Search results for: multiple instance learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11868

Search results for: multiple instance learning

3138 Phylogenetic Differential Separation of Environmental Samples

Authors: Amber C. W. Vandepoele, Michael A. Marciano

Abstract:

Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.

Keywords: DNA isolation, geolocation, non-human, phylogenetic separation

Procedia PDF Downloads 112
3137 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: contact angle, contact angle hysteresis, contact time, superhydrophobic

Procedia PDF Downloads 426
3136 Optimizing Nitrogen Fertilizer Application in Rice Cultivation: A Decision Model for Top and Ear Dressing Dosages

Authors: Ya-Li Tsai

Abstract:

Nitrogen is a vital element crucial for crop growth, significantly influencing crop yield. In rice cultivation, farmers often apply substantial nitrogen fertilizer to maximize yields. However, excessive nitrogen application increases the risk of lodging and pest infestation, leading to yield losses. Additionally, conventional flooded irrigation methods consume significant water resources, necessitating precise agricultural and intelligent water management systems. In this study, it leveraged physiological data and field images captured by unmanned aerial vehicles, considering fertilizer treatment and irrigation as key factors. Statistical models incorporating rice physiological data, yield, and vegetation indices from image data were developed. Missing physiological data were addressed using multiple imputation and regression methods, and regression models were established using principal component analysis and stepwise regression. Target nitrogen accumulation at key growth stages was identified to optimize fertilizer application, with the difference between actual and target nitrogen accumulation guiding recommendations for ear dressing dosage. Field experiments conducted in 2022 validated the recommended ear dressing dosage, demonstrating no significant difference in final yield compared to traditional fertilizer levels under alternate wetting and drying irrigation. These findings highlight the efficacy of applying recommended dosages based on fertilizer decision models, offering the potential for reduced fertilizer use while maintaining yield in rice cultivation.

Keywords: intelligent fertilizer management, nitrogen top and ear dressing fertilizer, rice, yield optimization

Procedia PDF Downloads 82
3135 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks

Authors: Elias Nemer, Greg Vines

Abstract:

Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.

Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()

Procedia PDF Downloads 233
3134 Comprehensive Lifespan Support for Quality of Life

Authors: Joann Douziech

Abstract:

Individuals with intellectual and developmental disabilities (IDD) possess characteristics that present both challenges and gifts. Individuals with IDD require and are worthy of intentional, strategic, and specialized support throughout their lifespan to ensure optimum quality-of-life outcomes. The current global advocacy movement advancing the rights of individuals with IDD emphasizes a high degree of choice over life decisions. For some individuals, this degree of choice results in a variety of negative health and well-being outcomes. Improving the quality of life outcomes requires the combination of a commitment to the rights of the individual with a responsibility to provide support and choice commensurate with individual capacity. A belief that individuals with IDD are capable of learning and they are worthy of being taught provides the foundation for a holistic model of support throughout their lifespan. This model is based on three pillars of engineering the environment, promoting skill development and maintenance, and staff support. In an ever-changing world, supporting quality of life requires attention to moments, phases, and changes in stages throughout the lifespan. Balancing these complexities with strategic, responsive, and dynamic interventions enhances the quality of life of individuals with ID throughout their lifespan.

Keywords: achieving optimum quality of life, comprehensive support, lifespan approach, philosophy and pedagogy

Procedia PDF Downloads 67
3133 Service Provision in 'the Jungle': Describing Mental Health and Psychosocial Support Offered to Residents of the Calais Camp

Authors: Amy Darwin, Claire Blacklock

Abstract:

Background: Existing literature about delivering evidence-based mental health and psychosocial support (MHPSS) in emergency settings is limited. It is difficult to monitor and evaluate the approach to MHPSS in informal refugee camps such as ‘The Jungle’ in Calais, where there are multiple service providers and where the majority of providers are volunteers. AIM: To identify experiences of MHPSS delivery by service providers in an informal camp environment in Calais, France and describe MHPSS barriers and opportunities in this type of setting. Method: Qualitative semi-structured interviews were conducted with 13 individuals from different organisations offering MHPSS in Calais and analysed using conventional content analysis. Results: Unsafe, uncertain and unsanitary conditions in the camp meant MHPSS was difficult to implement, and such conditions contributed to the poor mental health of the residents. The majority of MHPSS was offered by volunteers who lacked resources and training, and there was no overall official camp leadership which meant care was poorly coordinated and monitored. Strong relationships existed between volunteers and camp residents, but volunteers felt frustrated that they could not deliver the kind of MHPSS that they felt residents required. Conclusion: While long-term volunteers had built supportive relationships with camp residents, lack of central coordination and leadership of MHPSS services and limited access to trained professionals made implementation of MHPSS problematic. Similarly, the camp lacked the necessary infrastructure to meet residents’ basic needs. Formal recognition of the camp, and clear central leadership were identified as necessary steps to improving MHPSS delivery.

