Search results for: network security management
6912 The Hawza Al-’Ilmiyya and Its Role in Preserving the Shia Identity through Jurisprudence
Authors: Raied Khayou
Abstract:
The Hawza Al-'Ilmiyya is a network of religious seminaries in the Shia branch of Islam. This research mainly focuses on the oldest school located in Najaf, Iraq, because its core curriculum and main characteristics have been unchanged since the fourth century of Islam. Relying on a thorough literature review of Arabic and English publications, and interviews with current and previous students of the seminary, the current research outlines the factors proving how this seminary was crucial in keeping the Shia religious identity intact despite sometimes gruesome attempts of interference and persecution. There are several factors that helped the seminary to preserve its central importance. First, rooted in their theology, Shia Muslims believe that the Hawza Al-’Ilmiyya and its graduates carry a sacred authority. Secondly, the financial independence of the Seminary helped to keep it intact from any governmental or political meddling. Third, its unique teaching method, its matchless openness for new students, and its flexible curriculum made it attractive for many students who were interested in learning more about Shia theology and jurisprudence. The Hawza Al-‘Ilmiyya has the exclusive right to train clerics who hold the religious authority of Shia Islamic jurisprudence, and the seminary’s success in staying independent throughout history kept Shia Islamic theology independent, as well.Keywords: Hawza Al'Ilmiyya, religious seminary, Shia Muslim education, Islamic jurisprudence
Procedia PDF Downloads 1016911 Social Crises and Its Impact on the Environment: Case Study of Jos, Plateau State
Authors: A. B. Benshak, M. G. Yilkangnha, V. Y. Nanle
Abstract:
Social crises and violent conflict can inflict direct (short-term) impact on the environment like poisoning water bodies, climate change, deforestation, destroying the chemical component of the soil due to the chemical and biological weapons used. It can also impact the environment indirectly (long-term), e.g., the destruction of political and economic infrastructure to manage the environmental resources and breaking down traditional conservation practices, population displacement and refugee flows which puts pressure on the already inadequate resources, infrastructure, facilities, amenities, services etc. This study therefore examines the impact of social crises on the environment in Jos Plateau State with emphasis on the long-term impact, analyze the relationship between crises and the environment and assess the perception of people on social crises because much work have concentrated on other repercussions such as the economy, health etc that are more politically expedient. The data for this research were collected mostly through interviews, questionnaire, dailies and reports on the subject matter. The data and findings were presented in tables and results showed that the environment is directly and indirectly impacted by crises and that these impacts can in turn result to a continuous cycle of violent activities if not addressed because of the inadequacies in the supply of infrastructural facilities, resources and so on caused by the inflow of displaced population. Recommendations were made on providing security to minimize conflict occurrences in Jos and its environs, minimizing the impact of social crises on the environment, provision of adequate infrastructural facilities to carter for population rise, renewal and regeneration schemes, etc. which will go a long way in mitigating the impact of crises on the environment.Keywords: environment, impact, long-term, social crises
Procedia PDF Downloads 3426910 The Relevance of Community Involvement in Flood Risk Governance Towards Resilience to Groundwater Flooding. A Case Study of Project Groundwater Buckinghamshire, UK
Authors: Claude Nsobya, Alice Moncaster, Karen Potter, Jed Ramsay
Abstract:
The shift in Flood Risk Governance (FRG) has moved away from traditional approaches that solely relied on centralized decision-making and structural flood defenses. Instead, there is now the adoption of integrated flood risk management measures that involve various actors and stakeholders. This new approach emphasizes people-centered approaches, including adaptation and learning. This shift to a diversity of FRG approaches has been identified as a significant factor in enhancing resilience. Resilience here refers to a community's ability to withstand, absorb, recover, adapt, and potentially transform in the face of flood events. It is argued that if the FRG merely focused on the conventional 'fighting the water' - flood defense - communities would not be resilient. The move to these people-centered approaches also implies that communities will be more involved in FRG. It is suggested that effective flood risk governance influences resilience through meaningful community involvement, and effective community engagement is vital in shaping community resilience to