, we carried out a cepstrum analysis to detect any differences in the walking style. Results suggest that a slight difference in motion, either due to the individual’s gait or a splinted leg, is directly reflected in the electrostatic induction current generated by the walking motion. The proposed wireless portable sensor enables the detection of even subtle differences in walking motion.

Keywords: human walking motion, motion measurement, current measurement, electrostatic induction

Procedia PDF Downloads 343
27823 Knee Pain Reduction: Holistic vs. Traditional

Authors: Renee Moten

Abstract:

Introduction: Knee pain becomes chronic because the therapy used focuses only on the symptoms of knee pain and not the causes of knee pain. Preventing knee injuries is not in the toolbox of the traditional practitioner. This research was done to show that we must reduce the inflammation (holistically), reduce the swelling and regain flexibility before considering any type of exercise. This method of performing the correct exercise stops the bowing of the knee, corrects the walking gait, and starts to relieve knee, hip, back, and shoulder pain. Method: The holistic method that is used to heal knees is called the Knee Pain Recipe. It’s a six step system that only uses alternative medicine methods to reduce, relieve and restore knee joint mobility. The system is low cost, with no hospital bills, no physical therapy, and no painkillers that can cause damage to the kidneys and liver. This method has been tested on 200 women with knee, back, hip, and shoulder pain. Results: All 200 women reduce their knee pain by 50%, some by as much as 90%. Learning about ankle and foot flexibility, along with understanding the kinetic chain, helps improve the walking gait, which takes the pressure off the knee, hip and back. The knee pain recipe also has helped to reduce the need for a cortisone injection, stem cell procedures, to take painkillers, and surgeries. What has also been noted in the research was that if the women's knees were too far gone, the Knee Pain Recipe helped prepare the women for knee replacement surgery. Conclusion: It is believed that the Knee Pain Recipe, when performed by men and women from around the world, will give them a holistic alternative to drugs, injections, and surgeries.

Keywords: knee, surgery, healing, holistic

Procedia PDF Downloads 74
27822 AAV-Mediated Human Α-Synuclein Expression in a Rat Model of Parkinson's Disease –Further Characterization of PD Phenotype, Fine Motor Functional Effects as Well as Neurochemical and Neuropathological Changes over Time

Authors: R. Pussinen, V. Jankovic, U. Herzberg, M. Cerrada-Gimenez, T. Huhtala, A. Nurmi, T. Ahtoniemi

Abstract:

Targeted over-expression of human α-synuclein using viral-vector mediated gene delivery into the substantia nigra of rats and non-human primates has been reported to lead to dopaminergic cell loss and the formation of α-synuclein aggregates reminiscent of Lewy bodies. We have previously shown how AAV-mediated expression of α-synuclein is seen in the chronic phenotype of the rats over 16 week follow-up period. In the context of these findings, we attempted to further characterize this long term PD related functional and motor deficits as well as neurochemical and neuropathological changes in AAV-mediated α-synuclein transfection model in rats during chronic follow-up period. Different titers of recombinant AAV expressing human α-synuclein (A53T) were stereotaxically injected unilaterally into substantia nigra of Wistar rats. Rats were allowed to recover for 3 weeks prior to initial baseline behavioral testing with rotational asymmetry test, stepping test and cylinder test. A similar behavioral test battery was applied again at weeks 5, 9,12 and 15. In addition to traditionally used rat PD model tests, MotoRater test system, a high speed kinematic gait performance monitoring was applied during the follow-up period. Evaluation focused on animal gait between groups. Tremor analysis was performed on weeks 9, 12 and 15. In addition to behavioral end-points, neurochemical evaluation of dopamine and its metabolites were evaluated in striatum. Furthermore, integrity of the dopamine active transport (DAT) system was evaluated by using 123I- β-CIT and SPECT/CT imaging on weeks 3, 8 and 12 after AAV- α-synuclein transfection. Histopathology was examined from end-point samples at 3 or 12 weeks after AAV- α-synuclein transfection to evaluate dopaminergic cell viability and microglial (Iba-1) activation status in substantia nigra by using stereological analysis techniques. This study focused on the characterization and validation of previously published AAV- α-synuclein transfection model in rats but with the addition of novel end-points. We present the long term phenotype of AAV- α-synuclein transfected rats with traditionally used behavioral tests but also by using novel fine motor analysis techniques and tremor analysis which provide new insight to unilateral effects of AAV α-synuclein transfection. We also present data about neurochemical and neuropathological end-points for the dopaminergic system in the model and how well they correlate with behavioral phenotype.