Keywords: calais, mental health, refugees, the jungle, MHPSS

Procedia PDF Downloads 249
3132 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 273
3131 Inadequate Intake of Energy and Nutrients: A Comparative Cross-Sectional Study Between Sport and Non-sport Science University Students of Southern Ethiopia

Authors: Beruk Berhanu Desalegn, Kebede Awgechew, Addisalem Mesfin

Abstract:

Introduction: This study aimed to investigate and compare the energy and selected nutrient intakes of sport science and non-sport science University students of Southern Ethiopia. Method: Multiple-day dietary data were collected from 166 university students (76 sport science and 90 non-sport sciences). Average daily energy and nutrient intake, and inadequate intakes were calculated using NutriSurvey (NS). Results: There were significant differences (p < 0.05) in the median intakes of energy, total carbohydrate, and vitamin B1 between female students from the sport science and non-sport science groups, but only the median intake of iron was significantly different (p < 0.05) between the male sport and non-sport science students’ group. The prevalence of inadequate intake of vitamin B1 were significantly (p<0.05) higher in the male and female from the non-sport science groups compared to the male and female students’ groups in the sport science, respectively. Whereas, the prevalence of inadequate iron intake by the male sport science students’ group was significantly (p<0.05) higher compared to their counterparts. Similarly, the prevalence of inadequate energy among the females from the sport science group was significantly (p<0.05) higher compared to the female students from the non-sport science department group. The prevalence of inadequate intakes of dietary energy, and the majority of the nutrients (protein, fat, vitamin A, B1, B2, and magnesium) were high (>50%) in selected University students. Conclusion: The energy and majority of nutrient intakes by the students in the selected universities of southern Ethiopia were sub-optimal. Therefore, activities that will improve the dietary intake of University students should include weekly meal plan revision considering their average recommended nutrient intake (RNI).

Keywords: dietary intake, sport science, University students, Ethiopia

Procedia PDF Downloads 84
3130 The Impact of Technology on Sales Researches and Distribution

Authors: Nady Farag Faragalla Hanna

Abstract:

In the car dealership industry in Japan, the sales specialist is a key factor in the success of the company. I hypothesize that when a company understands the characteristics of sales professionals in its industry, it is easier to recruit and train salespeople effectively. Lean human resources management ensures the economic success and performance of companies, especially small and medium-sized companies.The purpose of the article is to determine the characteristics of sales specialists for small and medium-sized car dealerships using the chi-square test and the proximate variable model. Accordingly, the results show that career change experience, learning ability and product knowledge are important, while university education, career building through internal transfer, leadership experience and people development are not important for becoming a sales professional. I also show that the characteristics of sales specialists are perseverance, humility, improvisation and passion for business.

Keywords: electronics engineering, marketing, sales, E-commerce digitalization, interactive systems, sales process ARIMA models, sales demand forecasting, time series, R codetraits of sales professionals, variable precision rough sets theory, sales professional, sales professionals

Procedia PDF Downloads 52
3129 Examining Postcolonial Corporate Power Structures through the Lens of Development Induced Projects in Africa

Authors: Omogboyega Abe

Abstract:

This paper examines the relationships between socio-economic inequalities of power, race, wealth engendered by corporate structure, and domination in postcolonial Africa. The paper further considers how land as an epitome of property and power for the locals paved the way for capitalist accumulation and control in the hands of transnational corporations. European colonization of Africa was contingent on settler colonialism, where properties, including land, were re-modified as extractive resources for primitive accumulation. In developing Africa's extractive resources, transnational corporations (TNCs) usurped states' structures and domination over native land. The usurpation/corporate capture that exists to date has led to remonstrations and arguably a counter-productive approach to development projects. In some communities, the mention of extractive companies triggers resentment. The paradigm of state capture and state autonomy is simply inadequate to either describe or resolve the play of forces or actors responsible for severe corporate-induced human rights violations in emerging markets. Moreover, even if the deadly working conditions are conceived as some regulatory failure, it is tough to tell whose failure. The analysis in this paper is that the complexity and ambiguity evidenced by the multiple regimes and political and economic forces shaping production, consumption, and distribution of socio-economic variables are not exceptional in emerging markets. Instead, the varied experience in developing countries provides a window for seeing what we face in understanding and theorizing the structure and operation of the global economic and regulatory order in general.

