Search results for: disease cluster
4546 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases
Authors: W. Soufi, F. Boukli Hacene, S. Ghalem
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling
Procedia PDF Downloads 1054545 Spatio-temporal Distribution of Surface Water Quality in the Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This research aims to present a surface water quality assessment of hydrochemical parameters in the Kebir Rhumel Basin, Algeria. The water quality index (WQI), Mann–Kendall (MK) test, and hierarchical cluster analysis (HCA) were used in oder to understand the spatio-temporal distribution of the surface water quality in the study area. Eleven hydrochemical parameters were measured monthly at eight stations from January 2016 to December 2020. The dominant cation in the surface water was found to be calcium, followed by sodium, and the dominant anion was sulfate, followed by chloride. In terms of WQI, a significant percentage of surface water samples at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khlifa (SK) exhibited poor water quality, with approximately 89.5%, 90.6%, 78.2%, and 62.7%, respectively, falling into this category. Mann–Kendall trend analysis revealed a significantly increasing trend in WQI values at stations Oued Boumerzoug (ON) and SK, indicating that the temporal variation of WQI in these stations is significant. Hierarchical clustering analysis classified the data into three clusters. The first cluster contained approximately 22% of the total number of months, the second cluster included about 30%, and the third cluster had the highest representation, approximately 48% of the total number of months. Within these clusters, certain stations exhibited higher WQI values. In the first cluster, stations GR and ON had the highest WQI values. In the second cluster, stations Oued Boumerzoug (OB) and SK showed the highest WQI values, while in the last cluster, stations AS, BH, El Milia (EM), and Hammam Grouz (HG) had the highest mean WQI values. Also, approximately 38%, 41%, and 38% of the total water samples in the first, second, and third clusters, respectively, were classified as having poor water quality. The findings of this study can serve as a scientific basis for decision-makers to formulate strategies for surface water quality restoration and management in the region.Keywords: surface water, water quality index (WQI), Mann Kendall (MK) test, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 254544 The Practices and Challenges of Secondary School Cluster Supervisors in Implementing School Improvement Program in Saesie Tsaeda Emba Woreda, Eastern Zone of Tigray Region
Authors: Haftom Teshale Gebre
Abstract:
According to the ministry of education’s school improvement program blueprint document (2007), the timely and basic aim of the program is to improve students’ academic achievement through creating conducive teaching and learning environments and with the active involvement of parents in the teaching and learning process. The general objective of the research is to examine the practices of cluster school supervisors in implementing school improvement programs and the major factors affecting the study area. The study used both primary and secondary sources, and the sample size was 93. Twelve people are chosen from each of the two clusters (Edaga Hamus and Adi-kelebes). And cluster ferewyni are Tekli suwaat, Edaga robue, and Kiros Alemayo. In the analysis stage, several interrelated pieces of information were summarized and arranged to make the analysis easily manageable by using statistics and data (STATA). Study findings revealed that the major four domains impacted by school improvement programs through their mean, standard deviation, and variance were 2.688172, 1.052724, and 1.108228, respectively. And also, the researcher can conclude that the major factors of the school improvement program and mostly cluster supervisors were inadequate attention given to supervision service and no experience in the practice of supervision in the study area.Keywords: cluster, eastern Tigray, Saesie Tsaeda Emba, SPI
Procedia PDF Downloads 324543 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 4354542 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.Keywords: HbA1C, T2DM, SBP, FBS
Procedia PDF Downloads 124541 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2744540 The Prevalence of Coronary Artery Disease and Its Risk Factors in Rural and Urban Areas of Pakistan
Authors: Muhammad Kamran Hanif Khan, Fahad Mushtaq
Abstract:
Background: In both developed and underdeveloped countries, coronary artery disease (CAD) is a serious cause of death and disability. Cardiovascular disease (CVD) is becoming more prevalent in emerging countries like Pakistan due to the spread and acceptance of Western lifestyles. Material and Methods: An observational cross-sectional investigation was conducted, and data collection relied on a random cluster sampling method. The sample size for this cross-sectional study was calculated using the following factors: estimated true proportion of 17.5%, desired precision of 2%, and confidence interval of 95%. The data for this study was collected from a sample of 1387 adults. Results: The average age of those living in rural areas is 55.24 years, compared to 52.60 years for those living in urban areas. The mean fasting blood glucose of the urban participants is 105.28 mg/dL, which is higher than the mean fasting blood glucose of the rural participants, which is 102.06 mg/dL. The mean total cholesterol of the urban participants is 192.20 mg/dL, which is slightly higher than the mean total cholesterol of the rural participants, which is 191.97 mg/dL. CAD prevalence is greater in urban areas than in rural areas. ECG abnormalities prevalence is 16.1% in females compared to 12.5% in men. Conclusion: The prevalence of CAD is more common in urban areas than in rural ones for all of the measures of CAD used in the study.Keywords: CVD prevalence, CVD risk factors, rural area, urban area
Procedia PDF Downloads 794539 Industry 4.0 Platforms as 'Cluster' ecosystems for small and medium enterprises (SMEs)
Authors: Vivek Anand, Rainer Naegele
Abstract:
Industry 4.0 is a global mega-trend revolutionizing the world of advanced manufacturing, but also bringing up challenges for SMEs. In response, many regional, as well as digital Industry 4.0 Platforms, have been set up to boost the competencies of established enterprises as well as SMEs. The concept of 'Clusters' is a policy tool that aims to be a starting point to establish sustainable and self-supporting structures in industries of a region by identifying competencies and supporting cluster actors with services that match their growth needs. This paper is motivated by the idea that Clusters have the potential to enable firms, particularly SMEs, to accelerate the innovation process and transition to digital technologies. In this research, the efficacy of Industry 4.0 platforms as Cluster ecosystems is evaluated, especially for SMEs. Focusing on the Baden Wurttemberg region in Germany, an action research method is employed to study how SMEs leverage other actors on Industry 4.0 Platforms to further their Industry 4.0 journeys. The aim is to evaluate how such Industry 4.0 platforms stimulate innovation, cooperation and competitiveness. Additionally, the barriers to these platforms fulfilling their promise to serve as capacity building cluster ecosystems for SMEs in a region will also be identified. The findings will be helpful for academicians and policymakers alike, who can leverage a ‘cluster policy’ to enable Industry 4.0 ecosystems in their regions. Furthermore, relevant management and policy implications stem from the analysis. This will also be of interest to the various players in a cluster ecosystem - like SMEs and service providers - who benefit from the cooperation and competition. The paper will improve the understanding of how a dialogue orientation, a bottom-up approach and active integration of all involved cluster actors enhance the potential of Industry 4.0 Platforms. A strong collaborative culture is a key driver of digital transformation and technology adoption across sectors, value chains and supply chains; and will position Industry 4.0 Platforms at the forefront of the industrial renaissance. Motivated by this argument and based on the results of the qualitative research, a roadmap will be proposed to position Industry 4.0 Platforms as effective clusters ecosystems to support Industry 4.0 adoption in a region.Keywords: cluster policy, digital transformation, industry 4.0, innovation clusters, innovation policy, SMEs and startups
Procedia PDF Downloads 2224538 The Effects of Yield and Yield Components of Some Quality Increase Applications on Razakı Grape Variety
Authors: Şehri Çınar, Aydın Akın
Abstract:
This study was conducted Razakı grape variety (Vitis vinifera L.) and its vine which was aged 19 was grown on 5 BB rootstock in a vegetation period of 2014 in Afyon province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), Shoot Tip Reduction (STR), 1/3 CTR + STR, Boric Acid (BA), 1/3 CTR + BA, STR + BA, 1/3 CTR + STR + BA on yield and yield components of Razakı grape variety. The results were obtained as the highest fresh grape yield (7.74 kg/vine) with C application, as the highest cluster weight (244.62 g) with STR application, as the highest 100 berry weight (504.08 g) with C application, as the highest maturity index (36.89) with BA application, as the highest must yield (695.00 ml) with BA and (695.00 ml) with 1/3 CTR + STR + BA applications, as the highest intensity of L* color (46.93) with STR and (46.10) with 1/3 CTR + STR + BA applications, as the highest intensity of a* color (-5.37) with 1/3 CTR + STR and (-5.01) with STR, as the highest intensity of b* color (12.59) with STR application. The shoot tip reduction to increase cluster weight and boric acid application to increase maturity index of Razakı grape variety can be recommended.Keywords: razakı, 1/3 cluster tip reduction, shoot tip reduction, boric acid, yield and yield components