Keywords: adeno-associated virus, alphasynuclein, animal model, Parkinson’s disease

Procedia PDF Downloads 295
27821 The Clinical Effectiveness of Off-The-Shelf Foot Orthoses on the Dynamics of Gait in Patients with Early Rheumatoid Arthritis

Authors: Vicki Cameron

Abstract:

Background: Rheumatoid Arthritis (RA) typically effects the feet and about 20% of patients present initially with foot and ankle symptoms. Custom moulded foot orthoses (FO) in the management of foot and ankle problems in RA is well documented in the literature. Off-the-shelf FO are thought to provide an effective alternative to custom moulded FO in patients with RA, however they are not evidence based. Objectives: To determine the effects of off-the-shelf FO on; 1. quality of life (QOL) 2. walking speed 4. peak plantar pressure in the forefoot (PPPft) Methods: Thirty-five patients (six male and 29 female) participated in the study from 11/2006 to 07/2008. The age of the patients ranged from 26 to 80 years (mean 52.4 years; standard deviation [SD] 13.3 years). A repeated measures design was used, with patients presenting at baseline, three months and six months. Patients were tested walking barefoot, shod and shod with FO. The type of orthoses used was the Slimflex Plastic ® (Algeos). The Leeds Foot Impact Scale (LFIS) was used to investigate QOL. The Vicon 612 motion analysis system was used to determine the effect of FO on walking speed. The F-scan walkway and in-shoe systems provided information of the effect on PPPft. Ethical approval was obtained on 07/2006. Data was analysed using SPSS version 15.0. Results/Discussion: The LFIS data was analysed with a repeated measures ANOVA. There was a significant improvement in the LFIS score with the use of the FO over the six months (p<0.01). A significant increase in walking speed with the orthoses was observed (p<0.01). Peak plantar pressure in the forefoot was reduced with the FO, as shown by a non-parametric Friedman’s test (chi-square = 55.314, df=2, p<0.05). Conclusion: The results show that off-the-shelf FO are effective in managing foot problems in patients with RA. Patients reported an improved QOL with the orthoses, and further objective measurements were quantified to provide a rationale for this change. Patients demonstrated an increased walking speed, which has been shown to be associated with reduced pain. The FO decreased PPPft which have been reported as a site of pain and ulceration in patients with RA. Salient Clinical Points: Off-the-shelf FO offer an effective alternative to custom moulded FO, and can be dispensed at the chair side. This is crucial in the management of foot problems associated with RA as early intervention is advocated due to the chronic and progressive nature of the disease.

Keywords: podiatry, rheumatoid arthritis, foot orthoses, gait analysis

Procedia PDF Downloads 257
27820 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 200
27819 A Rare Form of Rapidly Progressive Parkinsonism Associated with Dementia

Authors: Murat Emre, Zeynep Tufekcioglu

Abstract:

Objective: We describe a patient with late onset phenylketonuria which presented with rapidly progressive dementia and parkinsonism that were reversible after management. Background: Phenylketonuria is an autosomal recessive disorder due to mutations in the phenylalanine hydroxlase gene. It normally presents in childhood, in rare cases, however, it may have its onset in adulthood and may mimic other neurological disorders. Case description: A previously normal functioning, 59 year old man was admitted for blurred vision, cognitive impairment and gait difficulty which emerged over the past eight months. In neurological examination he had brisk reflexes, slow gait and left-dominant parkinsonism. Mini-mental state examination score was 25/30, neuropsychological testing revealed a dysexecutive syndrome with constructional apraxia and simultanagnosia. In cranial MRI there were bilateral diffuse hyper-intense lesions in parietal and occipital white matter with no significant atrophy. Electroencephalography showed diffuse slowing with predominance of teta waves. In cerebrospinal fluid examination protein level was slightly elevated (61mg/dL), oligoclonal bands were negative. Electromyography was normal. Routine laboratory examinations for rapidly progressive dementia and parkinsonism were also normal. Serum amino acid levels were determined to explore metabolic leukodystrophies and phenylalanine level was found to be highly elevated (1075 µmol/L) with normal tyrosine (61,20 µmol/L). His cognitive impairment and parkinsonian symptoms improved following three months of phenylalanine restricted diet. Conclusions: Late onset phenylketonuria is a rare, potentially reversible cause of rapidly progressive parkinsonism with dementia. It should be considered in the differential diagnosis of patients with suspicious features.

