Search results for: commercial properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10718

Search results for: commercial properties

1838 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 53
1837 Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate

Authors: Fahad Abbasi

Abstract:

Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.

Keywords: heat transfer, peristaltic flows, radially varying magnetic field, curved channel

Procedia PDF Downloads 152
1836 Official Game Account Analysis: Factors Influence Users' Judgments in Limited-Word Posts

Authors: Shanhua Hu

Abstract:

Social media as a critical propagandizing form of film, video games, and digital products has received substantial research attention, but there exists several critical barriers such as: (1) few studies exploring the internal and external connections of a product as part of the multimodal context that gives rise to readability and commercial return; (2) the lack of study of multimodal analysis in product’s official account of game publishers and its impact on users’ behaviors including purchase intention, social media engagement, and playing time; (3) no standardized ecologically-valid, game type-varying data can be used to study the complexity of official account’s postings within a time period. This proposed research helps to tackle these limitations in order to develop a model of readability study that is more ecologically valid, robust, and thorough. To accomplish this objective, this paper provides a more diverse dataset comprising different visual elements and messages collected from the official Twitter accounts of the Top 20 best-selling games of 2021. Video game companies target potential users through social media, a popular approach is to set up an official account to maintain exposure. Typically, major game publishers would create an official account on Twitter months before the game's release date to update on the game's development, announce collaborations, and reveal spoilers. Analyses of tweets from those official Twitter accounts would assist publishers and marketers in identifying how to efficiently and precisely deploy advertising to increase game sales. The purpose of this research is to determine how official game accounts use Twitter to attract new customers, specifically which types of messages are most effective at increasing sales. The dataset includes the number of days until the actual release date on Twitter posts, the readability of the post (Flesch Reading Ease Score, FRES), the number of emojis used, the number of hashtags, the number of followers of the mentioned users, the categorization of the posts (i.e., spoilers, collaborations, promotions), and the number of video views. The timeline of Twitter postings from official accounts will be compared to the history of pre-orders and sales figures to determine the potential impact of social media posts. This study aims to determine how the above-mentioned characteristics of official accounts' Twitter postings influence the sales of the game and to examine the possible causes of this influence. The outcome will provide researchers with a list of potential aspects that could influence people's judgments in limited-word posts. With the increased average online time, users would adapt more quickly than before in online information exchange and readings, such as the word to use sentence length, and the use of emojis or hashtags. The study on the promotion of official game accounts will not only enable publishers to create more effective promotion techniques in the future but also provide ideas for future research on the influence of social media posts with a limited number of words on consumers' purchasing decisions. Future research can focus on more specific linguistic aspects, such as precise word choice in advertising.

Keywords: engagement, official account, promotion, twitter, video game

Procedia PDF Downloads 61
1835 Implications of Dehusking and Aqueous Soaking on Anti-nutrients, Phytochemical Screening and Antioxidants Properties of Jack Beans (Canavalia Ensiformis L. DC)

Authors: Oseni Margaret Oladunni, Ogundele Joan Olayinka, Olusanya Olalekan Samuel, Akinniyi Modupe Olakintan

Abstract:

The world's growing population is pushing humans to look for alternative food sources among underutilised or wild plants. One of these food sources has been identified as Canavalia enisiformis, or jack beans. The only issue with using jack beans is that they contain anti-nutrient chemicals, which must be removed or diminished in order for them to be fit for human consumption. The objective of this study is to determine the nutritional and industrial utility of Canavalia enisiformis by analysing the anti-nutrient, phytochemical, and antioxidant composition of raw whole seed and soaking dehusked seeds using established procedures. Phytate (23.48±0.24, 15.24±0.41 and 14.83±0.00), oxalate (4.32±0.09, 3.96±0.09 and 2.88±0.09), tannins (22.77±0.73, 18.68±0.03 and 17.50±0.46), and lectins (6.67±0.04, 6.20±0.01 and 6.42±0.07) exhibited the highest anti-nutrient values in raw whole seed and, at the very least, in dehusked, soaked seeds. The samples were subjected to phytochemical screening, which detected the presence of cardiac glycosides as well as anthraquinones, alkaloids, tannins, saponins, steroids, flavonoids, terpenoids, phlobatannins, and flavonoids. Due to the reduction in phytochemical contents quantified as a result of dehusking and soaking, phenolbatannins and anthraquinones were not found in the samples. The research findings also demonstrated elevated concentrations of several plausible phytochemical components with potential medical value, with the raw whole seed exhibiting the greatest capacity to scavenge free radicals. Accordingly, the study's findings validate the seed's therapeutic applications and imply that it might be an inexpensive source of antioxidants for humans and animals alike.

