Search results for: systems topology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9632

Search results for: systems topology

962 ‘Transnationalism and the Temporality of Naturalized Citizenship

Authors: Edward Shizha

Abstract:

Citizenship is not only political, but it is also a socio-cultural expectation that naturalized immigrants desire for. However, the outcomes of citizenship desirability are determined by forces outside the individual’s control based on legislation and laws that are designed at the macro and exosystemic levels by politicians and policy makers. These laws are then applied to determine the status (permanency or temporariness) of citizenship for immigrants and refugees, but the same laws do not apply to non-immigrant citizens who attain it by birth. While theoretically, citizenship has generally been considered an irrevocable legal status and the highest and most secure legal status one can hold in a state, it is not inviolate for immigrants. While Article 8 of the United Nations Convention on the Reduction of Statelessness provides grounds for revocation of citizenship obtained by immigrants and refugees in host countries, nation-states have their own laws tied to the convention that provide grounds for revocation. Ever since the 9/11 attacks in the USA, there has been a rise in conditional citizenship and the state’s withdrawal of citizenship through revocation laws that denaturalize citizens who end up not merely losing their citizenship but also the right to reside in the country of immigration. Because immigrants can be perceived as a security threat, the securitization of citizenship and the legislative changes have been adopted to specifically allow greater discretionary power in stripping people of their citizenship.The paper ‘Do We Really Belong Here?’ Transnationalism and the Temporality of Naturalized Citizenship examines literature on the temporality of naturalized citizenship and questions whether citizenship, for newcomers (immigrants and refugees), is a protected human right or a privilege. The paper argues that citizenship in a host country is a well sought-after status by newcomers. The question is whether their citizenship, if granted, has a permanent or temporary status and whether it is treated in the same way as that of non-immigrant citizens. The paper further argues that, despite citizenship having generally been considered an irrevocable status in most Western countries, in practice, if not in law, for immigrants and refugees, citizenship comes with strings attached because of policies and laws that control naturalized citizenship. These laws can be used to denationalize naturalized citizens through revocations for those stigmatized as ‘undesirables’ who are threatened with deportation. Whereas non-immigrant citizens (those who attain it by birth) have absolute right to their citizenship, this is seldom the case for immigrants.This paper takes a multidisciplinary approach using Urie Bronfenbrenner’s ecological systems theory, the macrosystem and exo-system, to examine and review literature on the temporality of naturalized citizenship and questions whether citizenship is a protected right or a privilege for immigrants. The paper challenges the human rights violation of citizenship revocation and argues for equality of treatment for all citizens despite how they acquired their citizenship. The fragility of naturalized citizenship undermines the basic rights and securities that citizenship status can provide to the person as an inclusive practice in a diverse society.

Keywords: citizenship, citizenship revocation, dual citizenship, human rights, naturalization, naturalized citizenship

Procedia PDF Downloads 79
961 Increment of Panel Flutter Margin Using Adaptive Stiffeners

Authors: S. Raja, K. M. Parammasivam, V. Aghilesh

Abstract:

Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.

Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape

Procedia PDF Downloads 295
960 Ensuring Sustainable Urban Mobility in Indian Cities: Need for Creating People Friendly Roadside Public Spaces

Authors: Pushplata Garg

Abstract:

Mobility, is an integral part of living and sustainability of urban mobility, is essential not only for, but also for addressing global warming and climate change. However, very little is understood about the obstacles/hurdles and likely challenges in the success of plans for sustainable urban mobility in Indian cities from the public perspective. Whereas some of the problems and issues are common to all cities, others vary considerably with financial status, function, the size of cities and culture of a place. Problems and issues similar in all cities relate to availability, efficiency and safety of public transport, last mile connectivity, universal accessibility, and essential planning and design requirements of pedestrians and cyclists are same. However, certain aspects like the type of means of public transportation, priority for cycling and walking, type of roadside activities, are influenced by the size of the town, average educational and income level of public, financial status of the local authorities, and culture of a place. The extent of public awareness, civic sense, maintenance of public spaces and law enforcement vary significantly from large metropolitan cities to small and medium towns in countries like India. Besides, design requirements for shading, location of public open spaces and sitting areas, street furniture, landscaping also vary depending on the climate of the place. Last mile connectivity plays a major role in success/ effectiveness of public transport system in a city. In addition to the provision of pedestrian footpaths connecting important destinations, sitting spaces and necessary amenities/facilities along footpaths; pedestrian movement to public transit stations is encouraged by the presence of quality roadside public spaces. It is not only the visual attractiveness of streetscape or landscape or the public open spaces along pedestrian movement channels but the activities along that make a street vibrant and attractive. These along with adequate spaces to rest and relax encourage people to walk as is observed in cities with successful public transportation systems. The paper discusses problems and issues of pedestrians for last mile connectivity in the context of Delhi, Chandigarh, Gurgaon, and Roorkee- four Indian cities representing varying urban contexts, that is, of metropolitan, large and small cities.