Procedia PDF Downloads 4734537 Investigation of Clubroot Disease Occurrence under Chemical and Organic Soil Environment
Authors: Zakirul Islam, Yugo Kumokawa, Quoc Thinh Tran, Motoki Kubo
Abstract:
Clubroot is a disease of cruciferous plant caused by soil born pathogen Plasmodiophora brassicae and can significantly limit the production through rapid spreading. The present study was designed to investigate the effect of cultivation practices (chemical and organic soils) on clubroot disease development in Brassica rapa. Disease index and root bacterial composition were investigated for both chemical and organic soils. The bacterial biomass and diversity in organic soil were higher than those in chemical soil. Disease severity was distinct for two different cultivation methods. The number of endophytic bacteria decreased in the infected root for both soils. The increased number of endophytic bacterial number led to reduce the proliferation of pathogen spore inside the root and thus reduced the disease severity in organic plants.Keywords: clubroot disease, bacterial biomass, root infection, disease index, chemical cultivation, organic cultivation
Procedia PDF Downloads 814536 Cardiovascular Disease Is Common among Patients with Systemic Lupus Erythematosus
Authors: Fathia Ehmouda Zaid, Reim Abudelnbi
Abstract:
Cardiovascular disease is a major cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Patients and method: Cross-section study (68) patients diagnosed as systemic lupus erythematosus (SLE), who visited the outpatient clinic of rheumatology, these patients were interviewed with a structured questionnaire about their past and current clinically for presence of Cardiovascular disease in systemic lupus and use SLEDAI, specific tests [ECG –ECHO –CXRAY] the data are analyzed statistically by Pearson's correlation coefficient was calculated and statistical significance was defined as P< 0.05,during period (2013-2014). Objective: Estimation Cardiovascular disease manifestation of systemic lupus erythematosus, correlation with disease activity, morbidity, and mortality. Result: (68) Patients diagnosed as systemic lupus erythematosus' age range from (18-48 years), M=(13±29Y), Sex were female 66/68 (97.1%), male 2/68 (2.9%),duration of disease range[1-15year], M =[7±8y], we found Cardiovascular disease manifestation of systemic lupus erythematosus 32/68 (47.1%), correlation with disease activity use SLEDAI,(r= 476** p=0.000),Morbidity,(r= .554**; p=0.000) and mortality (r=.181; p=.139), Cardiovascular disease manifestations of systemic lupus erythematosus are pericarditis 8/68 (11.8%), pericardial effusion 6/68 (8.8%), myocarditis 4/68 (5.9 %), valvular lesions (endocarditis) 1/68 (1.5%), pulmonary hypertension (PAH) 12/68 (17.6%), coronary artery disease 1/68 (1.5%), none of patients have conduction abnormalities involvement. Correlation with disease activity use SLEDAI, pericarditis (r= .210, p=.086), pericardial effusion (r= 0.079, p=.520), myocarditis (r= 272*, p=.027), valvular lesions (endocarditis) (r= .112, p= .362), pulmonary hypertension (PAH) (r= .257*, p=.035) and coronary artery disease (r=.075, p=.544) correlation between cardiovascular disease manifestations of systemic lupus erythematosus and specific organ involvement we found Mucocutaneous (r=.091 p= .459), musculoskeletal (MSK) (r=.110 p=.373), Renal disease (r=.278*, p=.022), neurologic disease (r=.085, p=.489) and Hematologic disease (r=-.264*, p=.030). Conclusion: Cardiovascular manifestation is more frequent symptoms with systemic lupus erythematosus (SLE) is 47 % correlation with disease activity and morbidity but not with mortality. Recommendations: Focus research to evaluation and an adequate assessment of cardiovascular complications on the morbidity and mortality of the patients with SLE are still required.Keywords: cardiovascular disease, systemic lupus erythematosus, disease activity, mortality
Procedia PDF Downloads 4444535 Proposing an Algorithm to Cluster Ad Hoc Networks, Modulating Two Levels of Learning Automaton and Nodes Additive Weighting
Authors: Mohammad Rostami, Mohammad Reza Forghani, Elahe Neshat, Fatemeh Yaghoobi
Abstract:
An Ad Hoc network consists of wireless mobile equipment which connects to each other without any infrastructure, using connection equipment. The best way to form a hierarchical structure is clustering. Various methods of clustering can form more stable clusters according to nodes' mobility. In this research we propose an algorithm, which allocates some weight to nodes based on factors, i.e. link stability and power reduction rate. According to the allocated weight in the previous phase, the cellular learning automaton picks out in the second phase nodes which are candidates for being cluster head. In the third phase, learning automaton selects cluster head nodes, member nodes and forms the cluster. Thus, this automaton does the learning from the setting and can form optimized clusters in terms of power consumption and link stability. To simulate the proposed algorithm we have used omnet++4.2.2. Simulation results indicate that newly formed clusters have a longer lifetime than previous algorithms and decrease strongly network overload by reducing update rate.Keywords: mobile Ad Hoc networks, clustering, learning automaton, cellular automaton, battery power
Procedia PDF Downloads 4114534 Evaluation of Disease Risk Variables in the Control of Bovine Tuberculosis
Authors: Berrin Şentürk
Abstract:
In this study, due to the recurrence of bovine tuberculosis, in the same areas, the risk factors for the disease were determined and evaluated at the local level. This study was carried out in 32 farms where the disease was detected in the district and center of Samsun province in 2014. Predetermined risk factors, such as farm, environmental and economic risks, were investigated with the survey method. It was predetermined that risks in the three groups are similar to the risk variables of the disease on the global scale. These risk factors that increase the susceptibility of the infection must be understood by the herd owners. The risk-based contagious disease management system approach should be applied for bovine tuberculosis by farmers, animal health professionals and public and private sector decision makers.Keywords: bovine tuberculosis, disease management, control, outbreak, risk analysis
Procedia PDF Downloads 4024533 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 1654532 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis
Authors: I Dewa Gede Arya Putra
Abstract:
Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².Keywords: PCA, cluster, Ward's method, wind speed
Procedia PDF Downloads 1954531 Configuring Resilience and Environmental Sustainability to Achieve Superior Performance under Differing Conditions of Transportation Disruptions
Authors: Henry Ataburo, Dominic Essuman, Emmanuel Kwabena Anin
Abstract:
Recent trends of catastrophic events, such as the Covid-19 pandemic, the Suez Canal blockage, the Russia-Ukraine conflict, the Israel-Hamas conflict, and the climate change crisis, continue to devastate supply chains and the broader society. Prior authors have advocated for a simultaneous pursuit of resilience and sustainability as crucial for navigating these challenges. Nevertheless, the relationship between resilience and sustainability is a rather complex one: resilience and sustainability are considered unrelated, substitutes, or complements. Scholars also suggest that different firms prioritize resilience and sustainability differently for varied strategic reasons. However, we know little about whether, how, and when these choices produce different typologies of firms to explain differences in financial and market performance outcomes. This research draws inferences from the systems configuration approach to organizational fit to contend that a taxonomy of firms may emerge based on how firms configure resilience and environmental sustainability. The study further examines the effects of these taxonomies on financial and market performance in differing transportation disruption conditions. Resilience is operationalized as a firm’s ability to adjust current operations, structure, knowledge, and resources in response to disruptions, whereas environmental sustainability is operationalized as the extent to which a firm deploys resources judiciously and keeps the ecological impact of its operations to the barest minimum. Using primary data from 199 firms in Ghana and cluster analysis as an analytical tool, the study identifies four clusters of firms based on how they prioritize resilience and sustainability: Cluster 1 - "strong, moderate resilience, high sustainability firms," Cluster 2 - "sigh resilience, high sustainability firms," Cluster 3 - "high resilience, strong, moderate sustainability firms," and Cluster 4 - "weak, moderate resilience, strong, moderate sustainability firms". In