Search results for: evapotranspira-tion coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2303

Search results for: evapotranspira-tion coefficient

2243 Analysis of a Generalized Sharma-Tasso-Olver Equation with Variable Coefficients

Authors: Fadi Awawdeh, O. Alsayyed, S. Al-Shará

Abstract:

Considering the inhomogeneities of media, the variable-coefficient Sharma-Tasso-Olver (STO) equation is hereby investigated with the aid of symbolic computation. A newly developed simplified bilinear method is described for the solution of considered equation. Without any constraints on the coefficient functions, multiple kink solutions are obtained. Parametric analysis is carried out in order to analyze the effects of the coefficient functions on the stabilities and propagation characteristics of the solitonic waves.

Keywords: Hirota bilinear method, multiple kink solution, Sharma-Tasso-Olver equation, inhomogeneity of media

Procedia PDF Downloads 517
2242 Water Management of Erdenet Mining Company

Authors: K. H. Oyuntungalag, Scott Kenner, O. Erdenetuya

Abstract:

The life cycle phases of mining projects are described in this guidance document, and includes initial phases (exploration, feasibility and planning), mine development (construction and operations), closure and reclamation. Initial phases relate to field programs and desktop studies intended to build the data and knowledge base, including the design of water management infrastructure and development during these initial phases. Such a model is essential to demonstrate that the water management plan (WMP) will provide adequate water for the mine operations and sufficient capacity for anticipated flows and volumes, and minimize environmental impacts on the receiving environment. The water and mass balance model must cover the whole mine life cycle, from the start of mine development to a date sufficiently far in the future where the reclaimed landscape is considered self- sustaining following complete closure of the mine (i.e., post- closure). The model simulates the movement of water within the components of the water management infrastructure and project operating areas, and calculates chemical loadings to each mine component. At Erdenet Mining company an initial water balance model reflecting the tailings dam, groundwater seepage and mine process water was developed in collaboration with Dr. Scott Kenner (visiting Fulbright scholar). From this preliminary study the following recommendations were made: 1. Develop a detailed groundwater model to simulate seepage from the tailings dam, 2. Establish an evaporation pan for improving evapotranspiration estimates, and 3. Measure changes in storage of water within the tailings dam and other water storage components within the mine processing.

Keywords: evapotranspiration , monitoring program, Erdenet mining, tailings dam

Procedia PDF Downloads 477
2241 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 344
2240 Estimating the Volatilite of Stock Markets in Case of Financial Crisis

Authors: Gultekin Gurcay

Abstract:

In this paper, effects and responses of stock were analyzed. This analysis was done periodically. The dimensions of the financial crisis impact on the stock market were investigated by GARCH model. In this context, S&P 500 stock market is modeled with DAX, NIKKEI and BIST100. In this way, The effects of the changing in S&P 500 stock market were examined on European and Asian stock markets. Conditional variance coefficient will be calculated through garch model. The scope of the crisis period, the conditional covariance coefficient will be analyzed comparatively.

Keywords: conditional variance coefficient, financial crisis, garch model, stock market

Procedia PDF Downloads 294
2239 Dry Friction Fluctuations in Plain Journal Bearings

Authors: James Moran, Anusarn Permsuwan

Abstract:

This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.

Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations

Procedia PDF Downloads 366
2238 Investigation and Analysis of Vortex-Induced Vibrations in Sliding Gate Valves Using Computational Fluid Dynamics

Authors: Kianoosh Ahadi, Mustafa Ergil

Abstract:

In this study, the event of vibrations caused by vortexes and the distribution of induced hydrodynamic forces due to vortexes on the sliding gate valves has been investigated. For this reason, a sliding valve with the help of computational fluid dynamics (CFD) software was simulated in two-dimensional )2D(, where the flow and turbulence equations were solved for three different valve openings (full, half, and 16.7 %) models. The variety of vortexes formed within the vicinity of the valve structure was investigated based on time where the trend of fluctuations and their occurrence regions have been detected. From the gathered solution dataset of the numerical simulations, the pressure coefficient (CP), the lift force coefficient (CL), the drag force coefficient (CD), and the momentum coefficient due to hydrodynamic forces (CM) were examined, and relevant figures were generated were from these results, the vortex-induced vibrations were analyzed.