floods. Successful community participation not only uses context-specific indigenous knowledge but also develops a sense of ownership and responsibility. Through capacity development initiatives, it can also raise awareness and all these help in building resilience. Recent Flood Risk Management (FRM) projects have thus had increasing community involvement, with varied conceptualizations of such community engagement in the academic literature on FRM. In the context of overland floods, there has been a substantial body of literature on Flood Risk Governance and Management. Yet, groundwater flooding has gotten little attention despite its unique qualities, such as its persistence for weeks or months, slow onset, and near-invisibility. There has been a little study in this area on how successful community involvement in Flood Risk Governance may improve community resilience to groundwater flooding in particular. This paper focuses on a case study of a flood risk management project in the United Kingdom. Buckinghamshire Council is leading Project Groundwater, which is one of 25 significant initiatives sponsored by England's Department for Environment, Food and Rural Affairs (DEFRA) Flood and Coastal Resilience Innovation Programme. DEFRA awarded Buckinghamshire Council and other councils 150 million to collaborate with communities and implement innovative methods to increase resilience to groundwater flooding. Based on a literature review, this paper proposes a new paradigm for effective community engagement in Flood Risk Governance (FRG). This study contends that effective community participation can have an impact on various resilience capacities identified in the literature, including social capital, institutional capital, physical capital, natural capital, human capital, and economic capital. In the case of social capital, for example, successful community engagement can influence social capital through the process of social learning as well as through developing social networks and trust values, which are vital in influencing communities' capacity to resist, absorb, recover, and adapt. The study examines community engagement in Project Groundwater using surveys with local communities and documentary analysis to test this notion. The outcomes of the study will inform community involvement activities in Project Groundwater and may shape DEFRA policies and guidelines for community engagement in FRM.Keywords: flood risk governance, community, resilience, groundwater flooding
Procedia PDF Downloads 706909 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 366908 More Precise: Patient-Reported Outcomes after Stroke
Authors: Amber Elyse Corrigan, Alexander Smith, Anna Pennington, Ben Carter, Jonathan Hewitt
Abstract:
Background and Purpose: Morbidity secondary to stroke is highly heterogeneous, but it is important to both patients and clinicians in post-stroke management and adjustment to life after stroke. The consideration of post-stroke morbidity clinically and from the patient perspective has been poorly measured. The patient-reported outcome measures (PROs) in morbidity assessment help improve this knowledge gap. The primary aim of this study was to consider the association between PRO outcomes and stroke predictors. Methods: A multicenter prospective cohort study assessed 549 stroke patients at 19 hospital sites across England and Wales during 2019. Following a stroke event, demographic, clinical, and PRO measures were collected. Prevalence of morbidity within PRO measures was calculated with associated 95% confidence intervals. Predictors of domain outcome were calculated using a multilevel generalized linear model. Associated P -values and 95% confidence intervals are reported. Results: Data were collected from 549 participants, 317 men (57.7%) and 232 women (42.3%) with ages ranging from 25 to 97 (mean 72.7). PRO morbidity was high post-stroke; 93.2% of the cohort report post-stroke PRO morbidity. Previous stroke, diabetes, and gender are associated with worse patient-reported outcomes across both the physical and cognitive domains. Conclusions: This large-scale multicenter cohort study illustrates the high proportion of morbidity in PRO measures. Further, we demonstrate key predictors of adverse outcomes (Diabetes, previous stroke, and gender) congruence with clinical predictors. The PRO has been demonstrated to be an informative and useful stroke when considering patient-reported outcomes and has wider implications for considerations of PROs in clinical management. Future longitudinal follow-up with PROs is needed to consider association of long-term morbidity.Keywords: morbidity, patient-reported outcome, PRO, stroke
Procedia PDF Downloads 1316907 Assessment of Nurse's Knowledge Toward Infection Control for Wound Care in Governmental Hospital at Amran City-Yemen
Authors: Fares Mahdi
Abstract:
Background: Infection control is an important concern for all health care professionals, especially nurses. Nurses have a higher risk for both self-acquiring and transmitting infections to other patients. Aim of this study: to assess nurses' knowledge regarding infection control for wound care. Methodology: a descriptive research design was used in the study. The total number studied sample was 200 nurses, were conducting in Amran Public Hospitals in Amran City- Yemen. The study covered sample nurses in the hospital according to the study population; a standard closed-ended questionnaire was used to collect the data. Results: The results showed less than half (37.5 %) of nurses were from 22 May Hospital, also followed by (62.5%) of them were from Maternal and Child Hospital. Also according to the department name. Most (22.5%) of nurses worked in an intensive care unit, followed by (20%) of them were working in the pediatric world, also about (19%) of them were working in the surgical department. While in finally, only about (8.5%) of them worked from another department. According to course training, The results showed about (21%) of nurses had course training in wound care management. At the same time, others (79%) of them have not had course training in wound care management. According to the total nurse's knowledge of infection control for wound care, that find more than two-thirds (68%) of nurses had fair knowledge according to total all of nurse's knowledge of infection control wound care. Conclusion:The results showed that more than two-thirds (68%) of nurses had fair knowledge according to total all of the nurse's knowledge of infection control for wound care. Recommendations: There should be providing training program about infection control masseurs and it's important for new employees of nurses. Providing continuing refreshment training courses about infection control programs and about evidence-based practice in infection control for all health care teams.Keywords: assessment, knowledge, infection control, wound care, nurses, amran hospitals
Procedia PDF Downloads 956906 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band
Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov
Abstract:
This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization
Procedia PDF Downloads 1576905 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code
Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader
Abstract:
In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset
Procedia PDF Downloads 1306904 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes
Authors: Rikke Lybæk
Abstract:
This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management
Procedia PDF Downloads 1046903 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System
Authors: P. K. Sarkar, Amit Kumar Jain
Abstract:
The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.Keywords: urban transport, differential fares, congestion, transport demand management, elasticity
Procedia PDF Downloads 3096902 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 1236901 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid
Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef
Abstract:
Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm
Procedia PDF Downloads 2686900 Weed Out the Bad Seeds: The Impact of Strategic Portfolio Management on Patent Quality
Authors: A. Lefebre, M. Willekens, K. Debackere
Abstract:
Since the 1990s, patent applications have been booming, especially in the field of telecommunications. However, this increase in patent filings has been associated with an (alleged) decrease in patent quality. The plethora of low-quality patents devalues the high-quality ones, thus weakening the incentives for inventors to patent inventions. Despite the rich literature on strategic patenting, previous research has neglected to emphasize the importance of patent portfolio management and its impact on patent quality. In this paper, we compare related patent portfolios vs. nonrelated patents and investigate whether the patent quality and innovativeness differ between the two types. In the analyses, patent quality is proxied by five individual proxies (number of inventors, claims, renewal years, designated states, and grant lag), and these proxies are then aggregated into a quality index. Innovativeness is proxied by two measures: the originality and radicalness index. Results suggest that related patent portfolios have, on average, a lower patent quality compared to nonrelated patents, thus suggesting that firms use them for strategic purposes rather than for the extended protection they could offer. Even upon testing the individual proxies as a dependent variable, we find evidence that related patent portfolios are of lower quality compared to nonrelated patents, although not all results show significant coefficients. Furthermore, these proxies provide evidence of the importance of adding fixed effects to the model. Since prior research has found that these proxies are inherently flawed and never fully capture the concept of patent quality, we have chosen to run the analyses with individual proxies as supplementary analyses; however, we stick with the comprehensive index as our main model. This ensures that the results are not dependent upon one certain proxy but allows