Keywords: dehusking, soaking, anti-nutrients, antioxidants, jack bean

Procedia PDF Downloads 27
1834 Resonant Auxetic Metamaterial for Automotive Applications in Vibration Isolation

Authors: Adrien Pyskir, Manuel Collet, Zoran Dimitrijevic, Claude-Henri Lamarque

Abstract:

During the last decades, great efforts have been made to reduce acoustic and vibrational disturbances in transportations, as it has become a key feature for comfort. Today, isolation and design have neutralized most of the troublesome vibrations, so that cars are quieter and more comfortable than ever. However, some problems remain unsolved, in particular concerning low-frequency isolation and the frequency-dependent stiffening of materials like rubber. To sum it up, a balance has to be found between a high static stiffness to sustain the vibration source’s mass, and low dynamic stiffness, as wideband as possible. Systems meeting these criteria are yet to be designed. We thus investigated solutions inspired by metamaterials to control efficiently low-frequency wave propagation. Structures exhibiting a negative Poisson ratio, also called auxetic structures, are known to influence the propagation of waves through beaming or damping. However, their stiffness can be quite peculiar as well, as they can present regions of zero stiffness on the stress-strain curve for compression. In addition, auxetic materials can be easily adapted in many ways, inducing great tuning potential. Using finite element software COMSOL Multiphysics, a resonant design has been tested through statics and dynamics simulations. These results are compared to experimental results. In particular, the bandgaps featured by these structures are analyzed as a function of design parameters. Great stiffness properties can be observed, including low-frequency dynamic stiffness loss and broadband transmission loss. Such features are very promising for practical isolation purpose, and we hope to adopt this kind of metamaterial into an effective industrial damper.

Keywords: auxetics, metamaterials, structural dynamics, vibration isolation

Procedia PDF Downloads 134
1833 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: piezoelectric stack, linear motor, rigid clamping, elliptical trajectory

Procedia PDF Downloads 140
1832 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 248
1831 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 284
1830 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 116
1829 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis

Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas

Abstract:

Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.

Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux

Procedia PDF Downloads 118
1828 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 393
1827 Designing Dibenzosilole and Methyl Carbazole Based Donor Materials with Favourable Photovoltaic Parameters for Bulk Heterojunction Organic Solar Cells

Authors: J. Iqbal, Z. Zara

Abstract:

Five new Acceptor-Donor-Acceptor (A-D-A) type small donor molecules (M1-M5) namely; dimethyl cyanoacetate terthiophene di(methylthiophene) dibenzosilole (DMCAO3TBS) (M1), dimelononitrile terthiophene di(methylthiophene) dibenzosilole (DMCNTBS) (M2), dimethyl rhodanine terthiophene di(methylthiophene) dibenzosilole (DMRTBS) (M3), dimelanonitrile terthiophene di(methylthiophene) methyl fluorene (DMCNTF) (M4) and dimethyl rhodanine terthiophene di(methylthiophene) methyl fluorine (DMRTF) (M5) were designed and theoretically explored their electronic, photophysical and geometrical properties via DFT best functional MPW1PW91/6-311G (d,p) level of theory with respect to reference molecules dioctyl cyanoacetate terthiophene di(octylthiophene) dioctylfluorene (DCAO3TF) (Ra) and dioctyl cyanoacetate terthiophene di(octylthiophene) octylcarbazole (DCAO3TCz) (Rb). Among the designed donor molecules (M1-M5), M2 and M4 represented lowest band gap value (2.480 eV and 2.47 eV) with distinctive broad absorption peak at 598 and 601 nm in chloroform due to the presence of stronger electron withdrawing acceptor molecule which pulls the λmax value towards red shift. Theoretically estimated reorganization energies of these molecules recommended excellent property of charge mobility. The designed donor molecules M1-M5, demonstrated lower λe value with reference to their λh, showing that these molecules could be ideal candidates for the transfer of electron with and M2, M4 are best among these as champion molecules with having lowest λe (0.006 D and 0.005 D respectively). Additionally, the Voc of M2 and M4 are 2.01 eV and 1.85 eV respectively with reference respect to PCBM. Thus, our present investigation suggested that our designed donor molecules (M1-M5) are suitable candidates for the solar cell and proposed for high and better performance for the small molecule based solar cell devices.

Keywords: dibenzisilol, donor materials, hole mobility, organic solar cells

Procedia PDF Downloads 181
1826 Effectiveness of Myofascial Release Technique in Treatment of Sacroiliac Joint Hypo-Mobility in Postnatal Women

Authors: Ahmed A. Abd El Rahim, Mohamed M. M. Essa, Magdy M. A. Shabana, Said A. Mohamed, Mohamed Ibrahim Mabrouk

Abstract:

Background: Sacroiliac joint (SIJ) dysfunction is considered the main cause of pregnancy-related back pain, which may continue to persist postnatally. Myofascial release technique (MFR) is an application of low-intensity, prolonged stretch to myofascial structures to improve function by increasing the sliding properties of restricted myofascial tissues. Purpose: This study was designed to investigate the effect of MFR on postnatal SIJ hypo-mobility. Materials and Methods: Fifty postnatal women complaining of SIJ hypo-mobility participated in this study. Their ages ranged from 26 to 35 yrs., and their body mass index (BMI) didn`t exceed 30 kg/m2. They were randomly assigned to two equal groups, group A (Gr. A) and group B (Gr. B). Both groups received three sessions per week for eight successive weeks. Gr. A received a traditional physical therapy program, while Gr. B received a traditional physical therapy program in addition to MFR. Doppler imaging of vibration was utilized to measure SIJ mobility pre- and post-intervention, and an electronic digital goniometer was used to measure back flexion and extension Range of motion. Results: Findings revealed a statistical improvement in post-intervention values of SIJ mobility in addition to trunk flexion and extension ROM in Gr. B compared to Gr. A (P<0.001). Conclusion: Adding MFR to traditional physical therapy programs is highly recommended in the treatment of SIJ hypo-mobility in postnatal women.

Keywords: sacroiliac hypo-mobility, sacroiliac dysfunction, myofascial release technique, traditional physical therapy, postnatal

Procedia PDF Downloads 86
1825 Measuring the Influence of Functional Proximity on Environmental Urban Performance via IMM: Four Study Cases in Milan

Authors: Massimo Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut

Abstract:

Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.

Keywords: built environment, ecology, sustainable indicators, sustainability, urban morphology

Procedia PDF Downloads 149
1824 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform

Authors: Temidayo Otunniyi

Abstract:

This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.

Keywords: software defined radio, channelization, critical sample rate, over-sample rate

Procedia PDF Downloads 113
1823 Rebamipide Retards CCL4 Induced Hepatic Fibrosis: A Role of PGE2

Authors: Alaa E. El-sisi, Sherin Zakaria

Abstract:

Rebamipide is an antiulcer drug with unique properties such as anti-inflammatory action. It induces endogenous prostaglandin e2 (PGE2). PGE2 is considered as a potent physiological suppressor of liver fibrosis. Aim of study: This study investigated the effect of rebamipide on hepatic fibrosis. Material and Method: Hepatic fibrosis was induced by intraperitoneal injections (IP) injection of CCl4 (0.45 mL/kg) in corn oil 1:5 twice a week for 4 weeks. Rats were divided into four groups as follow: Group 1 treated with CCL4 only, group 2 and 3 treated with CCL4 and rebamipide 60 mg/kg/day (group2) or 100 mg/kg/day (group3), and the fourth group was considered as control group and treated with vehicles. ALT, AST, and Bilirubin were assayed in serum. Antioxidant markers such as malondialdhyde (MDA) and superoxide dismutase (SOD) and fibrotic markers such as hyaluronic acid (HA) and procollagen-III (procol-III) were evaluated in liver tissues. IL-10 as well as PGE2 were also assayed in liver tissues. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen precipitation in liver tissues was visualized using masson trichrom stain. Results: Rebamipide inhibit CCL4 induced increase in ALT and AST significantly (p < 0.05). Rebamipide exerted an antioxidant effect as it inhibits CCL4 induced increased MDA level and decreased SOD activity. Fibrotic markers assay revealed that repamipide (60 or 100 mg/kg/day) decreased the level of procol-III and HA compared to CCl4 (p < 0.05). Oral administration of Rebamipide was associated with a significant increase (p < 0.05) of PGE2 and IL-10. Rebamipide especially at the dose of (100 mg/kg/day) restores liver histology structure and abolish collagen precipitation in liver tissues. Conclusion: Rebamipide retards hepatic fibrosis induced by CCL4 may be through the induction of PGE2 level.

Keywords: fibrotic markers, hepatic fibrosis, PGE2, rebamipide

Procedia PDF Downloads 472
1822 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis

Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi

Abstract:

Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.

Keywords: antibacterial, flavonoid, corn silk, acne

Procedia PDF Downloads 493
1821 The Sensitivity of Electrical Geophysical Methods for Mapping Salt Stores within the Soil Profile

Authors: Fathi Ali Swaid

Abstract:

Soil salinization is one of the most hazardous phenomenons accelerating the land degradation processes. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Geophysical method has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil sampling, EM38 and 2D conductivity imaging have been evaluated for their ability to delineate and map the level of salinity variations at Second Ponds Creek. The three methods have shown that the subsoil in the study area is saline. Salt variations were successfully observed under either method. However, EM38 reading and 2D inversion data show a clear spatial structure comparing to EC1:5 of soil samples in spite of that all soil samples, EM38 and 2D imaging were collected from the same location. Because EM38 readings and 2D imaging data are a weighted average of electrical soil conductance, it is more representative of soil properties than the soil samples method. The mapping of subsurface soil at the study area has been successful and the resistivity imaging has proven to be an advantage. The soil salinity analysis (EC1:5) correspond well to the true resistivity bringing together a good result of soil salinity. Soil salinity clearly indicated by previous investigation EM38 have been confirmed by the interpretation of the true resistivity at study area.

Keywords: 2D conductivity imaging, EM38 readings, soil salinization, true resistivity, urban salinity

Procedia PDF Downloads 359
1820 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power

Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina

Abstract:

Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.

Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics

Procedia PDF Downloads 210
1819 Seroprevalence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) Infection among Healthy and High Risk Individuals in Qatar

Authors: Raham El-Kahlout, Hadi Yassin, Asmaa Athani, Marwan Abou Madi, Gheyath Nasrallah

Abstract:

Background: Since its first isolation in September 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has diffused across 27 countries infecting more than two thousand individuals with a high case fatality rate. MERS-CoV–specific antibodies are widely found in Dromedary camel along with viral shedding of similar viruses detected in human at same region, suggesting that MERS epidemiology may be central role by camel. Interestingly, MERS-CoV has also been also reported to be asymptomatic or to cause influenza-like mild illnesses. Therefore, in a country like Qatar (bordered Saudi Arabia), where camels are widely spread, serological surveys are important to explore the role of camels in MERS-CoV transmission. However, widespread strategic serological surveillances of MERS-CoV among populations, particularly in endemic country, are infrequent. In the absence of clear epidemiological view, cross-sectional MERS antibody surveillances in human populations are of global concern. Method: We performed a comparative serological screening of 4719 healthy blood donors, 135 baseline case contacts (high risk individual), and four MERS confirmed patients (by PCR) for the presence of anti-MERS IgG. Initially, samples were screened using Euroimmune anti- MERS-CoV IgG ELISA kit, the only commercial kit available in the market and recommended by the CDC as a screening kit. To confirm ELISA test results, farther serological testing was performed for all borderline and positive samples using two assays; the anti MERS-CoV IgG and IgM Euroimmune indirect immunofluorescent test (IIFT) and pseudoviral particle neutralizing assay (PPNA). Additionally, to test cross reactivity of anti-MERS-CoV antibody with other family members of coronavirus, borderline and positive samples were tested for the presence of the of IgG antibody of the following viruses; SARS, HCoV-229E, HKU1 using the Euroimmune IIFT for SARS and HCoV-229E and ELISA for HKU1. Results: In all of 4858 screened 15 samples [10 donors (0.21%, 10/4719), 1 case contact (0.77 %, 1/130), 3 patients (75%, 3/4)] anti-MERS IgG reactive/borderline samples were seen in ELISA. However, only 7 (0.14%) of them gave positive with in IIFT and only 3 (0.06%) was confirmed by the specific anti-MERS PPNA. One of the interesting findings was, a donor, who was selected in the control group as a negative anti-MERS IgG ELISA, yield reactive for anti-MERS IgM IIFT and was confirmed with the PPNA. Further, our preliminary results showed that there was a strong cross reactivity between anti- MERS-COV IgG with both HCoV-229E or anti-HKU1 IgG, yet, no cross reactivity of SARS were found. Conclusions: Our findings suggest that MERS-CoV is not heavily circulated among the population of Qatar and this is also indicated by low number of confirmed cases (only 18) since 2012. Additionally, the presence of antibody of other pathogenic human coronavirus may cause false positive results of both ELISA and IIFT, which stress the need for more evaluation studies for the available serological assays. Conclusion: this study provides an insight about the epidemiological view for MERS-CoV in Qatar population. It also provides a performance evaluation for the available serologic tests for MERS-CoV in a view of serologic status to other human coronaviruses.

Keywords: seroprevalence, MERS-CoV, healthy individuals, Qatar

Procedia PDF Downloads 257
1818 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 49
1817 Functional Role of Tyr12 in the Catalytic Activity of Zeta-Like Glutathione S-Transferase from Acidovorax sp. KKS102

Authors: D. Shehu, Z. Alias

Abstract:

Glutathione S-transferases (GSTs) are family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. The gene for KKSG9 was cloned, purified and biochemically characterized. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide (CuOOH). The enzyme also displayed dehalogenation function against dichloroacetate (a common substrate for zeta class GSTs) in addition to permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

Keywords: Acidovorax sp. KKS102, bioremediation, glutathione s-transferase, site-directed mutagenesis, zeta

Procedia PDF Downloads 140
1816 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic

Abstract:

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser

Procedia PDF Downloads 341
1815 Fabrication of Cheap Novel 3d Porous Scaffolds Activated by Nano-Particles and Active Molecules for Bone Regeneration and Drug Delivery Applications

Authors: Mostafa Mabrouk, Basma E. Abdel-Ghany, Mona Moaness, Bothaina M. Abdel-Hady, Hanan H. Beherei

Abstract:

Tissue engineering became a promising field for bone repair and regenerative medicine in which cultured cells, scaffolds and osteogenic inductive signals are used to regenerate tissues. The annual cost of treating bone defects in Egypt has been estimated to be many billions, while enormous costs are spent on imported bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. The current study is aimed at developing a more strategic approach in order to speed-up recovery after bone damage. This will reduce the risk of fatal surgical complications and improve the quality of life of people affected with such fractures. 3D scaffolds loaded with cheap nano-particles that possess an osteogenic effect were prepared by nano-electrospinning. The Microstructure and morphology characterizations of the 3D scaffolds were monitored using scanning electron microscopy (SEM). The physicochemical characterization was investigated using X-ray diffractometry (XRD) and infrared spectroscopy (IR). The Physicomechanical properties of the 3D scaffold were determined by a universal testing machine. The in vitro bioactivity of the 3D scaffold was assessed in simulated body fluid (SBF). The bone-bonding ability of novel 3D scaffolds was also evaluated. The obtained nanofibrous scaffolds demonstrated promising microstructure, physicochemical and physicomechanical features appropriate for enhanced bone regeneration. Therefore, the utilized nanomaterials loaded with the drug are greatly recommended as cheap alternatives to growth factors.

Keywords: bone regeneration, cheap scaffolds, nanomaterials, active molecules

Procedia PDF Downloads 173
1814 Prediction of Antibacterial Peptides against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions

Authors: Suwapitch Chalongkulasak, Teerasak E-Kobon, Pramote Chumnanpuen

Abstract:

Acne vulgaris is a common skin disease mainly caused by the Gram–positive pathogenic bacterium, Propionibacterium acnes. This bacterium stimulates inflammation process in human sebaceous glands. Giant African snail (Achatina fulica) is alien species that rapidly reproduces and seriously damages agricultural products in Thailand. There were several research reports on the medical and pharmaceutical benefits of this snail mucus peptides and proteins. This study aimed to in silico predict multifunctional bioactive peptides from A. fulica mucus peptidome using several bioinformatic tools for determination of antimicrobial (iAMPpred), anti–biofilm (dPABBs), cytotoxic (Toxinpred), cell membrane penetrating (CPPpred) and anti–quorum sensing (QSPpred) peptides. Three candidate peptides with the highest predictive score were selected and re-designed/modified to improve the required activities. Structural and physicochemical properties of six anti–P. acnes (APA) peptide candidates were performed by PEP–FOLD3 program and the five aforementioned tools. All candidates had random coiled structure and were named as APA1–ori, APA2–ori, APA3–ori, APA1–mod, APA2–mod and APA3–mod. To validate the APA activity, these peptide candidates were synthesized and tested against six isolates of P. acnes. The modified APA peptides showed high APA activity on some isolates. Therefore, our biomimetic mucus peptides could be useful for preventing acne vulgaris and further examined on other activities important to medical and pharmaceutical applications.

Keywords: Propionibacterium acnes, Achatina fulica, peptidomes, antibacterial peptides, snail mucus

Procedia PDF Downloads 120
1813 Evaluation of Two Functional Food Products: Tortillas and Yogurt Based on Spirulina platensis and Haematococcus pluvialis

Authors: Raul Alexis Sanchez Cornejo, Elena Ivonne Mancera Andrade, Gibran Sidney Aleman Nava, Angel Josue Arteaga Garces, Roberto Parra Saldivar

Abstract:

An unhealthy diet is one of the main factors for a wide range of chronical diseases such as diabetes, obesity, cancer, cardiovascular diseases, among others. Nowadays, there is a current need to provide innovate healthy products to people in order to decrease the number of people with unhealthy diet. This study focuses on the production of two food products based on two microalgae strains: Tortillas with powder of Haematococcus pluvialis and Spirulina platensis biomass and yogurt with microencapsulated biomass of the same strains. S. platensis has been used widely as food supplements in a form of powder and pills due to its high content in proteins and fatty acids. Haematococcus pluvialis has been recognized for its ability to produce high-added value products under stressful conditions such as antioxidants (astaxanthin). Despite the benefits that those microalgae have, few efforts have been done to use them in food products. The main objective of this work is to evaluate the nutritional properties such as protein content, lipid fraction, carbohydrates, antioxidants,, and vitamins, that these microalgae strains provide to the food product. Additionally, physicochemical, and sensory evaluation were assessed to evaluate the quality of the product. The results obtained will dictate the feasibility of the product to be commercialized. These novel products will have the ability to change the nutritional intake and strength the health of the consumers.