Keywords: induced vibrations, computational fluid dynamics, sliding gate valves, vortexes

Procedia PDF Downloads 120
2237 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 126
2236 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 49
2235 Predicting Consolidation Coefficient of Busan Clay by Time-Displacement-Velocity Methods

Authors: Thang Minh Le, Hadi Khabbaz

Abstract:

The coefficient of consolidation is a parameter governing the rate at which saturated soil particularly clay undergoes consolidation when subjected to an increase in pressure. The rate and amount of compression in soil varies with the rate that pore water is lost; and hence depends on soil permeability. Over many years, various methods have been proposed to determine the coefficient of consolidation, cv, which is an indication of the rate of foundation settlement on soft ground. However, defining this parameter is often problematic and heavily relies on graphical techniques, which are subject to some uncertainties. This paper initially presents an overview of many well-established methods to determine the vertical coefficient of consolidation from the incremental loading consolidation tests. An array of consolidation tests was conducted on the undisturbed clay samples, collected at various depths from a site in Nakdong river delta, Busan, South Korea. The consolidation test results on these soft sensitive clay samples were employed to evaluate the targeted methods to predict the settlement rate of Busan clay. In relationship of time-displacement-velocity, a total of 3 method groups from 10 common procedures were classified and compared together. Discussions on study results will be also provided.

Keywords: Busan clay, coefficient of consolidation, constant rate of strain, incremental loading

Procedia PDF Downloads 186
2234 Modeling Depth Averaged Velocity and Boundary Shear Stress Distributions

Authors: Ebissa Gadissa Kedir, C. S. P. Ojha, K. S. Hari Prasad

Abstract:

In the present study, the depth-averaged velocity and boundary shear stress in non-prismatic compound channels with three different converging floodplain angles ranging from 1.43ᶱ to 7.59ᶱ have been studied. The analytical solutions were derived by considering acting forces on the channel beds and walls. In the present study, five key parameters, i.e., non-dimensional coefficient, secondary flow term, secondary flow coefficient, friction factor, and dimensionless eddy viscosity, were considered and discussed. An expression for non-dimensional coefficient and integration constants was derived based on the boundary conditions. The model was applied to different data sets of the present experiments and experiments from other sources, respectively, to examine and analyse the influence of floodplain converging angles on depth-averaged velocity and boundary shear stress distributions. The results show that the non-dimensional parameter plays important in portraying the variation of depth-averaged velocity and boundary shear stress distributions with different floodplain converging angles. Thus, the variation of the non-dimensional coefficient needs attention since it affects the secondary flow term and secondary flow coefficient in both the main channel and floodplains. The analysis shows that the depth-averaged velocities are sensitive to a shear stress-dependent model parameter non-dimensional coefficient, and the analytical solutions are well agreed with experimental data when five parameters are included. It is inferred that the developed model may facilitate the interest of others in complex flow modeling.

Keywords: depth-average velocity, converging floodplain angles, non-dimensional coefficient, non-prismatic compound channels

Procedia PDF Downloads 74
2233 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States

Authors: Yakubu Suleiman, S. A. Musa

Abstract:

Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.

Keywords: coefficient, constant, inputs, regression

Procedia PDF Downloads 410
2232 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: heat pipe, annular fins, natural convection, condenser heat transfer coefficient, tilt angle

Procedia PDF Downloads 154
2231 Quantifying the Effects of Canopy Cover and Cover Crop Species on Water Use Partitioning in Micro-Sprinkler Irrigated Orchards in South Africa

Authors: Zanele Ntshidi, Sebinasi Dzikiti, Dominic Mazvimavi

Abstract:

South Africa is a dry country and yet it is ranked as the 8th largest exporter of fresh apples (Malus Domestica) globally. Prime apple producing regions are in the Eastern and Western Cape Provinces of the country where all the fruit is grown under irrigation. Climate change models predict increasingly drier future conditions in these regions and the frequency and severity of droughts is expected to increase. For the sustainability and growth of the fruit industry it is important to minimize non-beneficial water losses from the orchard floor. The aims of this study were firstly to compare the water use of cover crop species used in South African orchards for which there is currently no information. The second aim was to investigate how orchard water use (evapotranspiration) was partitioned into beneficial (tree transpiration) and non-beneficial (orchard floor evaporation) water uses for micro-sprinkler irrigated orchards with different canopy covers. This information is important in order to explore opportunities to minimize non-beneficial water losses. Six cover crop species (four exotic and two indigenous) were grown in 2 L pots in a greenhouse. Cover crop transpiration was measured using the gravimetric method on clear days. To establish how water use was partitioned in orchards, evapotranspiration (ET) was measured using an open path eddy covariance system, while tree transpiration was measured hourly throughout the season (October to June) on six trees per orchard using the heat ratio sap flow method. On selected clear days, soil evaporation was measured hourly from sunrise to sunset using six micro-lysimeters situated at different wet/dry and sun/shade positions on the orchard floor. Transpiration of cover crops was measured using miniature (2 mm Ø) stem heat balance sap flow gauges. The greenhouse study showed that exotic cover crops had significantly higher (p < 0.01) average transpiration rates (~3.7 L/m2/d) than the indigenous species (~ 2.2 L/m²/d). In young non-bearing orchards, orchard floor evaporative fluxes accounted for more than 60% of orchard ET while this ranged from 10 to 30% in mature orchards with a high canopy cover. While exotic cover crops are preferred by most farmers, this study shows that they use larger quantities of water than indigenous species. This in turn contributes to a larger orchard floor evaporation flux. In young orchards non-beneficial losses can be minimized by adopting drip or short range micro-sprinkler methods that reduce the wetted soil fraction thereby conserving water.

Keywords: evapotranspiration, sap flow, soil evaporation, transpiration

Procedia PDF Downloads 388
2230 Impact of Drought on Agriculture in the Upper Middle Gangetic Plain in India

Authors: Reshmita Nath

Abstract:

In this study, we investigate the spatiotemporal characteristics of drought in India and its impact on agriculture during the summer season (April to September). For our analysis, we have used Standardized Precipitation Evapotranspiration Index (SPEI) datasets between 1982 and 2012 at six-month timescale. Based on the criteria SPEI<-1 we obtain the vulnerability map and have found that the Humid subtropical Upper Middle Gangetic Plain (UMGP) region is highly drought prone with an occurrence frequency of 40-45%. This UMGP region contributes at least 18-20% of India’s annual cereal production. Not only the probability, but the region becomes more and more drought-prone in the recent decades. Moreover, the cereal production in the UMGP has experienced a gradual declining trend from 2000 onwards and this feature is consistent with the increase in drought affected areas from 20-25% to 50-60%, before and after 2000, respectively. The higher correlation coefficient (-0.69) between the changes in cereal production and drought affected areas confirms that at least 50% of the agricultural (cereal) losses is associated with drought. While analyzing the individual impact of precipitation and surface temperature anomalies on SPEI (6), we have found that in the UMGP region surface temperature plays the primary role in lowering of SPEI. The linkage is further confirmed by the correlation analysis between the SPEI (6) and surface temperature rise, which exhibits strong negative values in the UMGP region. Higher temperature might have caused more evaporation and drying, which therefore increases the area affected by drought in the recent decade.

Keywords: drought, agriculture, SPEI, Indo-Gangetic plain

Procedia PDF Downloads 258
2229 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition

Procedia PDF Downloads 431
2228 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate

Procedia PDF Downloads 345
2227 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)

Authors: Marziehossadat Moezzi

Abstract:

In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.

Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index

Procedia PDF Downloads 198
2226 A Study on the Coefficient of Transforming Relative Lateral Displacement under Linear Analysis of Structure to Its Real Relative Lateral Displacement

Authors: Abtin Farokhipanah

Abstract:

In recent years, analysis of structures is based on ductility design in contradictory to strength design in surveying earthquake effects on structures. ASCE07-10 code offers to intensify relative drifts calculated from a linear analysis with Cd which is called (Deflection Amplification Factor) to obtain the real relative drifts which can be calculated using nonlinear analysis. This lateral drift should be limited to the code boundaries. Calculation of this amplification factor for different structures, comparing with ASCE07-10 code and offering the best coefficient are the purposes of this research. Following our target, short and tall building steel structures with various earthquake resistant systems in linear and nonlinear analysis should be surveyed, so these questions will be answered: 1. Does the Response Modification Coefficient (R) have a meaningful relation to Deflection Amplification Factor? 2. Does structure height, seismic zone, response spectrum and similar parameters have an effect on the conversion coefficient of linear analysis to real drift of structure? The procedure has used to conduct this research includes: (a) Study on earthquake resistant systems, (b) Selection of systems and modeling, (c) Analyzing modeled systems using linear and nonlinear methods, (d) Calculating conversion coefficient for each system and (e) Comparing conversion coefficients with the code offered ones and concluding results.

Keywords: ASCE07-10 code, deflection amplification factor, earthquake engineering, lateral displacement of structures, response modification coefficient

Procedia PDF Downloads 354
2225 Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections

Authors: Seyed Abbas Tabatabaei, Afshin Ghanbarzadeh, Mehdi Abidizadeh

Abstract:

Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents.

Keywords: intersection, coefficient of friction, skid resistance, locked wheels, accident, pedestrian

Procedia PDF Downloads 328
2224 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: Anwar U. Haque, Waqar Asrar, Ashraf Ali Omar, Erwin Sulaeman, Jaffer Sayed Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low-Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of the overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angles of attack. As a part of the validation of low fidelity tool, the plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficient, the overall trend has under-predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics

Procedia PDF Downloads 469
2223 Stripping of Flavour-Active Compounds from Aqueous Food Streams: Effect of Liquid Matrix on Vapour-Liquid Equilibrium in a Beer-Like Solution

Authors: Ali Ammari, Karin Schroen

Abstract:

In brewing industries, stripping is a downstream process to separate volatiles from beer. Due to physiochemical similarities between flavour components, the selectivity of this method is not favourable. Besides, the presence of non-volatile compounds such as proteins and carbohydrates may affect the separation of flavours due to their retaining properties. By using a stripping column with structured packing coupled with a gas chromatography, in this work, the overall mass transfer coefficient along with their corresponding equilibrium data was investigated for a model solution consist of water, ethanol, ethyl acetate and isoamyl acetate. Static headspace analysis also was employed to derive equilibrium data for flavours in the presence of beer dry matter. As it was expected ethanol and dry matter showed retention properties; however, the effect of viscosity in mass transfer coefficient was discarded due to the fact that the viscosity of solution decreased during stripping. The effect of ethanol and beer dry matter were mapped to be used for designing stripping could.

Keywords: flavour, headspace, Henry’s coefficient, mass transfer coefficient, stripping

Procedia PDF Downloads 194
2222 Study on Shape Coefficient of Large Statue Building Based on CFD

Authors: Wang Guangda, Ma Jun, Zhao Caiqi, Pan Rui

Abstract:

Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure.

Keywords: large statue structure, shape coefficient, irregular structure, wind tunnel test, numerical wind tunnel simulation

Procedia PDF Downloads 375
2221 Investigating and Comparing the Performance of Baseboard and Panel Radiators by Calculating the Thermal Comfort Coefficient

Authors: Mohammad Erfan Doraki, Mohammad Salehi

Abstract:

In this study, to evaluate the performance of Baseboard and Panel radiators with thermal comfort coefficient, A room with specific dimensions was modeled with Ansys fluent and DesignBuilder, then calculated the speed and temperature parameters in different parts of the room in two modes of using Panel and Baseboard radiators and it turned out that use of Baseboard radiators has a more uniform temperature and speed distribution, but in a Panel radiator, the room is warmer. Then, by calculating the thermal comfort indices, It was shown that using a Panel radiator is a more favorable environment and using a Baseboard radiator is a more uniform environment in terms of thermal comfort.