addition, ANOVA and regression analysis revealed the following findings: Only clusters 1 and 2 were significantly associated with both market and financial performance. Under high transportation disruption conditions, cluster 1 firms excel better in market performance, whereas cluster 2 firms excel better in financial performance. Conversely, under low transportation disruption conditions, cluster 1 firms excel better in financial performance, whereas cluster 2 firms excel better in market performance. The study provides theoretical and empirical evidence of how resilience and environmental sustainability can be configured to achieve specific performance objectives under different disruption conditions.Keywords: resilience, environmental sustainability, developing economy, transportation disruption
Procedia PDF Downloads 684530 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 1494529 Effect of Time of Planting on Powdery Mildew Development on Cucumber
Authors: H. Parameshwar Naik, Shripad Kulkarni
Abstract:
Powdery mildew is a serious disease among the fungal in high humid areas with varied temperature conditions. In recent days disease becomes very severe due to uncertain weather conditions and unique character of the disease is, it produces white mycelia growth on upper and lower leaf surfaces and in severe conditions it leads to defoliation. Results of the experiment revealed that sowing of crop in the I fortnight (FN) of July recorded the minimum mean disease severity (7.96 %) followed by crop sown in II FN of July (13.19 %) as against the crop sown in II FN of August (41.44 %) and I FN of September (33.78 %) and the I fortnight of October (33.77 %). In the first date of sowing infection started at 45 DAS and progressed till 73 DAS and it was up to 14.66 Percent and in second date of sowing disease progressed up to 22.66 percent and in the third date of sowing, it was up to 59.35 percent. Afterward, the disease started earlier and progressed up to 66.15 percent and in sixth and seventh date of sowing disease progressed up to 43.15 percent and 59.85 percent respectively. Disease progress is very fast after 45 days after sowing and highest disease incidence was noticed at 73 DAS irrespective of dates of sowing. From the results of the present study, it is very clear that disease development will be very high if crop sown in between 1st fortnight of August and the 1st fortnight of September.Keywords: cucumber, India, Karnataka, powdery mildew
Procedia PDF Downloads 2634528 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5174527 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu
Abstract:
Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks
Procedia PDF Downloads 2324526 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan
Abstract:
Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic
Procedia PDF Downloads 2544525 Level of Awareness of Genetic Counselling in Benue State Nigeria: Its Advocacy on the Inheritance of Sickle Cell Disease
Authors: Agi Sunday
Abstract:
A descriptive analysis of reported cases of sickle cell disease and the level of awareness about genetic counselling in 30 hospitals were carried out. Additionally, 150 individuals between ages 16-45 were randomly selected for evaluation of genetic counselling awareness. The main tools for this study were questionnaires which were taken to hospitals, and individuals completed the others. The numbers of reported cases of sickle cell disease recorded in private, public and teaching hospitals were 14 and 57; 143 and 89; 272 and 57 for the periods of 1995-2000 and 2001-2005, respectively. A general informal genetic counselling took place mostly in the hospitals visited. 122 (86%) individuals had the knowledge of genetic disease and only 43 (30.3%) individuals have been exposed to genetic counselling. 64% of individuals agreed that genetic counselling would help in the prevention of genetic disease.Keywords: sickle disease, genetic counseling, genetic testing, advocacy
Procedia PDF Downloads 3894524 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties
Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph
Abstract:
Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis
Procedia PDF Downloads 804523 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia
Authors: Hanna Mamo Ergando
Abstract:
Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities
Procedia PDF Downloads 2204522 Role of DatScan in the Diagnosis of Parkinson's Disease
Authors: Shraddha Gopal, Jayam Lazarus
Abstract:
Aims: To study the referral practice and impact of DAT-scan in the diagnosis or exclusion of Parkinson’s disease. Settings and Designs: A retrospective study Materials and methods: A retrospective study of the results of 60 patients who were referred for a DAT scan over a period of 2 years from the Department of Neurology at Northern Lincolnshire and Goole NHS trust. The reason for DAT scan referral was noted under 5 categories against Parkinson’s disease; drug-induced Parkinson’s, essential tremors, diagnostic dilemma, not responding to Parkinson’s treatment, and others. We assessed the number of patients who were diagnosed with Parkinson’s disease against the number of patients in whom Parkinson’s disease was excluded or an alternative diagnosis was made. Statistical methods: Microsoft Excel was used for data collection and statistical analysis, Results: 30 of the 60 scans were performed to confirm the diagnosis of early Parkinson’s disease, 13 were done to differentiate essential tremors from Parkinsonism, 6 were performed to exclude drug-induced Parkinsonism, 5 were done to look for alternative diagnosis as the patients were not responding to anti-Parkinson medication and 6 indications were outside the recommended guidelines. 55% of cases were confirmed with a diagnosis of Parkinson’s disease. 43.33% had Parkinson’s disease excluded. 33 of the 60 scans showed bilateral abnormalities and confirmed the clinical diagnosis of Parkinson’s disease. Conclusion: DAT scan provides valuable information in confirming Parkinson’s disease in 55% of patients along with excluding the diagnosis in 43.33% of patients aiding an alternative diagnosis.Keywords: DATSCAN, Parkinson's disease, diagnosis, essential tremors
Procedia PDF Downloads 2324521 Efficacy of Teachers' Cluster Meetings on Teachers' Lesson Note Preparation and Teaching Performance in Oyo State, Nigeria
Authors: Olusola Joseph Adesina, Sunmaila Oyetunji Raimi, Olufemi Akinloye Bolaji, Abiodun Ezekiel Adesina
Abstract:
The quality of education and the standard of a nation cannot rise above the quality of the teacher (NPE, 2004). Efforts at improving the falling standard of education in the country call for the need-based assessment of the primary tier of education in Nigeria. It was revealed that the teachers’ standard of performance and pupils’ achievement was below average. Teachers’ cluster meeting intervention was therefore recommended as a step towards enhancing the teachers’ professional competency, efficient and effective proactive and interactive lesson presentation. The study thus determined the impact of the intervention on teachers’ professional performance (lesson note preparation and teaching performance) in Oyo State, Nigeria. The main and interaction effects of the gender of the teachers as moderator variable were also determined. Three null hypotheses guided the study. Pre-test, posttest control group quazi experimental design was adopted for the study. Three hundred intact classes from three hundred different schools were randomly selected into treatment and control groups. Two response instruments-Classroom Lesson Note Preparation Checklist (CLNPC; r = 0.89) Cluster Lesson Observation Checklist (CLOC; r = 0.86) were used for data collection. Mean, Standard deviation and Analysis of Covariance (ANCOVA) were used to analyse the collected data. The results showed that the teachers’ cluster meeting have significant impact on teachers’ lesson note preparation (F(1,295) = 31.607; p < 0.05; η2 = .097) and teaching performance (F(1,295) = 20.849; p < 0.05; η2 = .066) in the core subjects of primary schools in Oyo State, Nigeria. The study therefore recommended among others that teachers’ cluster meeting should be sustained for teachers’ professional development in the State.Keywords: teachers’ cluster meeting, teacher lesson note preparation, teaching performance, teachers’ gender, primary schools in Oyo state
Procedia PDF Downloads 3454520 Three-Dimensional Model of Leisure Activities: Activity, Relationship, and Expertise
Authors: Taekyun Hur, Yoonyoung Kim, Junkyu Lim
Abstract:
Previous works on leisure activities had been categorizing activities arbitrarily and subjectively while focusing on a single dimension (e.g. active-passive, individual-group). To overcome these problems, this study proposed a Korean leisure activities’ matrix model that considered multidimensional features of leisure activities, which was comprised of 3 main factors and 6 sub factors: (a) Active (physical, mental), (b) Relational (quantity, quality), (c) Expert (entry barrier, possibility of improving). We developed items for measuring the degree of each dimension for every leisure activity. Using the developed Leisure Activities Dimensions (LAD) questionnaire, we investigated the presented dimensions of a total of 78 leisure activities which had been enjoyed by most Koreans recently (e.g. watching movie, taking a walk, watching media). The study sample consisted of 1348 people (726 men, 658 women) ranging in