Keywords: colonial, emerging markets, business, human rights, corporation

Procedia PDF Downloads 66
3128 Unfolding the Affective Atmospheres during the COVID-19 Pandemic Crisis: The Constitution and Performance of Affective Governance in Taiwan

Authors: Sang-Ju Yu

Abstract:

This paper examines the changing essences and effects of ‘affective atmosphere’ during the COVID-19 pandemic crisis, which have been facilitated and shaped the ‘affective governance’ in Taiwan. Due to long-term uncertainty and unpredictability, the COVID-19 pandemic not only caused unprecedented global crisis but triggered the public’s negative emotional responses. This paper unravels how the shortage of Personal Protective Equipment and the proliferating fake news heightened people’s fear and anxiety and how specific affective atmospheres can be provoked and manipulated to harness emotional appeals of citizens strategically in Taiwan. Through the in-depth interviews with diverse stakeholders involved, it unfolds the dynamics and strategies of affective governance, wherein public emotions and concerns are now given significant consideration in both policy measures and the affective expression of leadership, spatial arrangement, service delivery, and the interaction with citizens. Addressing psychosocial and emotional needs has become the core of crisis response mechanisms suited to dynamic affective atmospheres and pandemic situation. This paper also demonstrates that epidemic prevention and control is not merely the production of neutral or rational policy-making processes, as it is dominated by multiple emotions resulted from unexpected and salient events at different moments. It provides explicit insight into how different prevention scenarios operated effectively through political and affective mobilisation to strengthen emotional bonding and collective identity which energises collective action. Basically, successful affective governance calls for both negative and positive emotions, for both scientific and political decision-making, for both community and bureaucracy, and both quality and efficiency of private–public collaboration.

Keywords: affective atmospheres, affective governance, COVID-19 pandemic, private-public collaboration

Procedia PDF Downloads 94
3127 E-teaching Barriers: A Survey from Shanghai Primary School Teachers

Authors: Liu Dan

Abstract:

It was considered either unnecessary or impossible for primary school students to implement online teaching until last year. A large number of E-learning or E-teaching researches have been focused on adult-learners, andragogy and technology, however, primary school education, it is facing many problems that need to be solved. Therefore, this research is aimed at exploring barriers and influential factors on online teaching for K-12 students from teachers’ perspectives and discussing the E-pedagogy that is suitable for primary school students and teachers. Eight hundred and ninety-six teachers from 10 primary schools in Shanghai were invited to participate in a questionnaire survey. Data were analysed by hierarchical regression, and the results stress the significant three barriers by teachers with online teaching: the existing system is deficient in emotional interaction, teachers’ attitude towards the technology is negative and the present teacher training is lack of systematic E-pedagogy guidance. The barriers discovered by this study will help the software designers (E-lab) develop tools that allow for flexible and evolving pedagogical approaches whilst providing an easy entry point for cautious newcomers, so that help the teachers free to engage in E-teaching at pedagogical and disciplinary levels, to enhance their repertoire of teaching practices.

Keywords: online teaching barriers (OTB), e-teaching, primary school, teachers, technology

Procedia PDF Downloads 201
3126 Nursing Documentation of Patients' Information at Selected Primary Health Care Facilities in Limpopo Province, South Africa: Implications for Professional Practice

Authors: Maria Sonto Maputle, Rhulani C. Shihundla, Rachel T. Lebese

Abstract:

Background: Patients’ information must be complete and accurately documented in order to foster quality and continuity of care. The multidisciplinary health care members use patients’ documentation to communicate about health status, preventive health services, treatment, planning and delivery of care. The purpose of this study was to determine the practice of nursing documentation of patients’ information at selected Primary Health Care (PHC) facilities in Vhembe District, Limpopo Province, South Africa. Methods: The research approach adopted was qualitative while exploratory and descriptive design was used. The study was conducted at selected PHC facilities. Population included twelve professional nurses. Non-probability purposive sampling method was used to sample professional nurses who were willing to participate in the study. The criteria included participants’ whose daily work and activities, involved creating, keeping and updating nursing documentation of patients’ information. Qualitative data collection was through unstructured in-depth interviews until no new information emerged. Data were analysed through open–coding of, Tesch’s eight steps method. Results: Following data analysis, it was found that professional nurses’ had knowledge deficit related to insufficient training on updates and rendering multiple services daily had negative impact on accurate documentation of patients’ information. Conclusion: The study recommended standardization of registers, books and forms used at PHC facilities, and reorganization of PHC services into open day system.