for multiple views of the concept. The presence of divisional applications might be linked to the level of innovativeness of the underlying invention. It could be the case that the parent application is so important that firms are going through the administrative burden of filing for divisional applications to ensure the protection of the invention and the preemption of competition. However, it could also be the case that the preempting is a result of divisional applications being used strategically as a backup plan and prolonging strategy, thus negatively impacting the innovation in the portfolio. Upon testing the level of novelty and innovation in the related patent portfolios by means of the originality and radicalness index, we find evidence for a significant negative association with related patent portfolios. The minimum innovation that has been brought on by the patents in the related patent portfolio is lower compared to the minimum innovation that can be found in nonrelated portfolios, providing evidence for the second argument.Keywords: patent portfolio management, patent quality, related patent portfolios, strategic patenting
Procedia PDF Downloads 946899 Distribution Urban Public Spaces Among Riyadh Residential Neighborhoods
Authors: Abdulwahab Alalyani, Mahbub Rashid
Abstract:
Urban Open Space (UOS) a central role to promotes community health, including daily activities, but these resources may not available, accessible enough, and or equitably be distributed. This paper measures and compares spatial equity of the availability and accessibility UOS among low, middle, and high-income neighborhoods in Riyadh city. The measurement mothdulgy for the UOSavailability was by calculating the total of UOS with respect to the population total (m2/inhabitant) and the accessibility indicted by using walking distance of a 0.25 mi (0.4 km) buffering streets network.All UOS were mapped and measured using geographical information systems. To evaluate the significant differences in UOS availability and accessibility across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences.The findings are as follows; finding, UOSavailability was lower than global standers. Riyadh has only 1.13 m2 per capita of UOS, and the coverage accessible area by walking distance to UOS was lower than 50%. The final finding, spatial equity of the availability and accessibility, were significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of UOS should be focused on increasing Urban park availability and should be given priority to those low-income and unhealthy communities.Keywords: distribution urban open space, urban open space accessibility, spatial equity, riyadh city
Procedia PDF Downloads 1036898 A Case Study on the Drivers of Household Water Consumption for Different Socio-Economic Classes in Selected Communities of Metro Manila, Philippines
Authors: Maria Anjelica P. Ancheta, Roberto S. Soriano, Erickson L. Llaguno
Abstract:
The main purpose of this study is to examine whether there is a significant relationship between socio-economic class and household water supply demand, through determining or verifying the factors governing water use consumption patterns of households from a sampling from different socio-economic classes in Metro Manila, the national capital region of the Philippines. This study is also an opportunity to augment the lack of local academic literature due to the very few publications on urban household water demand after 1999. In over 600 Metro Manila households, a rapid survey was conducted on their average monthly water consumption and habits on household water usage. The questions in the rapid survey were based on an extensive review of literature on urban household water demand. Sample households were divided into socio-economic classes A-B and C-D. Cluster analysis, dummy coding and outlier tests were done to prepare the data for regression analysis. Subsequently, backward stepwise regression analysis was used in order to determine different statistical models to describe the determinants of water consumption. The key finding of this study is that the socio-economic class of a household in Metro Manila is a significant factor in water consumption. A-B households consume more water in contrast to C-D families based on the mean average water consumption for A-B and C-D households are 36.75 m3 and 18.92 m3, respectively. The most significant proxy factors of socio-economic class that were related to household water consumption were examined in order to suggest improvements in policy formulation and household water demand management.Keywords: household water uses, socio-economic classes, urban planning, urban water demand management
Procedia PDF Downloads 3026897 Legal Contestation of Non-Legal Norms: The Case of Humanitarian Intervention Norm between 1999 and 2018
Authors: Nazli Ustunes Demirhan
Abstract:
Norms of any nature are subject to pressures of change throughout their lifespans, as they are interpreted and re-interpreted every time they are used rhetorically or practically by international actors. The inevitable contestation of different interpretations may lead to an erosion of the norm, as well as to its strengthening. This paper aims to question the role of formal legality on the change of norm strength, using a norm contestation framework and a multidimensional norm strength conceptualization. It argues that the role of legality is not necessarily linked to the formal legal characteristics of a norm, but is about the legality of the contestation processes. In order to demonstrate this argument, the paper examines the evolutionary path of the humanitarian intervention norm as a case study. Humanitarian intervention, as a norm of very low formal legal characteristics, has been subject to numerous cycles of contestation, demonstrating a fluctuating pattern of norm strength. With the purpose of examining the existence and role of legality in the selected contestation periods from 1999 to 2017, this paper uses process tracing method with a detailed document analysis on the Security Council documents; including decisions, resolutions, meeting minutes, press releases as well as individual country statements. Through the empirical analysis, it is demonstrated that the legality of the contestation processes has a positive effect at least on the authoritativeness dimension of norm strength. This study tries to contribute to the developing dialogue between international relations (IR) and internal law (IL) disciplines with its better-tuned understanding of legality. It connects to further questions in IR/IL nexus, relating to the value added of norm legality, and politics of legalization as well as better international policies for norm reinforcement.Keywords: humanitarian intervention, legality, norm contestation, norm dynamics, responsibility to protect
Procedia PDF Downloads 1536896 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 736895 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation, and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet, and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria, namely, the mean absolute error and root mean square error. The National Renewable Energy Laboratory (NREL) residential energy consumption data is used to train the models. The results of this study show that the SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts, we can improve the robustness of the models for 24 hours ahead of electricity load forecasting.Keywords: bagging, Fbprophet, Holt-Winters, LSTM, load forecast, SARIMA, TensorFlow probability, time series
Procedia PDF Downloads 966894 Water Governance Perspectives on the Urmia Lake Restoration Process: Challenges and Achievements
Authors: Jalil Salimi, Mandana Asadi, Naser Fathi
Abstract:
Urmia Lake (UL) has undergone a significant decline in water levels, resulting in severe environmental, socioeconomic, and health-related challenges. This paper examines the restoration process of UL from a water governance perspective. By applying a water governance model, the study evaluates the process based on six selected principles: stakeholder engagement, transparency and accountability, effectiveness, equitable water use, adaptation capacity, and water usage efficiency. The dominance of structural and physicalist approaches to water governance has led to a weak understanding of social and environmental issues, contributing to social crises. Urgent efforts are required to address the water crisis and reform water governance in the country, making water-related issues a top national priority. The UL restoration process has achieved significant milestones, including stakeholder consensus, scientific and participatory planning, environmental vision, intergenerational justice considerations, improved institutional environment for NGOs, investments in water infrastructure, transparency promotion, environmental effectiveness, and local issue resolutions. However, challenges remain, such as power distribution imbalances, bureaucratic administration, weak conflict resolution mechanisms, financial constraints, accountability issues, limited attention to social concerns, overreliance on structural solutions, legislative shortcomings, program inflexibility, and uncertainty management weaknesses. Addressing these weaknesses and challenges is crucial for the successful restoration and sustainable governance of UL.Keywords: evaluation, restoration process, Urmia Lake, water governance, water resource management
Procedia PDF Downloads 676893 Examining the Effects of National Disaster on the Performance of Hospitality Industry in Korea
Authors: Kim Sang Hyuck, Y. Park Sung
Abstract:
The outbreak of national disasters stimulates the decrease of the both internal and domestic tourism demands, causing bad effects on the hospitality industry. The effective and efficient risk management regarding national disasters are being increasingly required from the hospitality industry practitioners and the tourism policymakers. To establish the effective and efficient risk management strategy on national disasters, the most essential prerequisite condition is the correct estimation of national disasters’ effects in terms of the size and duration of the damages occurred from national disaster on hospitality industry. More specifically, the national disasters are twofold: natural disaster and social disaster. In addition, the hospitality industry has consisted of several types of business, such as hotel, restaurant, travel agency, etc. As reasons of the above, it is important to consider how each type of national disasters differently influences on the performance of each type of hospitality industry. Therefore, the purpose of this study is examining the effects of national disaster on hospitality industry in Korea based on the types of national disasters as well as the types of hospitality business. The monthly data was collected from Jan. 2000 to Dec. 2016. The indexes of industrial production for each hospitality industry in Korea were used with the proxy variable for the performance of each hospitality industry. Two national disaster variables (natural disaster and social disaster) were treated as dummy variables. In addition, the exchange rate, industrial production index, and consumer price index were used as control variables in the research model. The impulse response analysis was used to examine the size and duration of the damages occurred from each type of national disaster on each type of hospitality industries. The results of this study show that the natural disaster and the social disaster differently influenced on each type of hospitality industry. More specifically, the performance of airline industry is negatively influenced by the natural disaster at the time of 3 months later from the incidence. However, the negative impacts of social disaster on airline industry occurred not significantly over the time periods. For the hotel industry, both natural disaster and social disaster negatively influence the performance of hotel industry at the time of 5 months and 6 months later, respectively. Also, the negative impact of natural disaster on the performance of restaurant industry occurred at the time of 5 months later, as well as for both 3 months and 6 months later for the social disaster. Finally, both natural disaster and social disaster negatively influence the performance of travel agency at the time of 3 months and 4 months later, respectively. In conclusion, the types of national disasters differently influence the performance of each type of hospitality industry in Korea. These results would provide an important information to establish the effective and efficient risk management strategy for the national disasters.Keywords: impulse response analysis, Korea, national disaster, performance of hospitality industry
Procedia PDF Downloads 1846892 Optimization in Locating Firefighting Stations Using GIS Data and AHP Model; A Case Study on Arak City
Authors: Hasan Heydari
Abstract:
In recent decades, locating urban services is one of the significant discussions in urban planning. Among these considerations, cities require more accurate planning in order to supply citizen needs, especially part of urban safety. In order to gain this goal, one of the main tasks of urban planners and managers is specifying suitable sites to locate firefighting stations. This study has been done to reach this purpose. Therefore effective criteria consist of coverage radius, population density, proximity to pathway network, land use (compatible and incompatible neighborhood) have been specified. After that, descriptive and local information of the criteria was provided and their layers were created in ArcGIS 9.3. Using Analytic Hierarchy Process (AHP) these criteria and their sub-criteria got the weights. These layers were classified regarding their weights and finally were overlaid by Index Overlay Model and provided the final site selection map for firefighting stations of Arak city. The results gained by analyzing in GIS environment indicate the existing fire station don’t cover the whole city sufficiently and some of the stations have established on the unsuitable sites. The output map indicates the best sites to locate firefighting stations of Arak.Keywords: site-selection, firefighting stations, analytic hierarchy process (AHP), GIS, index overlay model
Procedia PDF Downloads 3486891 Sickle Cell Disease: Review of Managements in Pregnancy and the Outcome in Ampang Hospital, Selangor
Authors: Z. Nurzaireena, K. Azalea, T. Azirawaty, S. Jameela, G. Muralitharan
Abstract:
The aim of this study is the review of the management practices of sickle cell disease patients during pregnancy, as well as the maternal and neonatal outcome at Ampang Hospital, Selangor. The study consisted of a review of pregnant patients with sickle cell disease under follow up at the Hematology Clinic, Ampang Hospital over the last seven years to assess their management and maternal-fetal outcome. The results of the review show that Ampang Hospital is considered the public hematology centre for sickle cell disease and had successfully managed three pregnancies throughout the last seven years. Patients’ presentations, managements and maternal-fetal outcome were compared and reviewed for academic improvements. All three patients were seen very early in their pregnancy and had been given a regime of folic acid, antibiotics and thrombo-prophylactic drugs. Close monitoring of maternal and fetal well being was done by the hematologists and obstetricians. Among the patients, there were multiple admissions during the pregnancy for either a painful sickle cell bone crisis, haemolysis following an infection and anemia requiring phenotype- matched blood and exchange transfusions. Broad spectrum antibiotics coverage during and infection, hydration, pain management and venous-thrombolism prophylaxis were mandatory. The pregnancies managed to reach near term in the third trimester but all required emergency caesarean section for obstetric indications. All pregnancies resulted in live births with good fetal outcome. During post partum all were nursed closely in the high dependency units for further complications and were discharged well. Post partum follow up and contraception counseling was comprehensively given for future pregnancies. Sickle cell disease is uncommonly seen in the East, especially in the South East Asian region, yet more cases are seen in the current decade due to improved medical expertise and advance medical laboratory technologies. Pregnancy itself is a risk factor for sickle cell patients as increased thrombosis event and risk of infections can lead to multiple crisis, haemolysis, anemia and vaso-occlusive complications including eclampsia, cerebrovasular accidents and acute bone pain. Patients mostly require multiple blood product transfusions thus phenotype-matched blood is required to reduce the risk of alloimmunozation. Emphasizing the risks and complications in preconception counseling and establishing an ultimate pregnancy plan would probably reduce the risk of morbidity and mortality to the mother and unborn child. Early management for risk of infection, thromboembolic events and adequate hydration is mandatory. A holistic approach involving multidisciplinary team care between the hematologist, obstetricians, anesthetist, neonatologist and close nursing care for both mother and baby would ensure the best outcome. In conclusion, sickle cell disease by itself is a high risk medical condition and pregnancy would further amplify the risk. Thus, close monitoring with combine multidisciplinary care, counseling and educating the patients are crucial in achieving the safe outcome.Keywords: anaemia, haemoglobinopathies, pregnancy, sickle cell disease
Procedia PDF Downloads 2586890 Analysis of Possible Draught Size of Container Vessels on the Lower Danube
Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić
Abstract:
Water transport could be the backbone of the future European combined transport system. The future transport policy in landlocked countries from the Danube Region has to be based on inland waterway transport (IWT). The development of the container transport on inland waterways depends directly on technical-exploitative characteristics of the network of inland waterways. Research of navigational abilities of inland waterways is the basic step in transport planning. The size of the vessel’s draught (T) is the limiting value in project tasks and it depends on the depth of the waterway. Navigation characteristics of rivers have to be determined as precise as possible, especially from the aspect of determination of the possible draught of vessels. This article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).Keywords: container vessel, draught, probability, the Danube
Procedia PDF Downloads 4616889 Cybersecurity Challenges in Africa
Authors: Chimmoe Fomo Michelle Larissa
Abstract:
The challenges of cybersecurity in Africa are increasingly significant as the continent undergoes rapid digital transformation. With the rise of internet connectivity, mobile phone usage, and digital financial services, Africa faces unique cybersecurity threats. The significance of this study lies in understanding these threats and the multifaceted challenges that hinder effective cybersecurity measures across the continent. The methodologies employed in this study include a comprehensive analysis of existing cybersecurity frameworks in various African countries, surveys of key stakeholders in the digital ecosystem, and case studies of cybersecurity incidents. These methodologies aim to provide a detailed understanding of the current cybersecurity landscape, identify gaps in existing policies, and evaluate the effectiveness of implemented security measures. Major findings of the study indicate that Africa faces numerous cybersecurity challenges, including inadequate regulatory frameworks, insufficient cybersecurity awareness, and a shortage of skilled professionals. Additionally, the prevalence of cybercrime, such as financial fraud, data breaches, and ransomware attacks, exacerbates the situation. The study also highlights the role of international cooperation and regional collaboration in addressing these challenges and improving overall cybersecurity resilience. In conclusion, addressing cybersecurity challenges in Africa requires a multifaceted approach that involves strengthening regulatory frameworks, enhancing public awareness, and investing in cybersecurity education and training. The study underscores the importance of regional and international collaboration in building a robust cybersecurity infrastructure capable of mitigating the risks associated with the continent's digital growth.Keywords: Africa, cybersecurity, challenges, digital infrastructure, cybercrime
