Search results for: Brazilian fIbers
1009 Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs
Authors: Thi Nguyet Hang Nguyen, Kang Hai Tan
Abstract:
Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers.Keywords: hollow-core slabs, shear strength, steel fibers, web-shear failure
Procedia PDF Downloads 1741008 Wettability Properties of Pineapple Leaf Fibers and Banana Pseudostem Fibers Treated by Cold Plasma
Authors: Tatiana Franco, Hugo A. Estupinan
Abstract:
Banana pseudostem fiber (BPF) and pineapple leaf fiber (PLF) for their excellent mechanical properties and biodegradability characteristics arouse interest in different areas of research. F In tropical regions, where the banana pseudostem and the pineapple leaf are transformed into hard-to-handle solid waste, they can be low-cost raw material and environmentally sustainable in research for composite materials. In terms of functionality of this type of fiber, an open structure would allow the adsorption and retention of organic, inorganic and metallic species. In general, natural fibers have closed structures on their surface with intricate internal arrangements that can be used for the solution of environmental problems and other technological uses, however it is not possible to access their internal structure and sublayers, exposing the fibers in the natural state. An alternative method to chemical and enzymatic treatment are the processes with the plasma treatments, which are known to be clean, economical and controlled. In this type of treatment, a gas contained in a reactor in the form of plasma acts on the fiber generating changes in its structure, morphology and topography. This work compares the effects on fibers of PLF and BPF treated with cold argon plasma, alternating time and current. These fibers are grown in the regions of Antioquia-Colombia. The morphological, compositional and wettability properties of the fibers were analyzed by Raman microscopy, contact angle measurements, scanning electron microscopy (SEM) and atomic force microscopy analysis (AFM). The treatment with cold plasma on PLF and BPF allowed increasing its wettability, the topography and the microstructural relationship between lignin and cellulose.Keywords: cold plasma, contact angle, natural fibers, Raman, SEM, wettability
Procedia PDF Downloads 1581007 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers
Authors: Shota Nagata, Kazuya Okubo, Toru Fujii
Abstract:
The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism
Procedia PDF Downloads 4461006 Pufferfish Skin Collagens and Their Role in Inflation
Authors: Kirti, Samanta Sekhar Khora
Abstract:
Inflation serves different purposes in different organisms and adds beauty to their behavioral attributes. Pufferfishes are also known as blowfish, swellfish, and globefish due to their remarkable ability to puff themselves up like a balloon when threatened. This ability to inflate can be correlated with anatomical features that are unique to pufferfishes. Pufferfish skin provides a rigid framework to support the body contents and a flexible covering to allow whatever changes are necessary for remarkable inflation mechanism. Skin, the outer covering of animals is made up of collagen fibers arranged in more or less ordered arrays. The ventral skin of pufferfish stretches more than dorsal skin during inflation. So, this study is of much of the interest in comparing the structure and mechanical properties of these two skin regions. The collagen fibers were found to be arranged in different ordered arrays for ventral and dorsal skin and concentration of fibers were also found to be different for these two skin parts. Scanning electron microscopy studies of the ventral skin showed a unidirectional arrangement of the collagen fibers, which provide more stretching capacity. Dorsal skin, on the other hand, has an orthogonal arrangement of fibers. This provides more stiffness to the ventral skin at the time of inflation. In this study, the possible role of collagen fibers was determined which significantly contributed to the remarkable inflation mechanism of pufferfishes.Keywords: collagen, histology, inflation, pufferfish, scanning electron microscopy, Small-Angle X-Ray Scattering (SAXS), transmission electron microscopy
Procedia PDF Downloads 3191005 Flexural Properties of Typha Fibers Reinforced Polyester Composite
Authors: Sana Rezig, Yosr Ben Mlik, Mounir Jaouadi, Foued Khoffi, Slah Msahli, Bernard Durand
Abstract:
Increasing interest in environmental concerns, natural fibers are once again being considered as reinforcements for polymer composites. The main objective of this study is to explore another natural resource, Typha fiber; which is renewable without production cost and available abundantly in nature. The aim of this study was to study the flexural properties of composite resin with and without reinforcing Typha leaf and stem fibers. The specimens were made by the hand-lay-up process using polyester matrix. In our work, we focused on the effect of various treatment conditions (sea water, alkali treatment and a combination of the two treatments), as a surface modifier, on the flexural properties of the Typha fibers reinforced polyester composites. Moreover, weight ratio of Typha leaf or stem fibers was investigated. Besides, both fibers from leaf and stem of Typha plant were used to evaluate the reinforcing effect. Another parameter, which is reinforcement structure, was investigated. In fact, a first composite was made with air-laid nonwoven structure of fibers. A second composite was with a mixture of fibers and resin for each kind of treatment. Results show that alkali treatment and combined process provided better mechanical properties of composites in comparison with fiber treated by sea water. The fiber weight ratio influenced the flexural properties of composites. Indeed, a maximum value of flexural strength of 69.8 and 62,32 MPa with flexural modulus of 6.16 and 6.34 GPawas observed respectively for composite reinforced with leaf and stem fibers for 12.6 % fiber weight ratio. For the different treatments carried out, the treatment using caustic soda, whether alone or after retting seawater, show the best results because it improves adhesion between the polyester matrix and the fibers of reinforcement. SEM photographs were made to ascertain the effects of the surface treatment of the fibers. By varying the structure of the fibers of Typha, the reinforcement used in bulk shows more effective results as that used in the non-woven structure. In addition, flexural strength rises with about (65.32 %) in the case of composite reinforced with a mixture of 12.6% leaf fibers and (27.45 %) in the case of a composite reinforced with a nonwoven structure of 12.6 % of leaf fibers. Thus, to better evaluate the effect of the fiber origin, the reinforcing structure, the processing performed and the reinforcement factor on the performance of composite materials, a statistical study was performed using Minitab. Thus, ANOVA was used, and the patterns of the main effects of these parameters and interaction between them were established. Statistical analysis, the fiber treatment and reinforcement structure seem to be the most significant parameters.Keywords: flexural properties, fiber treatment, structure and weight ratio, SEM photographs, Typha leaf and stem fibers
Procedia PDF Downloads 4171004 Cerrado and Vereda: A Survey of Portuguese Lexicon for Brazilian Biomes
Authors: Daniel Marra
Abstract:
This paper analyses from a semantic-diachronic viewpoint the change of meanings that two lexical items of Brazilian-Portuguese language have gone through. Cerrado and Vereda designate currently the second largest Brazilian biome and one of its most important subsystems. Nevertheless, these two words have long individual histories that can be traced back to their Latin etymons. Therefore, the purpose of this work is to highlight the process by which meaning instantiated itself in these words’ formation and to discuss how semantic change installed subsequently in them. As this paper shows, the aforementioned words have been, in different past, synchronizes, created, and undergone changes of meanings by metaphor and metonymy. Besides, it is argued here that semantic change takes place due to external causes, such as generalization and specialization of meaning. It happens when a specialized use of a lexical item, restricted to a particular linguistic group, is adopted by other groups, having its meaning generalized by them. In these processes, the etymological idea of the word is generally lost, which gains, in the new group, less specific meaning in relation to its etymology, sometimes with no relation to the original idea. As a final point, it is claimed that both the creation of a lexical item and its change of meaning involve pragmatic goals, such as the need the language users have to express a new meaning related to a certain reality in the empirical world.Keywords: Brazilian biomes, metaphor and metonymy, Portuguese lexicon, semantic change
Procedia PDF Downloads 1201003 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies
Authors: K. Y. You, Y. L. Then
Abstract:
In the recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high-frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.Keywords: hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques
Procedia PDF Downloads 3121002 Medical Error: Concept and Description According to Brazilian Physicians
Authors: Vitor S. Mendonca, Maria Luisa S. Schmidt
Abstract:
The Brazilian medical profession is viewed as being error-free, so healthcare professionals who commit an error are condemned there. Medical errors occur frequently in the Brazilian healthcare system, so identifying better options for handling this issue has become of interest primarily for physicians. The purpose of this study is to better understand the tensions involved in the fear of making an error due to the harm and risk this would represent for those involved. A qualitative study was performed by means of the narratives of the lived experiences of ten acting physicians in the State of Sao Paulo. The concept and characterization of errors were discussed, together with the fear of making an error, the near misses or error in itself, how to deal with errors and what to do to avoid them. The analysis indicates an excessive pressure in the medical profession for error-free practices, with a well-established physician-patient relationship to facilitate the management of medical errors. The error occurs, but a lack of information and discussion often leads to its concealment due to fear or possible judgment by society or peers. The establishment of programs that encourage appropriate medical conduct in the event of an error requires coherent answers for humanization in Brazilian medical science. It is necessary to improve the discussion about medical errors and disseminate models of communication and notification of errors in Brazil.Keywords: medical error, narrative, physician-patient relationship, qualitative research
Procedia PDF Downloads 1791001 Bridging Stress Modeling of Composite Materials Reinforced by Fiber Using Discrete Element Method
Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski
Abstract:
The problem of toughening in brittle materials reinforced by fibers is complex, involving all the mechanical properties of fibers, matrix, the fiber/matrix interface, as well as the geometry of the fiber. An appropriate method applicable to the simulation and analysis of toughening is essential. In this work, we performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of the contribution of random fibers to the toughening of composite. Then with numerical programming, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers with high strength and low elasticity modulus benefit toughening; (ii) fibers with relatively high elastic modulus compared to the matrix may result in considerable matrix damage (spalling effect); (iii) employment of high-strength synthetic fiber is a good option. The present work makes it possible to optimize the parameters in order to produce advanced ceramic with desired performance. We believe combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed.Keywords: bridging stress, discrete element method, fiber reinforced composites, toughening
Procedia PDF Downloads 4451000 Sheathed Cotton Fibers: Material for Oil-Spill Cleanup
Authors: Benjamin M Dauda, Esther Ibrahim, Sylvester Gadimoh, Asabe Mustapha, Jiyah Mohammed
Abstract:
Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet.Keywords: oil spill, adsorption, cotton, epoxy, nonwoven
Procedia PDF Downloads 56999 Independent Audit in Brazilian Companies Listed on B3: An Analysis of Companies That Received Qualified Opinion and Disclaimer of Opinion
Authors: Diego Saldo Alves, Marcelo Paveck Ayub
Abstract:
The quality of accounting information is very important for the decision-making of managers, investors government and other information users. The opinion of the independent audit has a significant influence on the decision-making, especially the investors. Therefore, the aim of this study is to analyze the reasons that companies listed on Brazilian Stock Exchange B3, if they received qualified opinion and disclaimer of opinion of the independent auditors. We analyzed the reports of the independent auditors of 23 Brazilian companies listed in B3 that received qualified opinion and disclaimer of opinion between the years 2012 and 2017. The findings show that the companies do not comply the International Financial Reporting Standard, IFRS, also they did not provide documentation to prove the operations performed, did not account expenses, problems in corporate governance and internal controls.Keywords: audit, disclaimer of opinion, independent auditors, qualified opinion
Procedia PDF Downloads 194998 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers
Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush
Abstract:
Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships
Procedia PDF Downloads 112997 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites
Authors: Jain Jyoti, Jain Shorab, Sinha Shishir
Abstract:
In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.Keywords: composite, mechanical, natural fiber, pineapple leaf fiber
Procedia PDF Downloads 240996 Two Brazilian Medeas: The Cases of Mata Teu Pai and Medeia Negra
Authors: Jaqueline Bohn Donada
Abstract:
The significance of Euripides’ Medea for contemporary literature is noticeable. Even if the bulk of Classical Reception studies does not tend to look carefully and consistently to the literature produced outside the Anglophone world, Brazilian literature offers abundant materials for such studies. Indeed, a certain Classical background can be observed in Brazilian literature at least since 1975 when Gota d’Água [The Final Straw, in English], a play that recreates the story of Medea and sets it in a favela in Rio de Janeiro. Also worthy of notice is Ivo Bender’s Trilogia Perversa [Perverse Trilogy, in English], a series of three historical plays set in Southern Brazil and based on Aeschylus’ Oresteia and on Euripides’ Iphigenia in Aulis published in the 1980s. Since then, a number of works directly inspired by the plays of Aeschylus, Sophocles and Euripides have been published, not to mention several adaptations of Homer’s two epic poems. This paper proposes a comparative analysis of two such works: Grace Passô’s 2017 play Mata teu Pai [Kill your father, in English] and Marcia Lima’s 2019 play Medeia Negra [Black Medea, in English] from the perspective of Classical Reception Studies in an intersection with feminist literary criticism. The paper intends to look at the endurance of Euripides’ character in contemporary Brazilian literature with a focus on how the character seems to have acquired special relevance to the treatment of pressing issues of the twenty-first century. Whereas Grace Passô’s play sets Medea at the center of a group of immigrant women, Marcia Limma has the character enact the dilemmas of incarcerated women in Brazil. The hypothesis that this research aims at testing is that both artists preserve the pathos of Euripides’s original character at the same time that they recreate his Medea in concrete circumstances of Brazilian contemporary social reality. At the end, the research aims at stating the significance of the Medea theme to contemporary Brazilian literature.Keywords: Euripides, Medea, Grace Passô, Marcia Limma, Brazilian literature
Procedia PDF Downloads 132995 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂
Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek
Abstract:
Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂
Procedia PDF Downloads 176994 Manufacture and Characterization of Poly (Tri Methylene Terephthalate) Nanofibers by Electrospinning
Authors: Omid Saligheh
Abstract:
Poly (tri methylene terephthalate) (PTT) nanofibers were prepared by electrospinning, being directly deposited in the form of a random fibers web. The effect of changing processing parameters such as solution concentration and electrospinning voltage on the morphology of the electrospun PTT nanofibers was investigated with scanning electron microscopy (SEM). The electrospun fibers diameter increased with rising concentration and decreased by increasing the electrospinning voltage, thermal and mechanical properties of electrospun fibers were characterized by DSC and tensile testing, respectively.Keywords: poly tri methylene terephthalate, electrospinning, morphology, thermal behavior, mechanical properties
Procedia PDF Downloads 87993 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials
Procedia PDF Downloads 223992 The Flypaper Effect and the Municipal Participation Fund in the Brazilian Public Sector
Authors: Lucas Oliveira Gomes Ferreira, André Luiz Marques Serrano
Abstract:
The fiscal decentralization driven by the 1988 Constitution was responsible for granting greater autonomy to Brazilian subnational entities, as states and municipalities were entrusted with greater responsibilities to provide local public goods and services. However, the revenues necessary to implement the new attributions are largely received through intergovernmental transfers and not by local tax collection. The literature points out that public spending increases more by receiving unconditional and nonmatching (lump sum) intergovernmental grants than by an increase in taxpayers' income. This effect, called the flypaper effect, happens because the funds received could be used to reduce local taxes, meaning an increase in the citizen's private income. However, they are applied in the public sector in the form of expenses. The present work investigates the existence of the flypaper effect in Brazilian municipalities during the first two decades of the 21st century. The research uses the Municipal Participation Fund (FPM) as a grant proxy from 2000 to 2019 through econometrics of cross-section and panel data for all 5,568 municipalities. The results indicate the flypaper effect in Brazilian municipalities, as well as the proportional relationship between the receipt of constitutional transfers and the increase in public expenditure.Keywords: flypaper effect, intergovernmental transfers, municipal participation fund, fiscal federalism
Procedia PDF Downloads 147991 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre
Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila
Abstract:
The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment
Procedia PDF Downloads 335990 Practical Survival Strategies among Undocumented and Documented Brazilian Immigrants in Europe: A Comparative Study in Milan and London