Keywords: pedestrianisation, roadside public spaces, last mile connectivity, sustainable urban mobility

Procedia PDF Downloads 253
959 A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea

Authors: Ghirmay Teklemicheal, Samsom Mehari, Sara Tesfay

Abstract:

Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections.

Keywords: Chikungunya, Chikungunya virus, disease outbreaks, case-control studies, Eritrea

Procedia PDF Downloads 167
958 Responses of Grain Yield, Anthocyanin and Antioxidant Capacity to Water Condition in Wetland and Upland Purple Rice Genotypes

Authors: Supaporn Yamuangmorn, Chanakan Prom-U-Thai

Abstract:

Wetland and upland purple rice are the two major types classified by its original ecotypes in Northern Thailand. Wetland rice is grown under flooded condition from transplanting until the mutuality, while upland rice is naturally grown under well-drained soil known as aerobic cultivations. Both ecotypes can be grown and adapted to the reverse systems but little is known on its responses of grain yield and qualities between the 2 ecotypes. This study evaluated responses of grain yield as well as anthocyanin and antioxidant capacity between the wetland and upland purple rice genotypes grown in the submerged and aerobic conditions. A factorial arrangement in a randomized complete block design (RCBD) with two factors of rice genotype and water condition were carried out in three replications. The two wetland genotypes (Kum Doi Saket: KDK and Kum Phayao: KPY) and two upland genotypes (Kum Hom CMU: KHCMU and Pieisu1: PES1) were used in this study by growing under submerged and aerobic conditions. Grain yield was affected by the interaction between water condition and rice genotype. The wetland genotypes, KDK and KPY grown in the submerged condition produced about 2.7 and 0.8 times higher yield than in the aerobic condition, respectively. The 0.4 times higher grain yield of upland genotype (PES1) was found in the submerged condition than in the aerobic condition, but no significant differences in KHCMU. In the submerged condition, all genotypes produced higher yield components of tiller number, panicle number and percent filled grain than in the aerobic condition by 24% and 32% and 11%, respectively. The thousand grain weight and spikelet number were affected by water condition differently among genotypes. The wetland genotypes, KDK and KPY, and upland genotype, PES1, grown in the submerged condition produced about 19-22% higher grain weight than in the aerobic condition. The similar effect was found in spikelet number which the submerged condition of wetland genotypes, KDK and KPY, and the upland genotype, KHCMU, had about 28-30% higher than the aerobic condition. In contrast, the anthocyanin concentration and antioxidant capacity were affected by both the water condition and genotype. Rice grain grown in the aerobic condition had about 0.9 and 2.6 times higher anthocyanin concentration than in the submerged condition was found in the wetland rice, KDK and upland rice, KHCMU, respectively. Similarly, the antioxidant capacity of wetland rice, KDK and upland rice, KHCMU were 0.5 and 0.6 times higher in aerobic condition than in the submerged condition. There was a negative correlation between grain yield and anthocyanin concentration in wetland genotype KDK and upland genotype KHCMU, but it was not found in the other genotypes. This study indicating that some rice genotype can be adapted in the reverse ecosystem in both grain yield and quality, especially in the wetland genotype KPY and upland genotype PES1. To maximize grain yield and quality of purple rice, proper water management condition is require with a key consideration on difference responses among genotypes. Increasing number of rice genotypes in both ecotypes is needed to confirm their responses on water management.

Keywords: purple rice, water condition, anthocyanin, grain yield

Procedia PDF Downloads 162
957 Effects of AG1 and AG2 QTLs on Rice Seedling Growth and Physiological Processes during Germination in Flooded Soils

Authors: Satyen Mondal, Frederickson Entila, Shalabh Dixit, Pompe C. Sta. Cruz, Abdelbagi M. Ismail

Abstract:

Anaerobic condition caused by flooding during germination in direct seeded rice systems, known as anaerobic germination (AG), severely reduces crop establishment in both rainfed and irrigated areas. Seeds germinating in flooded soils could encounter hypoxia or even anoxia in severe cases, and this hinders germination and seedling growth. This study was conducted to quantify the effects of incorporating two major QTLs, AG1 and AG2, associated with tolerance of flooding during germination and to assess their interactive effects on enhancing crop establishment. A greenhouse experiment was conducted at the International Rice Research Institute (IRRI), Los Baňos, Philippines, using elite lines incorporating AG1, AG2 and AG1+AG2 in the background of the popular varieties PSBRc82 (PSBRc82-AG1, PSBRc82-AG2, PSBRc82-AG1+AG2) and Ciherang-Sub1 (Ciherang-Sub1-AG1, Ciherang-Sub1-AG2, Ciherang-Sub1-AG1+AG2), along with the donors Kho Hlan On (for AG1) and Ma-Zhan Red (AG2) and the recipients PSBRc82 and Ciherang-Sub1. The experiment was conducted using concrete tanks in an RCBD with three replications. Dry seeds were sown in seedling trays then flooded with 10 cm water depth. Seedling survival, root and shoot growth and relative growth rate were measured. The germinating seedlings were used for assaying nonstructural carbohydrate (NSC) and ascorbate concentrations, lipid peroxidation, total phenolic concentration, reactive oxygen species and total amylase enzyme activity. Flooding reduced overall survival, though survival of AG1+AG2 introgression lines was greater than other genotypes. Soluble sugars increased, while starch concentration decreased gradually under flooding especially in the tolerant checks and AG1+AG2 introgression lines. Less lipid peroxidation and higher amylase activity, reduced-ascorbate (RAsA) and total phenolic contents (TPC) were observed in the tolerant checks and in AG1+AG2 introgression lines. Lipid peroxidation correlated negatively with ascorbate and total phenolic concentrations and with reactive oxygen species (ROS). Introgression of AG1+AG2 QTLs upregulated total amylase activity causing rapid starch degradation and increase in ascorbate and total phenolic concentrations resulting in higher germination and seedling growth in flooded soils.

Keywords: amylase, anaerobic germination, ascorbate, direct-seeded rice, flooding, lipid peroxidation

Procedia PDF Downloads 275
956 Transportation and Urban Land-Use System for the Sustainability of Cities, a Case Study of Muscat

Authors: Bader Eddin Al Asali, N. Srinivasa Reddy

Abstract:

Cities are dynamic in nature and are characterized by concentration of people, infrastructure, services and markets, which offer opportunities for production and consumption. Often growth and development in urban areas is not systematic, and is directed by number of factors like natural growth, land prices, housing availability, job locations-the central business district (CBD’s), transportation routes, distribution of resources, geographical boundaries, administrative policies, etc. One sided spatial and geographical development in cities leads to the unequal spatial distribution of population and jobs, resulting in high transportation activity. City development can be measured by the parameters such as urban size, urban form, urban shape, and urban structure. Urban Size is the city size and defined by the population of the city, and urban form is the location and size of the economic activity (CBD) over the geographical space. Urban shape is the geometrical shape of the city over which the distribution of population and economic activity occupied. And Urban Structure is the transport network within which the population and activity centers are connected by hierarchy of roads. Among the urban land-use systems transportation plays significant role and is one of the largest energy consuming sector. Transportation interaction among the land uses is measured in Passenger-Km and mean trip length, and is often used as a proxy for measurement of energy consumption in transportation sector. Among the trips generated in cities, work trips constitute more than 70 percent. Work trips are originated from the place of residence and destination to the place of employment. To understand the role of urban parameters on transportation interaction, theoretical cities of different size and urban specifications are generated through building block exercise using a specially developed interactive C++ programme and land use transportation modeling is carried. The land-use transportation modeling exercise helps in understanding the role of urban parameters and also to classify the cities for their urban form, structure, and shape. Muscat the capital city of Oman underwent rapid urbanization over the last four decades is taken as a case study for its classification. Also, a pilot survey is carried to capture urban travel characteristics. Analysis of land-use transportation modeling with field data classified Muscat as a linear city with polycentric CBD. Conclusions are drawn suggestion are given for policy making for the sustainability of Muscat City.

Keywords: land-use transportation, transportation modeling urban form, urban structure, urban rule parameters

Procedia PDF Downloads 271
955 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.

Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability

Procedia PDF Downloads 158
954 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 277
953 Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban

Authors: Misheck Musokwa, Paramu Mafongoya, Simon Lorentz

Abstract:

Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost.

Keywords: fodder, livestock, productivity, smallholder farmers

Procedia PDF Downloads 151
952 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry

Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka

Abstract:

The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.

Keywords: Antioxidant, free radicals, herbs, phenolic, spices

Procedia PDF Downloads 256
951 Totally Implantable Venous Access Device for Long Term Parenteral Nutrition in a Patient with High Output Enterocutaneous Fistula Due to Advanced Malignancy

Authors: Puneet Goyal, Aarti Agarwal

Abstract:

Background and Objective: Nutritional support is an integral part of palliative care of advanced non-resectable abdominal malignancy patients, though is frequently neglected aspect. Non-Healing high output Entero-cutaneous fistulas sometimes require long term parenteral nutrition, to take care of catabolism and replacement of nutrients. We present a case of inoperable pancreatic malignancy with high output entero-cutaneous fistula, which was provided parenteral nutritional support with the use of Totally Implantable Venous Access Device (TIVAD). Method and Results: 55 year old man diagnosed with carcinoma pancreas had developed high entero-cutaneous fistula. His tumor was found to be inoperable and was on total parenteral nutrition through routine central line. This line was difficult to maintain as he required it for a long term TPN. He was planned to undergo Totally Implantable Venous Access Device (TIVAD) implantation. 8Fr single lumen catheter with Groshong non-return Valve (Bard Access Systems, Inc. USA) was inserted through right internal jugular vein, under fluoroscopic guidance. The catheter was tunneled subcutaneously and brought towards infraclavicular pocket, cut at appropriate length and connected to port and locked. Port was sutured in floor of pocket. Free flow of blood aspirated, flushed with heparinized saline. There was no kink observed in entire length of catheter under fluoroscopy. Skin over infraclavicular pocket was sutured. Long term catheter care and associated risks were explained to patient and relatives. Patient continued to receive total parenteral nutrition as well as other supportive therapy though TIVAD for next 6 weeks, till his demise. Conclusion: TIVADs are standard of care for long term venous access solutions in cancer patients requiring chemotherapy. In this case, we extended its use for providing parenteral nutrition and other supportive therapy. TIVADs can be implanted in advanced cancer patients for providing venous access solution required for various palliative treatments and medications. This will help in improving quality of life and satisfaction amongst terminally ill cancer patients.

Keywords: parenteral nutrition, totally implantable venous access device, long term venous access, interventions in anesthesiology

Procedia PDF Downloads 248
950 Qualitative and Quantitative Analyses of Phytochemicals and Antioxidant Activity of Ficus sagittifolia (Warburg Ex Mildbread and Burret)

Authors: Taiwo O. Margaret, Olaoluwa O. Olaoluwa

Abstract:

Moraceae family has immense phytochemical constituents and significant pharmacological properties, hence have great medicinal values. The aim of this study was to screen and quantify phytochemicals as well as the antioxidant activities of the leaf and stem bark extracts and fractions (crude ethanol extracts, n-hexane, ethyl acetate and aqueous ethanol fractions) of Ficus sagittifolia. Leaf and stem bark of F. sagittifolia were extracted by maceration method using ethanol to give ethanol crude extract. The ethanol crude extract was partitioned by n-hexane and ethyl-acetate to give their respective fractions. All the extracts were screened for their phytochemicals using standard methods. The total phenolic, flavonoid, tannin, saponin contents and antioxidant activity were determined by spectrophotometric method while the alkaloid content was evaluated by titrimetric method. The amount of total phenolic in extracts and fractions were estimated in comparison to gallic acid, whereas total flavonoids, tannins and saponins were estimated corresponding to quercetin, tannic acid and saponin respectively. 2, 2-diphenylpicryl hydrazyl radical (DPPH)* and phosphomolybdate methods were used to evaluate the antioxidant activities of leaf and stem bark of F. sagittifolia. Phytochemical screening revealed the presence of flavonoids, saponins, terpenoids/steroids, alkaloids for both extracts of leaf and stem bark of F. sagittifolia. The phenolic content of F. sagittifolia was most abundant in leaf ethanol crude extract as 3.53 ± 0.03 mg/g equivalent of gallic acid. Total flavonoids and tannins content were highest in stem bark aqueous ethanol fraction of F. sagittifolia estimated as 3.41 ± 0.08 mg/g equivalent of quercetin and 1.52 ± 0.05 mg/g equivalent of tannic acid respectively. The hexane leaf fraction of F. sagittifolia had the utmost saponin and alkaloid content as 5.10 ± 0.48 mg/g equivalent of saponins and 0.171 ± 0.39 g of alkaloids. Leaf aqueous ethanol fraction of F. sagittifolia showed high antioxidant activity (IC50 value of 63.092 µg/mL) and stem ethanol crude extract (227.43 ± 0.78 mg/g equivalent of ascorbic acid) for DPPH and phosphomolybdate method respectively and the least active was found to be the stem hexane fraction using both methods (313.32 µg/mL; 16.21 ± 1.30 mg/g equivalent of ascorbic acid). The presence of these phytochemicals in the leaf and stem bark of F. sagittifolia are responsible for their therapeutic importance as well as the ability to scavenge free radicals in living systems.