Keywords: dementia, neurology, Phenylketonuria, rapidly progressive parkinsonism

Procedia PDF Downloads 268
27818 Case Report and Literature Review of Opalski Syndrome: A Rare Brainstem Stroke

Authors: Ramuel Spirituel Mattathiah A. San Juan, Neil Ambasing

Abstract:

Background: In lateral medullary strokes, hemiparesis doesn't typically manifest due to the distinct vascular supply to the corticospinal tract located within the medulla's tegmentum. Hemiparesis resulting from a medullary infarct would likely be attributable to a medial medullary stroke characterized by contralateral hemiparesis since the corticospinal tract fibers at this level have yet to cross over. This paper reports a unique case of a lateral medullary stroke variant that presented with ipsilateral hemiparesis. Objective: There have only been 23 other cases of reported Opalski syndrome, making this only the 24th and 25th case reported worldwide. Case Presentation: A 53-year-old male was admitted with slurring of speech with gait instability, numbness on the right face, Horner’s syndrome, and 4/5 motor strength on the right extremities. Hyperreflexia was noted on the right, together with a Babinski’s sign. Cranial magnetic resonance imaging (MRI) showed an infarct on the right dorsolateral medulla. A 48-year-old male was admitted complaining of dizziness, ataxic gait, veering to the left during ambulation, left facial numbness, left hemiplegia, crossed sensory disturbance, and right limb ataxia. MRI revealed an acute left lateral medullary infarction. Conclusion: A rare type of lateral medullary infarction, the Opalski Syndrome, is a weakness ipsilateral to the lesion of the infarct. The lesion involves the ipsilateral corticospinal tract below the pyramidal decussation. The considerable diversity in the posterior brain circulation serves as a contributing factor to the clinical observation of incomplete textbook syndromes, underscoring the significance of the neurological clinical approach and a solid foundation in neuroanatomy.

Keywords: Opalski syndrome, rare stroke, stroke, Wallenberg's syndrome

Procedia PDF Downloads 75
27817 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients

Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger

Abstract:

Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.

Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke

Procedia PDF Downloads 91
27816 The Prevalence and Associated Factors of Frailty and Its Relationship with Falls in Patients with Schizophrenia

Authors: Bo-Jian Wu, Si-Heng Wu

Abstract:

Objectives: Frailty is a condition of a person who has chronic health problems complicated by a loss of physiological reserve and deteriorating functional abilities. The frailty syndrome was defined by Fried and colleagues, i.e., weight loss, fatigue, decreased grip strength, slow gait speed, and low physical activity. However, to our best knowledge, there have been rare studies exploring the prevalence of frailty and its association with falls in patients with schizophrenia. Methods: A total of 559 hospitalized patients were recruited from a public psychiatric hospital in 2013. The majority of the subjects were males (361, 64.6%). The average age was 53.5 years. All patients received the assessment of frailty status defined by Fried and colleagues. The status of a fall within one year after the assessment of frailty, clinical and demographic data was collected from medical records. Logistic regression was used to calculate the odds ratio of associated factors. Results : A total of 9.2% of the participants met the criteria of frailty. The percentage of patients having a fall was 7.2%. Age were significantly associated with frailty (odds ratio = 1.057, 95% confidence interval = 1.025-1.091); however, sex was not associated with frailty (p = 0.17). After adjustment for age and sex, frailty status was associated with a fall (odds ratio = 3.62, 95% confidence interval = 1.58-8.28). Concerning the components of frailty, decreased grip strength (odds ratio = 2.44, 95% confidence interval = 1.16-5.14), slow gait speed (odds ratio = 2.82, 95% confidence interval = 1.21-6.53), and low physical activity (odds ratio = 2.64, 95% confidence interval = 1.21-5.78) were found to be associated with a fall. Conclusions: Our findings suggest the prevalence of frailty was about 10% in hospitalized patients with chronic patients with schizophrenia, and frailty status was significant with a fall in this group. By using the status of frailty, it may be beneficial to potential target candidates having fallen in the future as early as possible. The effective intervention of prevention of further falls may be given in advance. Our results bridge this gap and open a potential avenue for the prevention of falls in patients with schizophrenia. Frailty is certainly an important factor for maintaining wellbeing among these patients.