Authors: Edmar Jose da Rocha
Abstract:
This paper is a study on Brazilian irregular migrants living and working in two global cities in Europe, Milan and London. The aim of the journal is to show out why Brazilian choose irregular migration to Milan and London as a strategy. Few studies in Europe have focused on groups coming from the same place of origin and residing in different cities in comparative studies. It is this international comparison that makes this research original. Both in London and Milan there is an economic migration. The reasons showed to migrate to Milan were marriage, citizenship and work. The reasons indicated to migrate to London were work, studies and a better life. In London marriage is a channel for regularisation and citizenship. In both countries, fake documents is a channel for undocumented people to get a job and health care.Keywords: border, immigration, integration, survival strategies, undocumented, regularisation
Procedia PDF Downloads 319989 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications
Authors: Syed W. Hasan, Zhiqun Tian
Abstract:
Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning
Procedia PDF Downloads 143988 Quantification of Lustre in Textile Fibers by Image Analysis
Authors: Neelesh Bharti Shukla, Suvankar Dutta, Esha Sharma, Shrikant Ralebhat, Gurudatt Krishnamurthy
Abstract:
A key component of the physical attribute of textile fibers is lustre. It is a complex phenomenon arising from the interaction of light with fibers, yarn and fabrics. It is perceived as the contrast difference between the bright areas (specular reflection) and duller backgrounds (diffused reflection). Lustre of fibers is affected by their surface structure, morphology, cross-section profile as well as the presence of any additives/registrants. Due to complexities in measurements, objective measurements such as gloss meter do not give reproducible quantification of lustre. Other instruments such as SAMBA hair systems are expensive. In light of this, lustre quantification has largely remained subjective, judged visually by experts, but prone to errors. In this development, a physics-based approach was conceptualized and demonstrated. We have developed an image analysis based technique to quantify visually observed differences in lustre of fibers. Cellulosic fibers, produced with different approaches, with visually different levels of lustre were photographed under controlled optics. These images were subsequently analyzed using a configured software system. The ratio of Intensity of light from bright (specular reflection) and dull (diffused reflection) areas was used to numerically represent lustre. In the next step, the set of samples that were not visually distinguishable easily were also evaluated by the technique and it was established that quantification of lustre is feasible.Keywords: lustre, fibre, image analysis, measurement
Procedia PDF Downloads 171987 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix
Authors: Khodzhaberdi Allaberdiev
Abstract:
In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.Keywords: epoxies, interface, modeling, polyamide fibers
Procedia PDF Downloads 267986 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber
Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima
Abstract:
Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis
Procedia PDF Downloads 95985 Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading
Authors: Comingstarful Marthong, Shembiang Marthong
Abstract:
Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use.Keywords: beam-column connections, polyethylene terephthalate fibers reinforced concrete, joint region, ductility, seismic capacity
Procedia PDF Downloads 280984 Estimation of Tensile Strength for Granitic Rocks by Using Discrete Element Approach
Authors: Aliakbar Golshani, Armin Ramezanzad
Abstract:
Tensile strength which is an important parameter of the rock for engineering applications is difficult to measure directly through physical experiment (i.e. uniaxial tensile test). Therefore, indirect experimental methods such as Brazilian test have been taken into consideration and some relations have been proposed in order to obtain the tensile strength for rocks indirectly. In this research, to calculate numerically the tensile strength for granitic rocks, Particle Flow Code in three-dimension (PFC3D) software were used. First, uniaxial compression tests were simulated and the tensile strength was determined for Inada granite (from a quarry in Kasama, Ibaraki, Japan). Then, by simulating Brazilian test condition for Inada granite, the tensile strength was indirectly calculated again. Results show that the tensile strength calculated numerically agrees well with the experimental results obtained from uniaxial tensile tests on Inada granite samples.Keywords: numerical simulation, particle flow code, PFC, tensile strength, Brazilian Test