Keywords: Radiator, Baseboard, optimal, comfort coefficient, heat

Procedia PDF Downloads 168
2220 Thermodynamic Analysis of an Ejector-Absorption Refrigeration Cycle with Using NH3-H2O

Authors: Samad Jafarmadar, Amin Habibzadeh, Mohammad Mehdi Rashidi, Sayed Sina Rezaei, Abbas Aghagoli

Abstract:

In this paper, the ejector-absorption refrigeration cycle is presented. This article deals with the thermodynamic simulation and the first and second law analysis of an ammonia-water. The effects of parameters such as condenser, absorber, generator, and evaporator temperatures have been investigated. The influence of the various operating parameters on the performance coefficient and exergy efficiency of this cycle has been studied. The results show that when the temperature of different parts increases, the performance coefficient and the exergy efficiency of the cycle decrease, except for evaporator and generator, that causes an increase in coefficient of performance (COP). According to the results, absorber and ejector have the highest exergy losses in the studied conditions.

Keywords: absorption refrigeration, COP, ejector, exergy efficiency

Procedia PDF Downloads 324
2219 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India

Authors: Suraj Jena, Rabindra Kumar Panda

Abstract:

The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.

Keywords: Groundwater recharge, climate variability, Land use/cover, GCM

Procedia PDF Downloads 282
2218 Tribocorrosion Behavior of Austempered Ductile Iron Microalloyed with Boron

Authors: S. Gvazava, N. Khidasheli, G. Gordeziani, A. DL. Batako

Abstract:

The work presented in this paper studied the tribological characteristics (wear resistance, friction coefficient) of austempered ductile iron (ADI) with different combinations of structural composition (upper bainite, lower bainite, retained austenite) in dry sliding friction. A range of structural states of the metal matrix was obtained by changing the regimes of isothermal quenching of high-strength cast iron. The tribological tests were carried out using two sets of isothermal quenched cast irons. After austenitization at 900°С for 60 minutes, the specimens from the first group were isothermally quenched at the 300°С temperature and the specimens from the second set – at 400°С. The investigations showed that the isothermal quenching increases the friction coefficient of high-strength cast irons. The friction coefficient was found to be in the range from 0.4 to 0.55 for cast irons, depending on the structures of the metal matrix. The quenched cast irons having lower bainite demonstrate higher wear resistance in dry friction conditions. The dependence of wear resistance on the amount of retained austenite in isothermal quenched cast irons has a nonlinear characteristic and reaches its maximum value when the content of retained austenite is about 15-22%. The boron micro-additives allowed to reduce the friction coefficient of ADI and increase their wear resistance by 1.5-1.7 times.

Keywords: wear resistance, dry sliding, austempering, ADI, friction coefficient, retained austenite, isothermal quenching

Procedia PDF Downloads 181
2217 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine

Authors: O. Afshar

Abstract:

Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.

Keywords: tidal energy, lift coefficient, drag coefficient, roughness

Procedia PDF Downloads 382
2216 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams

Authors: Jiin-Yuh Jang, Yu-Feng Gan

Abstract:

In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.

Keywords: controlled cooling, H-Beam, optimization, thermal stress

Procedia PDF Downloads 371
2215 Enhancement in Seebeck Coefficient of MBE Grown Un-Doped ZnO by Thermal Annealing

Authors: M. Asghar, K. Mahmood, F. Malik, Lu Na, Y-H Xie, Yasin A. Raja, I. Ferguson

Abstract:

In this paper, we have reported an enhancement in Seebeck coefficient of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at 500°C – 800°C, keeping a step of 100°C for one hour. Room temperature Seebeck measurements showed that Seebeck coefficient and power factor increased from 222 to 510 µV/K and 8.8×10^-6 to 2.6×10^-4 Wm^-1K^-2 as annealing temperature increased from 500°C to 800°C respectively. This is the highest value of Seebeck coefficient ever reported for un-doped MBE grown ZnO according to best of our knowledge. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Keywords: ZnO, MBE, thermoelectric properties, annealing temperature, crystal structure

Procedia PDF Downloads 445
2214 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: buoyancy force, laminar mixed convection, mixture model, nano-fluid, two-phase

Procedia PDF Downloads 469