Procedia PDF Downloads 416888 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: big data, social network analysis, text mining, topic modeling
Procedia PDF Downloads 2956887 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 1796886 Aeronautical Noise Management inside an Aerodrome: Analysis of Sound Exposure on Aviation Professional’s Health
Authors: Rafael Felipe Guatura da Silva, José Luis Gomes da Silva, Luiz Antonio, Ferreira Perrone de Brito
Abstract:
Noise can cause serious damage to human health, such as hearing loss, stress, irritability, fatigue, and others. Aviation is a place where your entire process should be work out with the utmost attention and commitment of human resources, thus the need to study the effects of noise in this sector, as aeronautical noise levels are high. This study aimed to evaluate the impact of noise pollution on the performance of professionals regarding the fatigue generated by aeronautical noise and time to noise exposure. The methodology used consists of measurements of sound pressure levels at 42 points of the aerodrome. The selected points are located inside the hangars and outside the airfield hangars. All points chosen are close to the professionals' work areas, seeking to identify the sound pressure levels to which they submitted. The other part of the research used the principle on the application of a self-report questionnaire to a sample of 207 people working inside the aerodrome. The 207 professionals surveyed consist of aircraft mechanics, pilots, maintenance managers, and administrative professionals. The questionnaire was intended to evaluate the knowledge that professionals have about health risks caused by sound exposure as well as to identify diseases that professionals have, and that may be associated with exposure to high levels of sound pressure. Preliminary results identify points with sound pressure levels of up to 91.7 dB, thus highlighting the need for the use of personal protective equipment that reduces noise exposure. It was also identified a large number of professionals who are bothered by the sound exposure and approximately 25% of professionals interviewed reported having a hearing disorder.Keywords: aeronautical noise, fatigue, noise and health, noise management
Procedia PDF Downloads 1476885 Persistent Bacteremia in Cases of Endodontic Re-Treatments
Authors: Ilma Robo, Manola Kelmendi, Kleves Elezi, Nevila Alliu
Abstract:
The most important stage in deciding whether to re-treat or not endodontically is to find the reason for the clinical in-success. Therefore, endodontic re-treatment aims to eliminate the etiology of the pathology, where the main ones are the bacteria remaining in the inter-radicular spaces or the presence of other irritants that can be not only bacterial toxins but also the elements that keep the batteries fixed or extra-canal toxins such as extraction outside the apex of the canal filling. Shortcomings of endodontic treatment can be corrected, if possible, only with endodontic re-treatment that is initially attempted orthograde, and if clinical endodontic success is not achieved again, it can be performed retrograde or surgically. The elements that do not help in this direction are the anatomical deformations in the canal network of the tooth roots, in the presence of the delta at the apex of the tooth root, in the isthmuses present, all of which can be explained by the endodontic canal anatomical morphology. Actually, even if the causative endodontic bacteria remains isolated and without an exit in the healthy periodontal tissues, then this can also be a clinical endodontic success, regardless of the fact that the endodontic isolation occurred only in the exits such as the apex or the accessory canals. Clinical endodontic in-success occurs only when bacterial residues emerge or provide an exit in the healthy periradicular tissues or along the entire length of the canal where the accessory canals exit.Keywords: endodontic success, E. foecalis, nanoparticles, laser diode, antibacterial, antiseptic
Procedia PDF Downloads 506884 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing
Authors: Rajni Kant Panik
Abstract:
The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.Keywords: hydrogel, nanoparticle, PLGA, wound healing
Procedia PDF Downloads 3116883 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020
Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon
Abstract:
Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.Keywords: epidemiology, maternal death, hospital, Haiti
Procedia PDF Downloads 90