Keywords: functional food, Haematococcus pluvialis, microalgae, Spirulina platensis, tortilla, yogurt

Procedia PDF Downloads 298
1812 Role of Kerala’s Diaspora Philanthropy Engagement During Economic Crises

Authors: Shibinu S, Mohamed Haseeb N

Abstract:

In times of crisis, the diaspora's role and the help it offers are seen to be vital in determining how many countries, particularly low- and middle-income nations that significantly rely on remittances, recover. Twenty-one lakh twenty thousand Keralites have emigrated abroad, with 81.2 percent of these outflows occurring in the Gulf Cooperative Council (GCC). Most of them are semi-skilled or low-skilled laborers employed in GCC nations. Additionally, a sizeable portion of migrants are employed in industrialized nations like the UK and the US. These nations have seen the development of a highly robust Indian Diaspora. India's development is largely dependent on the generosity of its diaspora, and the nation has benefited greatly from the substantial contributions made by several emigrant generations. Its strength was noticeable during the COVID-19 and Kerala floods. Millions of people were displaced, millions of properties were damaged, and many people died as a result of the 2018 Kerala floods. The Malayalee diaspora played a crucial role in the reconstruction of Kerala by providing support for the rescue efforts underway on the ground through their extensive worldwide network. During COVID-19, an analogous outreach was also noted, in which the diaspora assisted stranded migrants across the globe. Together with the work the diaspora has done for the state's development and recovery, there has also been a recent outpouring of assistance during the COVID-19 pandemic. The study focuses on the subtleties of diaspora philanthropic scholarship and how Kerala was able to recover from the COVID-19 pandemic and floods thanks to it. Semi-structured in-depth interviews with migrants, migrant organizations, and beneficiaries from the diaspora through snowball sampling to better understand the role that diaspora philanthropy plays in times of crisis.

Keywords: crises, diaspora, remittances, COVID-19, flood, economic development of Kerala

Procedia PDF Downloads 20
1811 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 53
1810 Survey of Some Important Nepalese and Russian Anti-Diabetic Herbs

Authors: Ram Prasad Baral, Vinogradov Dmitriy Valerievich, Rameshwar Adhikari

Abstract:

Diabetes has posed a great threat to the human health worldwide, both in developed and developing countries. The disease has basically rooted from the dramatically changed way of living of the present day human civilization as our living has deviated from what the nature has adapted us for. In this context, due to availability of wide range of climatic condition and hence the wide spectrum of biodiversity, Nepal is blessed with a valuable reservoir of medicinal herbs. These assets have been utilized and developed practices in traditional medicines and Ayurvedic way of treatment over several thousand years in the region. It has been established since ancient times that each and every plant has a specific medicinal value. There are many plants’ products which have been utilized in Ayurvedic medicine for the effective treatment of diabetes. The medicaments are less expensive and pose practically no side effects. In this work, we report a general survey of anti-diabetic properties of some medicinal herbs with pronounced effects and their applications. The plants covered in this study originate from far western region of Nepal and include Ficus racemosa, Momordica charantia, Azadirachta indica, Helieteres isora, Saraca asoca, Ichnocarpus frutescens, Tinospora sinensis, Commiphora mukul, Coccinia grandis, and Hippophae salicifolia.

Keywords: Ficus racemosa, Momordica charantia, Azadirachta indica, Helieteres isora, Saraca asoca, Ichnocarpus frutescens, Tinospora sinensis, Commiphora mukul, Coccinia grandis, Hippophae salicifolia

Procedia PDF Downloads 558
1809 Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data

Authors: Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa

Abstract:

A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out.

Keywords: hazard rate function, log-logistic distribution, maximum likelihood estimation, generalized log-logistic distribution, survival data, Monte Carlo simulation

Procedia PDF Downloads 184