Keywords: documentation, knowledge, patient care, patient’s information, training

Procedia PDF Downloads 190
3125 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 474
3124 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: chromosome, genetic algorithm, subtree, test

Procedia PDF Downloads 324
3123 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
3122 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
3121 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
3120 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
3119 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 31
3118 Chinese Language Teaching as a Second Language: Immersion Teaching

Authors: Lee Bih Ni, Kiu Su Na

Abstract:

This paper discusses the Chinese Language Teaching as a Second Language by focusing on Immersion Teaching. Researchers used narrative literature review to describe the current states of both art and science in focused areas of inquiry. Immersion teaching comes with a standard that teachers must reliably meet. Chinese language-immersion instruction consists of language and content lessons, including functional usage of the language, academic language, authentic language, and correct Chinese sociocultural language. Researchers used narrative literature reviews to build a scientific knowledge base. Researchers collected all the important points of discussion, and put them here with reference to the specific field where this paper is originally based on. The findings show that Chinese Language in immersion teaching is not like standard foreign language classroom; immersion setting provides more opportunities to teach students colloquial language than academic. Immersion techniques also introduce a language’s cultural and social contexts in a meaningful and memorable way. It is particularly important that immersion teachers connect classwork with real-life experiences. Immersion also includes more elements of discovery and inquiry based learning than do other kinds of instructional practices. Students are always and consistently interpreted the conclusions and context clues.

Keywords: a second language, Chinese language teaching, immersion teaching, instructional strategies

Procedia PDF Downloads 452
3117 Community Integration: Post-Secondary Education (PSE) and Library Programming

Authors: Leah Plocharczyk, Matthew Conner

Abstract:

This paper analyzes the relatively new trend of PSE programs which seek to provide education, vocational training, and a college experience to individuals with an intellectual and developmental disability (IDD). Specifically, the paper examines the degree of interaction between PSE programs and the libraries of their college campuses. Using ThinkCollege, a clearinghouse and advocate for PSE programs, the researchers identified 293 programs throughout the country. These were all contacted with an email survey asking them about the nature of their involvement, if any, with the academic libraries on their campus. Where indicated by the responses, the libraries of PSE programs were contacted for additional information about their programming. Responses to the survey questions were tabulated and analyzed quantitatively. Written comments were analyzed for themes which were then tabulated. This paper presents the results of this study. They show obvious preferences for library programming, such as group formal instruction, individual liaisons, embedded reference, and various instructional designs. These are discussed in terms of special education principles of mainstreaming, level of restriction, training demands and cost effectiveness. The work serves as a foundation for best practices that can advance the field.

Keywords: disability studies, instructional design, universal design for learning, assessment methodology

Procedia PDF Downloads 69
3116 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition

Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can

Abstract:

To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.

Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning

Procedia PDF Downloads 85
3115 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 394
3114 Impact of Forced Displacement on Place Attachment and Home Perception of Internally Displaced Turkish Cypriots

Authors: Makbule Oktay

Abstract:

Home is a significant entity in people’s lives. It is a place that provides shelter to people and a place to which one feels a sense of attachment and belonging. It is an entity that people develop feelings and meaning to it. People – place bond, or in other words place attachment, and home perception might alter as a consequence of lifetime experiences. Thus, forced displacement appears as a dramatic experience for people who lose their homes, belongings and communities. It impacts people who involuntarily leave their homes and belongings behind, experience physical, social, cultural and economic disruption and are forced to settle in an unfamiliar environment. Place attachment and home perception of internally displaced people who involuntarily leave their homes might be different from those who haven’t experience forced displacement. Although place attachment, meaning of home and forced displacement are the subjects that have been broadly studied, there is a lack of studies which question the relation between the three subjects in general and on Turkish Cypriot case in particular. Considering this, it is the aim of this paper to investigate the impact of forced displacement to internally displaced people’s attachment to a particular place and home perception. To do so, the study focuses on internally displaced Turkish Cypriots who have been internally displaced as a result of conflict. Interview and questionnaire as two of the commonly used techniques in the place attachment and home perception studies have been used in this study too. The results of the study indicate that internal displacement has an apparent impact on place attachment of forcibly displaced people. As a consequence of longstanding displacement, forcibly displaced people developed multiple attachments. Compared to people who have not experienced displacement, forcibly displaced people have low attachments. Forced displacement does not strongly impact the home perception in terms of meaning of home in longstanding displacement situations even though displacement-related meanings of home exist.