age from teenagers to elderlies in their seventies. This study gathered 60 data for each leisure activity, a total of 4860 data, which were used for statistical analysis. First, this study compared 3-factor model (Activity, Relation, Expertise) fit with 6-factor model (physical activity, mental activity, relational quantity, relational quality, entry barrier, possibility of improving) fit by using confirmatory factor analysis. Based on several goodness-of-fit indicators, the 6-factor model for leisure activities was a better fit for the data. This result indicates that it is adequate to take account of enough dimensions of leisure activities (6-dimensions in our study) to specifically apprehend each leisure attributes. In addition, the 78 leisure activities were cluster-analyzed with the scores calculated based on the 6-factor model, which resulted in 8 leisure activity groups. Cluster 1 (e.g. group sports, group musical activity) and Cluster 5 (e.g. individual sports) had generally higher scores on all dimensions than others, but Cluster 5 had lower relational quantity than Cluster 1. In contrast, Cluster 3 (e.g. SNS, shopping) and Cluster 6 (e.g. playing a lottery, taking a nap) had low scores on a whole, though Cluster 3 showed medium levels of relational quantity and quality. Cluster 2 (e.g. machine operating, handwork/invention) required high expertise and mental activity, but low physical activity. Cluster 4 indicated high mental activity and relational quantity despite low expertise. Cluster 7 (e.g. tour, joining festival) required not only moderate degrees of physical activity and relation, but low expertise. Lastly, Cluster 8 (e.g. meditation, information searching) had the appearance of high mental activity. Even though clusters of our study had a few similarities with preexisting taxonomy of leisure activities, there was clear distinctiveness between them. Unlike the preexisting taxonomy that had been created subjectively, we assorted 78 leisure activities based on objective figures of 6-dimensions. We also could identify that some leisure activities, which used to belong to the same leisure group, were included in different clusters (e.g. filed ball sports, net sports) because of different features. In other words, the results can provide a different perspective on leisure activities research and be helpful for figuring out what various characteristics leisure participants have.Keywords: leisure, dimensional model, activity, relationship, expertise
Procedia PDF Downloads 3114519 Two-Photon Ionization of Silver Clusters
Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian
Abstract:
Resonant two-photon ionization (TPI) is a valuable technique for the study of clusters due to its ultrahigh sensitivity. The comparison of the observed TPI spectra with results of calculations allows to deduce important information on the shape, rotational and vibrational temperatures of the clusters with high accuracy. In this communication we calculate the TPI cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is chosen to be close to the surface plasmon (SP) energy of cluster in dielectric media. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows to take into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.Keywords: resonance enhancement, silver clusters, surface plasmon, two-photon ionization
Procedia PDF Downloads 4274518 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region
Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad
Abstract:
Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy
Procedia PDF Downloads 514517 Estimation of Rare and Clustered Population Mean Using Two Auxiliary Variables in Adaptive Cluster Sampling
Authors: Muhammad Nouman Qureshi, Muhammad Hanif
Abstract:
Adaptive cluster sampling (ACS) is specifically developed for the estimation of highly clumped populations and applied to a wide range of situations like animals of rare and endangered species, uneven minerals, HIV patients and drug users. In this paper, we proposed a generalized semi-exponential estimator with two auxiliary variables under the framework of ACS design. The expressions of approximate bias and mean square error (MSE) of the proposed estimator are derived. Theoretical comparisons of the proposed estimator have been made with existing estimators. A numerical study is conducted on real and artificial populations to demonstrate and compare the efficiencies of the proposed estimator. The results indicate that the proposed generalized semi-exponential estimator performed considerably better than all the adaptive and non-adaptive estimators considered in this paper.Keywords: auxiliary information, adaptive cluster sampling, clustered populations, Hansen-Hurwitz estimation
Procedia PDF Downloads 238