Keywords: fall, frailty, schizophrenia, Taiwan

Procedia PDF Downloads 165
27815 The Effect and Durability of Functional Exercises on Balance Evaluation Systems Test (Bestest) in Intellectual Disabilities: A Preliminary Report

Authors: Saeid Bahiraei, Hassan Daneshmandi , Ali Asghar Norasteh

Abstract:

The present study aims at the effects of 8 weeks of selected corrective exercise training in stable and unstable levels on the postural control people with ID. Problems and limitations of movement in individuals with intellectual disability (ID) are highly common, which particularly may cause the loss of basic performance and limitation of the person's independence in doing their daily activities. In the present study, thirty-four young adult intellectual disabilities were selected randomly and divided into three groups. In order to measure the balance variable indicators, BESTest was used. The intervention group did the selected performance exercise in 8 weeks (3 times of 45 to 50 minutes a week). Meanwhile, the control group did not experience any kind of exercise. Statistical analysis was performed in SPSS on a significant level (p<0/05). The results showed the compromise between time and the group in all the BESTest tests is significant (P=0/001). The results of the research test compared to the studied groups with time measurements showed that there is a significant difference in the unstable group in Biomechanical constraints (P<0/05). And also, a significant difference exists in the stable and unstable level instability limits/Vertically, Postural responses, and Anticipatory postural adjustment variables (except for the follow-up and pre-test levels), Stability in Gait and Sensory Orientation in the pre-test, post-test, and follow up- pre-test stage of the test (P<0/05). In the comparison between the times of measurement with the groups under study, the results showed that Biomechanical Constraints, Anticipatory Postural adjustment and Postural responses at the pre-test-follow upstage, there was a significant difference between unstable-stable and unstable-control groups (P<0/05), it was also significant between all groups in Stability Limits/Vertically, Sensory Orientation, Stability in Gait and Overall stability index variables (P<0/05). The findings showed that the practice group at an unstable level has move improvement compared to the practice group at a stable level. In conclusion, this study presents evidence that shows selected performative practices can be recognized as a comprehensive and effective mediator in the betterment and improvement of the balance in intellectually disabled people and also affect the performative and moving activities.

Keywords: intellectual disability, BSETest, rehabilitation, postural control

Procedia PDF Downloads 176
27814 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 160
27813 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation

Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji

Abstract:

Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.

Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation

Procedia PDF Downloads 385
27812 Kinematic Analysis of Heel Height Effect on Knee Direction Correction in a Patient with Genu Recurvatum: A Case Study

Authors: Parya Salimitari, Farhad Tabatabai Ghomsheh, Siyamak Khorramymehr, Hossein Taghadosi, Mohammad Hossein Dashti

Abstract:

The aim of this study was to evaluate the effect of heel height on the knee joint direction in Genu recurvatum patients compared to normal state. The test was performed on a patient with Genu recurvatum and a healthy person with similar and match biomechanical conditions. Subjects were tested under six different positions of shoes with heels 0, 1, 2, 3, 4 and 5 cm after marking during the gate. The results of the spatial temporal geometry obtained from Vicon Motion System (six-camera T10 model, Oxford Metrics Ltd., Oxford, UK), and were used to compute and analyze the kinematic results. In this study, we tried to determine the effect of shoe heel intervention on knee joint direction correction. The results indicate that the 1 cm heel has been optimized and significantly improved in knee joint flexion and flexion-extension angle so that the difference in knee flexion-extension angle between the patient and the healthy person at some stages of walking has reached zero (good posture). The 3 cm heel compared with the 0 cm heel has reduced the knee recurvatum index (KRI) by up to 21.74% in the patient (from 219.233 mm to 47.6714 mm). According to the findings of this study, it can be concluded that heel increase is effective in correcting knee joints in Genu recurvatum and the optimum heel height is 1 cm.

Keywords: joint alignment of knee, gait analysis, genu recurvatum, heel lift, kinematics, motion-analysis

Procedia PDF Downloads 200
27811 Development the Sensor Lock Knee Joint and Evaluation of Its Effect on Walking and Energy Consumption in Subjects With Quadriceps Weakness

Authors: Mokhtar Arazpour

Abstract:

Objectives: Recently a new kind of stance control knee joint has been developed called the 'sensor lock.' This study aimed to develop and evaluate 'sensor lock', which could potentially solve the problems of walking parameters and gait symmetry in subjects with quadriceps weakness. Methods: Nine subjects with quadriceps weakness were enrolled in this study. A custom-made knee ankle foot orthosis (KAFO) with the same set of components was constructed for each participant. Testing began after orthotic gait training was completed with each of the KAFOs and subjects demonstrated that they could safely walk with crutches. Subjects rested 30 minutes between each trial. The 10 meters walking test is used to assess walking speed in meters/second (m/s). The total time taken to ambulate 6 meters (m) is recorded to the nearest hundredth of a second. 6 m is then divided by the total time (in seconds) taken to ambulate and recorded in m/s. The 6 Minutes Walking Test was used to assess walking endurance in this study. Participants walked around the perimeter of a set circuit for a total of six minutes. To evaluate Physiological cost index (PCI), the subjects were asked to walk using each type of KAFOs along a pre-determined 40 m rectangular walkway at their comfortable self-selected speed. A stopwatch was used to calculate the speed of walking by measuring the time between starting and stopping time and the distance walked. Results: The use of a KAFO fitted with the “sensor lock” knee joint resulted in improvements to walking speed, distance walked and physiological cost index when compared with the knee joint in lock mode. Conclusions: This study demonstrated that the use of a KAFO with the “sensor lock” knee joint could provide significant benefits for subjects with a quadriceps weakness when compared to a KAFO with the knee joint in lock mode.