Procedia PDF Downloads 193983 Toughness Factor of Polypropylene Fiber Reinforced Concrete in Aggressive Environment
Authors: R. E. Vasconcelos, K. R. M. da Silva, J. M. B. Pinto
Abstract:
This study aims to determine and to present the results of an experimental study of Synthetic (polypropylene) Fibers Reinforced Concrete (SFRC), in levels of 0.33% - 3kg/m3, 0.50% - 4.5kg/m3, and 0.66% - 6kg/m3, using cement CP V – ARI, at ages 28 and 88 days after specimens molding. The specimens were exposed for 60 days in aggressive environment (in solution of water and 3% of sodium chloride), after 28 days. The bending toughness tests were performed in prismatic specimens of 150 x 150 x 500 mm. The toughness factor values of the specimens in aggressive environment were the same to those obtained in normal environment (in air).Keywords: concrete reinforced with polypropylene fibers, toughness in bending, synthetic fibers, concrete reinforced
Procedia PDF Downloads 345982 Ultradrawing and Ultimate Tensile Properties of Ultrahigh Molecular Weight Polyethylene Composite Fibers Filled with Activated Nanocarbon Particles with Varying Specific Surface Areas
Authors: Wang-Xi Fan, Yi Ding, Zhong-Dan Tu, Kuo-Shien Huang, Chao-Ming Huang, Jen-Taut Yeh
Abstract:
Original and/or functionalized activated nanocarbon particles with a quoted specific surface area of 100, 500, 1000 and 1400 m2/g, respectively, were used to investigate the influence of specific surface areas of activated nanocarbon on ultra drawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE/activated nanocarbon and UHMWPE/ functionalized activated nanocarbon fibers. The specific surface areas of well dispersed functionalized activated nanocarbon in UHMWPE/functionalized activated nanocarbon fibers can positively affect their ultra drawing, orientation, ultimate tensile properties and “micro-fibril” characteristics. Excellent orientation and ultimate tensile properties of UHMWPE/nanofiller fibers can be prepared by ultra drawing the UHMWPE/functionalized activated nanocarbon as-prepared fibers with optimal contents and compositions of functionalized activated nanocarbon. The ultimate tensile strength value of the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber reached 8.0 GPa, which was about 2.86 times of that of the best-prepared UHMWPE drawn fiber prepared in this study. Specific surface area, morphological and Fourier transform infrared analyses of original and functionalized activated nanocarbon and/or investigations of thermal, orientation factor and ultimate tensile properties of as-prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers were performed to understand the above-improved ultra drawing and ultimate tensile properties of the UHMWPE/functionalized activated nanocarbon fibers.Keywords: activated nanocarbon, specific surface areas, ultradrawing, ultrahigh molecular weight polyethylene
Procedia PDF Downloads 372981 An Evaluation of the Effects of Special Safeguards in Meat upon International Trade and the Brazilian Economy
Authors: Cinthia C. Costa, Heloisa L. Burnquist, Joaquim J. M. Guilhoto
Abstract:
This study identified the impact of special agricultural safeguards (SSG) for the global market of meat and for the Brazilian economy. The tariff lines subject to SSG were selected and the period of analysis was 1995 (when the rules about the SSGs were established) to 2015 (more recent period for which there are notifications). The value of additional tariff was calculated for each of the most important tariff lines. The import volume and the price elasticities for imports were used to estimate the impacts of each additional tariff estimated on imports. Finally, the effect of Brazilian exports of meat without SSG taxes was calculated as well as its impact in the country’s economy by using an input-output matrix. The most important markets that applied SSGs were the U.S. for beef and European Union for poultry. However, the additional tariffs could be estimated in only two of the sixteen years that the U.S. applied SSGs on beef imports, suggesting that its use has been enforced when the average annual price has been higher than the trigger price level. The results indicated that the value of the bovine and poultry meat that could not be exported by Brazil due to SSGs to both markets (EU and the U.S.) was equivalent to BRL 804 million. The impact of this loss in trade was about: BRL 3.7 billion of the economy’s production value (at 2015 prices) and almost BRL 2 billion of the Brazilian Gross Domestic Product (GDP).Keywords: beef, poultry meat, SSG tariff, input-output matrix, Brazil
Procedia PDF Downloads 122980 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites
Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal
Abstract:
Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures
Procedia PDF Downloads 276