Keywords: forcibly displaced people, home perception, internal displacement, place attachment, Turkish Cypriots

Procedia PDF Downloads 217
3113 Effect of High-Intensity Core Muscle Exercises Training on Sport Performance in Dancers

Authors: Che Hsiu Chen, Su Yun Chen, Hon Wen Cheng

Abstract:

Traditional core stability, core endurance, and balance exercises on a stable surface with isometric muscle actions, low loads, and multiple repetitions, which may not improvements the swimming and running economy performance. However, the effects of high intensity core muscle exercise training on jump height, sprint, and aerobic fitness remain unclear. The purpose of this study was to examine whether high intensity core muscle exercises training could improve sport performances in dancers. Thirty healthy university dancer students (28 women and 2 men; age 20.0 years, height 159.4 cm, body mass 52.7 kg) were voluntarily participated in this study, and each participant underwent five suspension exercises (e.g., hip abduction in plank alternative, hamstring curl, 45-degree row, lunge and oblique crunch). Each type of exercise was performed for 30-second, with 30-second of rest between exercises, two times per week for eight weeks and each exercise session was increased by 10-second every week. We measured agility, explosive force, anaerobic and cardiovascular fitness in dancer performance before and after eight weeks of training. The results showed that the 8-week high intensity core muscle training would significantly increase T-test agility (7.78%), explosive force of acceleration (3.35%), vertical jump height (8.10%), jump power (6.95%), lower extremity anaerobic ability (7.10%) and oxygen uptake efficiency slope (4.15%). Therefore, it can be concluded that eight weeks of high intensity core muscle exercises training can improve not only agility, sprint ability, vertical jump ability, anaerobic and but also cardiovascular fitness measures as well.

Keywords: balance, jump height, sprint, maximal oxygen uptake

Procedia PDF Downloads 407
3112 Influence of Socio-Economic Factors on Crime Perpetuation Among Inmates of Correctional Facilities in South-West Nigeria

Authors: Ebenezer Bayode Agboola

Abstract:

The study investigated the influence of socioeconomic factors on crime perpetuation among inmates of correctional facilities in South West Nigeria. A sample size of two hundred and forty-four inmates was drawn from Ado, Akure and Ilesha correctional facilities. The sample size consisted of both male and female inmates. Individual inmate was drawn through systematic sampling with the use of inmates’ register at the correctional facilities. The study employed a mixed design, which allowed the blend of both quantitative and qualitative methods. For the quantitative method, data was collected through the use of a questionnaire and for the qualitative method; data was collected with the aid of an in-depth interview (ID. Four research questions were raised for the study and analysed descriptively using simple frequency count and percentage. Five research hypotheses were formulated for the study and tested using Analysis of Variance (ANOVA) and Multiple Regressions. Based on the data analysis, findings revealed that there was a significant relationship between family history and perpetuation of crime among inmates. Though no significant relationship was found between employment and the perpetuation of crime, however, the rate of crime perpetuation by individuals was significantly found to be related to peer pressure. Also, the study further found that there was a significant relationship between the use of substances and perpetuation of crime. Lastly, it was found that there was a significant relationship between family history, employment, and peer pressure. The study recommended that Parents should pay adequate attention to their children, especially during the adolescent stage and that the Government should enact relevant laws that will checkmate the rising involvement of young people in cybercrime or internet fraud.