Keywords: stance control knee joint, knee ankle foot orthosis, quadriceps weakness, walking, energy consumption

Procedia PDF Downloads 124
27810 A Robust System for Foot Arch Type Classification from Static Foot Pressure Distribution Data Using Linear Discriminant Analysis

Authors: R. Periyasamy, Deepak Joshi, Sneh Anand

Abstract:

Foot posture assessment is important to evaluate foot type, causing gait and postural defects in all age groups. Although different methods are used for classification of foot arch type in clinical/research examination, there is no clear approach for selecting the most appropriate measurement system. Therefore, the aim of this study was to develop a system for evaluation of foot type as clinical decision-making aids for diagnosis of flat and normal arch based on the Arch Index (AI) and foot pressure distribution parameter - Power Ratio (PR) data. The accuracy of the system was evaluated for 27 subjects with age ranging from 24 to 65 years. Foot area measurements (hind foot, mid foot, and forefoot) were acquired simultaneously from foot pressure intensity image using portable PedoPowerGraph system and analysis of the image in frequency domain to obtain foot pressure distribution parameter - PR data. From our results, we obtain 100% classification accuracy of normal and flat foot by using the linear discriminant analysis method. We observe there is no misclassification of foot types because of incorporating foot pressure distribution data instead of only arch index (AI). We found that the mid-foot pressure distribution ratio data and arch index (AI) value are well correlated to foot arch type based on visual analysis. Therefore, this paper suggests that the proposed system is accurate and easy to determine foot arch type from arch index (AI), as well as incorporating mid-foot pressure distribution ratio data instead of physical area of contact. Hence, such computational tool based system can help the clinicians for assessment of foot structure and cross-check their diagnosis of flat foot from mid-foot pressure distribution.

Keywords: arch index, computational tool, static foot pressure intensity image, foot pressure distribution, linear discriminant analysis

Procedia PDF Downloads 497
27809 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing

Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis

Abstract:

The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.

Keywords: additive manufacture, new designs, orthoses, finite elements

Procedia PDF Downloads 210
27808 Assessment of Post-surgical Donor-Site Morbidity in Vastus lateralis Free Flap for Head and Neck Reconstructive Surgery: An Observational Study

Authors: Ishith Seth, Lyndel Hewitt, Takako Yabe, James Wykes, Jonathan Clark, Bruce Ashford

Abstract:

Background: Vastus lateralis (VL) can be used to reconstruct defects of the head and neck. Whilst the advantages are documented, donor-site morbidity is not well described. This study aimed to assess donor-site morbidity after VL flap harvest. The results will determine future directions for preventative and post-operative care to improve patient health outcomes. Methods: Ten participants (mean age 55 years) were assessed for the presence of donor-site morbidity after VL harvest. Musculoskeletal (pain, muscle strength, muscle length, tactile sensation), quality of life (SF-12), and lower limb function (lower extremity function, gait (function and speed), sit to stand were assessed using validated and standardized procedures. Outcomes were compared to age-matched healthy reference values or the non-operative side. Analyses were conducted using descriptive statistics and non-parametric tests. Results: There was no difference in muscle strength (knee extension), muscle length, ability to sit-to-stand, or gait function (all P > 0.05). Knee flexor muscle strength was significantly less on the operated leg compared to the non-operated leg (P=0.02) and walking speed was slower than age-matched healthy values (P<0.001). Thigh tactile sensation was impaired in 89% of participants. Quality of life was significantly less for the physical health component of the SF-12 (P<0.001). The mental health component of the SF-12 was similar to healthy controls (P=0.26). Conclusion: There was no effect on donor site morbidity with regards to knee extensor strength, pain, walking function, ability to sit-to-stand, and muscle length. VL harvest affected donor-site knee flexion strength, walking speed, tactile sensation, and physical health-related quality of life.

Keywords: vastus lateralis, morbidity, head and neck, surgery, donor-site morbidity

Procedia PDF Downloads 242