Keywords: Moraceae, Ficus sagittifolia, phytochemicals, antioxidant

Procedia PDF Downloads 234
949 Study of Open Spaces in Urban Residential Clusters in India

Authors: Renuka G. Oka

Abstract:

From chowks to streets to verandahs to courtyards; residential open spaces are very significantly placed in traditional urban neighborhoods of India. At various levels of intersection, the open spaces with their attributes like juxtaposition with the built fabric, scale, climate sensitivity and response, multi-functionality, etc. reflect and respond to the patterns of human interactions. Also, these spaces tend to be quite well utilized. On the other hand, it is a common specter to see an imbalanced utilization of open spaces in newly/recently planned residential clusters. This is maybe due to lack of activity generators around or wrong locations or excess provisions or improper incorporation of aforementioned design attributes. These casual observations suggest the necessity for a systematic study of current residential open spaces. The exploratory study thus attempts to draw lessons through a structured inspection of residential open spaces to understand the effective environment as revealed through their use patterns. Here, residential open spaces are considered in a wider sense to incorporate all the un-built fabric around. These thus, include both use spaces and access space. For the study, open spaces in ten exemplary housing clusters/societies built during the last ten years across India are studied. A threefold inquiry is attempted in this direction. The first relates to identifying and determining the effects of various physical functions like space organization, size, hierarchy, thermal and optical comfort, etc. on the performance of residential open spaces. The second part sets out to understand socio-cultural variations in values, lifestyle, and beliefs which determine activity choices and behavioral preferences of users for respective residential open spaces. The third inquiry further observes the application of these research findings to the design process to derive meaningful and qualitative design advice. However, the study also emphasizes to develop a suitable framework of analysis and to carve out appropriate methods and approaches to probe into these aspects of the inquiry. Given this emphasis, a considerable portion of the research details out the conceptual framework for the study. This framework is supported by an in-depth search of available literature. The findings are worked out for design solutions which integrate the open space systems with the overall design process for residential clusters. The open spaces in residential areas present great complexities both in terms of their use patterns and determinants of their functional responses. The broad aim of the study is, therefore, to arrive at reconsideration of standards and qualitative parameters used by designers – on the basis of more substantial inquiry into the use patterns of open spaces in residential areas.

Keywords: open spaces, physical and social determinants, residential clusters, use patterns

Procedia PDF Downloads 150
948 Enhancement of Mass Transport and Separations of Species in a Electroosmotic Flow by Distinct Oscillatory Signals

Authors: Carlos Teodoro, Oscar Bautista

Abstract:

In this work, we analyze theoretically the mass transport in a time-periodic electroosmotic flow through a parallel flat plate microchannel under different periodic functions of the applied external electric field. The microchannel connects two reservoirs having different constant concentrations of an electro-neutral solute, and the zeta potential of the microchannel walls are assumed to be uniform. The governing equations that allow determining the mass transport in the microchannel are given by the Poisson-Boltzmann equation, the modified Navier-Stokes equations, where the Debye-Hückel approximation is considered (the zeta potential is less than 25 mV), and the species conservation. These equations are nondimensionalized and four dimensionless parameters appear which control the mass transport phenomenon. In this sense, these parameters are an angular Reynolds, the Schmidt and the Péclet numbers, and an electrokinetic parameter representing the ratio of the half-height of the microchannel to the Debye length. To solve the mathematical model, first, the electric potential is determined from the Poisson-Boltzmann equation, which allows determining the electric force for various periodic functions of the external electric field expressed as Fourier series. In particular, three different excitation wave forms of the external electric field are assumed, a) sawteeth, b) step, and c) a periodic irregular functions. The periodic electric forces are substituted in the modified Navier-Stokes equations, and the hydrodynamic field is derived for each case of the electric force. From the obtained velocity fields, the species conservation equation is solved and the concentration fields are found. Numerical calculations were done by considering several binary systems where two dilute species are transported in the presence of a carrier. It is observed that there are different angular frequencies of the imposed external electric signal where the total mass transport of each species is the same, independently of the molecular diffusion coefficient. These frequencies are called crossover frequencies and are obtained graphically at the intersection when the total mass transport is plotted against the imposed frequency. The crossover frequencies are different depending on the Schmidt number, the electrokinetic parameter, the angular Reynolds number, and on the type of signal of the external electric field. It is demonstrated that the mass transport through the microchannel is strongly dependent on the modulation frequency of the applied particular alternating electric field. Possible extensions of the analysis to more complicated pulsation profiles are also outlined.

Keywords: electroosmotic flow, mass transport, oscillatory flow, species separation

Procedia PDF Downloads 217
947 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem

Authors: R. Kaleeswari

Abstract:

An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).

Keywords: soil quality, rice, biological properties, PCA analysis

Procedia PDF Downloads 111
946 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale

Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize

Abstract:

Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.

Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy

Procedia PDF Downloads 101
945 Tracing Sources of Sediment in an Arid River, Southern Iran

Authors: Hesam Gholami

Abstract:

Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.

Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran

Procedia PDF Downloads 75
944 Reimagining the Learning Management System as a “Third” Space

Authors: Christina Van Wingerden

Abstract:

This paper focuses on a sense of belonging, isolation, and the use of a learning management system as a “third space” for connection and community. Given student use of learning management systems (LMS) for courses on campuses, moderate to high use of social media and hand-held devices, the author explores the possibilities of LMS as a third space. The COVID-19 pandemic has exacerbated student experiences of isolation, and research indicates that students who experience a sense of belonging have a greater likelihood for academic retention and success. The impacts on students of an LMS designed for student employee orientation and training were examined through a mixed methods approach, including a survey, individual interviews, and focus groups. The sample involved 250-450 undergraduate student employees at a US northwestern university. The goal of the study was to find out the efficiency and effectiveness of the orientation information for a wide range of student employees from multiple student affairs departments. And unexpected finding emerged within the study in 2015 and was noted again as a finding in the 2017 study. Students reported feeling like they individually connected to the department, and further to the university because of the LMS orientation. They stated they could see themselves as part of the university community and like they belonged. The orientation, through the LMS, was designed for and occurred online (asynchronous), prior to students traveling and beginning university life for the academic year. The students indicated connection and belonging resulting from some of the design features. With the onset of COVID-19 and prolonged sheltering in place in North America, as well as other parts of the world, students have been precluded from physically gathering to educate and learn. COVID-19 essentially paused face-to-face education in 2020. Media, governments, and higher education outlets have been reporting on widespread college student stress, isolation, loneliness, and sadness. In this context, the author conducted a current mixed methods study (online survey, online interviews) of students in advanced degree programs, like Ph.D. and Ed.D. specifically investigating isolation and sense of belonging. As a part of the study a prototype of a Canvas site was experienced by student interviewees for their reaction of this Canvas site prototype as a “third” space. Some preliminary findings of this study are presented. Doctoral students in the study affirmed the potential of LMS as a third space for community and social academic connection.

Keywords: COVID-19, isolation, learning management system, sense of belonging

Procedia PDF Downloads 112
943 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop

Procedia PDF Downloads 338
942 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 134
941 Volunteered Geographic Information Coupled with Wildfire Fire Progression Maps: A Spatial and Temporal Tool for Incident Storytelling

Authors: Cassandra Hansen, Paul Doherty, Chris Ferner, German Whitley, Holly Torpey

Abstract:

Wildfire is a natural and inevitable occurrence, yet changing climatic conditions have increased the severity, frequency, and risk to human populations in the wildland/urban interface (WUI) of the Western United States. Rapid dissemination of accurate wildfire information is critical to both the Incident Management Team (IMT) and the affected community. With the advent of increasingly sophisticated information systems, GIS can now be used as a web platform for sharing geographic information in new and innovative ways, such as virtual story map applications. Crowdsourced information can be extraordinarily useful when coupled with authoritative information. Information abounds in the form of social media, emergency alerts, radio, and news outlets, yet many of these resources lack a spatial component when first distributed. In this study, we describe how twenty-eight volunteer GIS professionals across nine Geographic Area Coordination Centers (GACC) sourced, curated, and distributed Volunteered Geographic Information (VGI) from authoritative social media accounts focused on disseminating information about wildfires and public safety. The combination of fire progression maps with VGI incident information helps answer three critical questions about an incident, such as: where the first started. How and why the fire behaved in an extreme manner and how we can learn from the fire incident's story to respond and prepare for future fires in this area. By adding a spatial component to that shared information, this team has been able to visualize shared information about wildfire starts in an interactive map that answers three critical questions in a more intuitive way. Additionally, long-term social and technical impacts on communities are examined in relation to situational awareness of the disaster through map layers and agency links, the number of views in a particular region of a disaster, community involvement and sharing of this critical resource. Combined with a GIS platform and disaster VGI applications, this workflow and information become invaluable to communities within the WUI and bring spatial awareness for disaster preparedness, response, mitigation, and recovery. This study highlights progression maps as the ultimate storytelling mechanism through incident case studies and demonstrates the impact of VGI and sophisticated applied cartographic methodology make this an indispensable resource for authoritative information sharing.

Keywords: storytelling, wildfire progression maps, volunteered geographic information, spatial and temporal

Procedia PDF Downloads 179
940 Cricket Injury Surveillence by Mobile Application Technology on Smartphones

Authors: Najeebullah Soomro, Habib Noorbhai, Mariam Soomro, Ross Sanders

Abstract:

The demands on cricketers are increasing with more matches being played in a shorter period of time with a greater intensity. A ten year report on injury incidence for Australian elite cricketers between the 2000- 2011 seasons revealed an injury incidence rate of 17.4%.1. In the 2009–10 season, 24 % of Australian fast bowlers missed matches through injury. 1 Injury rates are even higher in junior cricketers with an injury incidence of 25% or 2.9 injuries per 100 player hours reported. 2 Traditionally, injury surveillance has relied on the use of paper based forms or complex computer software. 3,4 This makes injury reporting laborious for the staff involved. The purpose of this presentation is to describe a smartphone based mobile application as a means of improving injury surveillance in cricket. Methods: The researchers developed CricPredict mobile App for the Android platforms, the world’s most widely used smartphone platform. It uses Qt SDK (Software Development Kit) as IDE (Integrated Development Environment). C++ was used as the programming language with the Qt framework, which provides us with cross-platform abilities that will allow this app to be ported to other operating systems (iOS, Mac, Windows) in the future. The wireframes (graphic user interface) were developed using Justinmind Prototyper Pro Edition Version (Ver. 6.1.0). CricPredict enables recording of injury and training status conveniently and immediately. When an injury is reported automated follow-up questions include site of injury, nature of injury, mechanism of injury, initial treatment, referral and action taken after injury. Direct communication with the player then enables assessment of severity and diagnosis. CricPredict also allows the coach to maintain and track each player’s attendance at matches and training session. Workload data can also be recorded by either the player or coach by recording the number of balls bowled or played in a day. This is helpful in formulating injury rates and time lost due to injuries. All the data are stored at a secured password protected data server. Outcomes and Significance: Use of CricPredit offers a simple, user friendly tool for the coaching or medical staff associated with teams to predict, record and report injuries. This system will assist teams to capture injury data with ease thus allowing better understanding of injuries associated with cricket and potentially optimize the performance of such cricketers.

Keywords: injury, cricket, surveillance, smartphones, mobile

Procedia PDF Downloads 459
939 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions

Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden

Abstract:

Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.

Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety

Procedia PDF Downloads 69
938 The Efficacy of Preoperative Thermal Pulsation Treatment in Reducing Post Cataract Surgery Dry Eye Disease: A Systematic Review and Meta-analysis

Authors: Lugean K. Alomari, Rahaf K. Sharif, Basil K. Alomari, Hind M. Aljabri, Faisal F. Aljahdali, Amal A. Alomari, Saeed A. Alghamdi

Abstract:

Background: The thermal pulsation system is a therapy that uses heat and massage to treat dry eye disease; thus, some trials have been published to compare it with the conventional treatment. The aim of this study is to conduct a systematic review and meta-analysis comparing the efficacy of thermal pulsation systems with conventional treatment in patients undergoing cataract surgery. Methods: Medline, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for eligible trials. We included three randomized controlled trials (RCTs) that compared the thermal pulsation system with the conventional treatment in patients undergoing cataract surgery. A table of characteristics was plotted, and the Quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB 2). Forest plots were plotted using the Random-effect Inverse Variance method. χ2 test and the Higgins-I-squared (I2) model were used to assess heterogeneity. A total of 201 cataract surgery patients were included, with 105 undergoing preoperative pulsation therapy and 96 receiving conventional treatment. Demographic analysis revealed comparable distributions across groups. Results: All the studies in our analysis are of good quality with a low risk of bias. A total of 201 patients were included in the analysis, out of which 105 underwent pulsation therapy, and 95 were in the control group. Tear Break-up Time (TBUT) analysis revealed no significant baseline differences, except pulsation therapy being better at 1 month. (SMD 0.42 [95%CI 0.14 - 0.70] p=0.004). This positive trend continued at three months (SMD 0.52 [95% CI (0.20 – 0.84)] p=0.002). Corneal fluorescein staining scores and Meibomian gland-yielding secretion scores showed no significant differences at baseline. However, at one month, pulsation therapy significantly improved Meibomian gland function (SMD -0.86 [95% CI (-1.20 - -0.53)] p<0.00001), indicating a reduced risk of dry eye syndrome. Conclusion: Preoperative pulsation therapy appears to enhance post-cataract surgery outcomes, particularly in terms of tear film stability and Meibomian gland secretory function. The sustained positive effects observed at one and three months post-surgery suggest the potential for long-term benefits.

Keywords: lipiflow, cataract, thermal pulsation, dry eye

Procedia PDF Downloads 23
937 Design and Manufacture of Removable Nosecone Tips with Integrated Pitot Tubes for High Power Sounding Rocketry

Authors: Bjorn Kierulf, Arun Chundru

Abstract:

Over the past decade, collegiate rocketry teams have emerged across the country with various goals: space, liquid-fueled flight, etc. A critical piece of the development of knowledge within a club is the use of so-called "sounding rockets," whose goal is to take in-flight measurements that inform future rocket design. Common measurements include acceleration from inertial measurement units (IMU's), and altitude from barometers. With a properly tuned filter, these measurements can be used to find velocity, but are susceptible to noise, offset, and filter settings. Instead, velocity can be measured more directly and more instantaneously using a pitot tube, which operates by measuring the stagnation pressure. At supersonic speeds, an additional thermodynamic property is necessary to constrain the upstream state. One possibility is the stagnation temperature, measured by a thermocouple in the pitot tube. The routing of the pitot tube from the nosecone tip down to a pressure transducer is complicated by the nosecone's structure. Commercial-off-the-shelf (COTS) nosecones come with a removable metal tip (without a pitot tube). This provides the opportunity to make custom tips with integrated measurement systems without making the nosecone from scratch. The main design constraint is how the nosecone tip is held down onto the nosecone, using the tension in a threaded rod anchored to a bulkhead below. Because the threaded rod connects into a threaded hole in the center of the nosecone tip, the pitot tube follows a winding path, and the pressure fitting is off-center. Two designs will be presented in the paper, one with a curved pitot tube and a coaxial design that eliminates the need for the winding path by routing pressure through a structural tube. Additionally, three manufacturing methods will be presented for these designs: bound powder filament metal 3D printing, stereo-lithography (SLA) 3D printing, and traditional machining. These will employ three different materials, copper, steel, and proprietary resin. These manufacturing methods and materials are relatively low cost, thus accessible to student researchers. These designs and materials cover multiple use cases, based on how fast the sounding rocket is expected to travel and how important heating effects are - to measure and to avoid melting. This paper will include drawings showing key features and an overview of the design changes necessitated by the manufacture. It will also include a look at the successful use of these nosecone tips and the data they have gathered to date.

Keywords: additive manufacturing, machining, pitot tube, sounding rocketry

Procedia PDF Downloads 167
936 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK

Authors: Esther Ekundayo

Abstract:

The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.

Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology

Procedia PDF Downloads 102
935 The Aromaticity of P-Substituted O-(N-Dialkyl)Aminomethylphenols

Authors: Khodzhaberdi Allaberdiev

Abstract:

Aromaticity, one of the most important concepts in organic chemistry, has attracted considerable interest from both experimentalists and theoreticians. The geometry optimization of p-substituted o-(N-dialkyl)aminomethylphenols, o-DEAMPH XC₆ H₅CH ₂Y (X=p-OCH₃, CH₃, H, F, Cl, Br, COCH₃, COOCH₃, CHO, CN and NO₂, Y=o-N (C₂H₅)₂, o-DEAMPHs have been performed in the gas phase using the B3LYP/6-311+G(d,p) level. Aromaticities of the considered molecules were investigated using different indices included geometrical (HOMA and Bird), electronic (FLU, PDI and SA) magnetic (NICS(0), NICS(1) and NICS(1)zz indices. The linear dependencies were obtained between some aromaticity indices. The best correlation is observed between the Bird and PDI indices (R² =0.9240). However, not all types of indices or even different indices within the same type correlate well among each other. Surprisingly, for studied molecules in which geometrical and electronic cannot correctly give the aromaticity of ring, the magnetism based index successfully predicts the aromaticity of systems. 1H NMR spectra of compounds were obtained at B3LYP/6–311+G(d,p) level using the GIAO method. Excellent linear correlation (R²= 0.9996) between values the chemical shift of hydrogen atom obtained experimentally of 1H NMR and calculated using B3LYP/6–311+G(d,p) demonstrates a good assignment of the experimental values chemical shift to the calculated structures of o-DEAMPH. It is found that the best linear correlation with the Hammett substituent constants is observed for the NICS(1)zz index in comparison with the other indices: NICS(1)zz =-21.5552+1,1070 σp- (R²=0.9394). The presence intramolecular hydrogen bond in the studied molecules also revealed changes the aromatic character of substituted o-DEAMPHs. The HOMA index predicted for R=NO2 the reduction in the π-electron delocalization of 3.4% was about double that observed for p-nitrophenol. The influence intramolecular H-bonding on aromaticity of benzene ring in the ground state (S0) are described by equations between NICS(1)zz and H-bond energies: experimental, Eₑₓₚ, predicted IR spectroscopical, Eν and topological, EQTAIM with correlation coefficients R² =0.9666, R² =0.9028 and R² =0.8864, respectively. The NICS(1)zz index also correlates with usual descriptors of the hydrogen bond, while the other indices do not give any meaningful results. The influence of the intramolecular H-bonding formation on the aromaticity of some substituted o-DEAMPHs is criteria to consider the multidimensional character of aromaticity. The linear relationships as well as revealed between NICS(1)zz and both pyramidality nitrogen atom, ΣN(C₂H₅)₂ and dihedral angle, φ CAr – CAr -CCH₂ –N, to characterizing out-of-plane properties.These results demonstrated the nonplanar structure of o-DEAMPHs. Finally, when considering dependencies of NICS(1)zz, were excluded data for R=H, because the NICS(1) and NICS(1)zz values are the most negative for unsubstituted DEAMPH, indicating its highest aromaticity; that was not the case for NICS(0) index.

Keywords: aminomethylphenols, DFT, aromaticity, correlations

Procedia PDF Downloads 182
934 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts

Authors: Cristina Galiana Carballo, Ibon Doval Martínez

Abstract:

Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.

Keywords: landscape ecology, land-use management, periurban, urban planning

Procedia PDF Downloads 164
933 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 99