Keywords: crime, socio economic factor, inmates, correctional facilities, Southwest

Procedia PDF Downloads 88
3111 Teachers' Disability Disclosure: A Multiple Perspective

Authors: N. Tal-Alon, O. Shapira-Lishchinsky

Abstract:

Disability disclosure is one of the most complicated dilemmas that people with invisible disabilities face. There are only a few research studies that have focused on the difficulties and dilemmas of teachers who have different disabilities. In addition, there are currently no research studies focusing specifically on the different aspects of disability disclosure, which are unique to teachers. This research has, therefore, broadened the knowledge base and understanding of the dilemma of disability disclosure among teachers with invisible physical disabilities. In addition, it has shed light on the ways this issue is perceived by different groups: the perspective of school principals, the perspective of colleagues, and the perspective of teachers with physical disabilities themselves. The study sample included 12 teachers with invisible physical disabilities, 10 school principals who employ at least one teacher with an invisible physical disability, and 10 professional colleagues of at least one teacher with an invisible physical disability. This particular research study was conducted using a qualitative approach through the Narralizer computer program based on a series of in-depth interviews. The data analysis was carried out by grouping major points of interest into specific categories and sub-categories. The findings of this research suggest that teachers with disabilities struggle with the dilemma of whether or not to reveal their disability to the school staff and to their students. It was found that there were considerable differences between the issues that faculty members considered regarding this dilemma and the ones that teachers with disabilities considered. While the principals and professional colleagues focused solely on their own interests, the teachers with a disability emphasized more on the ways that they might have a positive influence on their students, as well as their own individual interests. In addition, school principals on a whole tended to view negatively the option of disclosing the disability to the students and were often critical towards teachers who concealed their disability from the school staff. The importance of this research is in its potential to influence policy decisions that can be implemented by the Ministry of Education regarding the support system for teachers with invisible physical disabilities.

Keywords: education, employment, invisible disabilities, teachers

Procedia PDF Downloads 102
3110 Comparing the Effects of Systemic Family Intervention on End Stage Renal Disease: Families of Different Modalities

Authors: Fenni Sim

Abstract:

Background: The application of systemic family therapy approaches to community health cases have not gathered traction. In National Kidney Foundation, Singapore, the belief is that community support has great potential in helping End Stage Renal Failure (ESRF) patients manage the demands of their treatment regime, whether Hemodialysis (HD) or Peritoneal Dialysis(PD) and sustain them on the treatment. However, the current community support does not include family interventions and is largely nursing based. Although nursing support is well provided to patients, and their family members in issues related to treatment and compliance, complex family issues and dynamics arising from caregiver strain or pre-dialysis relationship strain might deter efforts in managing the challenges of the treatment. Objective: The objective of the study is to understand the potential scope of work provided by a social worker who is trained in systemic family therapy and the effects of these interventions. Methodology: 3 families on HD and 3 families on PD who have been receiving family intervention for the past 6 months would be chosen for the study. A qualitative interview would be conducted to review the effectiveness for the family. Scales such as SCORE-15, PHQ-9, and Zarit Burden were used to measure family functioning, depression, and caregiver’s burden for the families. Results: The research is still in preliminary phase. Conclusion: The study highlights the importance of family intervention for families with multiple stressors on different treatment modalities who might have different needs and challenges. Nursing support needs to be complemented with family-based support to manage complex family issues in order to achieve better health outcomes and improved family coping.

Keywords: complementing nursing support, end stage renal failure, healthcare, systemic approaches

Procedia PDF Downloads 204
3109 Women as Victims of Land Grabbing: Implications for Household Food Security and Livelihoods in Cameroon

Authors: Valentine Ndi

Abstract:

This multi-sited research will make use of primary and secondary data to understand the multiple implications of land grabbing for local food production and rural livelihoods in Cameroon. Amidst restricted access to land and forest resources, this study will demonstrate how land previously accessed by communities to grow crops and to harvest forest resources is being acquired and transformed into commercial oil palm plantations by Herakles Farms, a US-based company, with Sithe Global Sustainable Oils Cameroon as its local subsidiary. Focusing on selected land grabbing communities in Cameroon, the study uses a feminist political ecology lens to examine the gendered nature in resources access and its impacts for women’s food production in particular, and rural livelihoods in general. The paper will argue that the change in land use particularly erodes women’s rights to access land and forest resources, and in turn negatively affects local food production and rural livelihood in the region. It will show how women in the region play instrumental and dominant roles in ensuring local food production through subsistence and semi-subsistence agriculture but are unfortunately the main losers of territory that the state considers as ‘empty’ or underutilized - and is subjected to appropriation. The paper will conclude that, rural women’s active participation in the decision-making processes concerning the use of and/or allotment of land to foreign investors is indispensable to guarantee local, national and global food security, but also to ensure that alternative livelihood options are provided, particularly to those rural women facing dispossession or at risk of being dispossessed.

Keywords: land grabbing, feminst political ecology, gender, access to resources, rural livelihoods, Cameroon

Procedia PDF Downloads 266