Search results for: oxygen carrier particles
2761 Characteristics of Oil-In-Water Emulsion Stabilized with Pregelatinized Waxy Rice Starch
Authors: R. Yulianingsih, S. Gohtani
Abstract:
Characteristics of pregelatinized waxy rice starch (PWR) gelatinized at different temperatures (65, 75, and 85 °C, abbreviated as PWR 65, 75 and 85 respectively) and their emulsion-stabilizing properties at different starch concentrations (3, 5, 7, and 9%) were studied. The yield stress and consistency index value of PWR solution increased with an increase in starch concentration. The pseudoplasticity of PWR 65 solution increased and that for both PWR 75 and 85 solution decreased with an increase in starch concentration. Small angle X-ray scattering (SAXS) profiles analyzed by Kratky Plot indicated that PWR 65 is natively unfolded particles while PWR 75 and 85 are the globular particles. The characteristics of emulsions stabilized with PWR were influenced by the temperature of gelatinization process and starch concentration. Elevated concentration of starch decreased the value of yield stress and increased the consistency index. PWR 65 produce stable emulsion to creaming at starch concentrations more than 5%, while PWR 85 is able to produce stable emulsion to both creaming and coalescence of droplets.Keywords: emulsion, gelatinization temperature, rheology, small-angle X-ray scattering, waxy rice starch
Procedia PDF Downloads 1592760 Enzyme Immobilization on Functionalized Polystyrene Nanofibersfor Bioprocessing Applications
Authors: Mailin Misson, Bo Jin, Sheng Dai, Hu Zhang
Abstract:
Advances in biotechnology have witnessed a growing interest in enzyme applications for the development of green and sustainable bio processes. While known as powerful bio catalysts, enzymes are no longer of economic value when extended to large commercialization. Alternatively, immobilization technology allows enzyme recovery and continuous reuse which subsequently compensates high operating costs. Employment of enzymes on nano structured materials has been recognized as a promising approach to enhance enzyme catalytic performances. High porosity, inter connectivity and self-assembling behaviors endow nano fibers as exciting candidate for enzyme carrier in bio reactor systems. In this study, nano fibers were successfully fabricated via electro spinning system by optimizing the polymer concentration (10-30 %, w/v), applied voltage (10-30 kV) and discharge distance (11-26 cm). Microscopic images have confirmed the quality as homogeneous and good fiber alignment. The nano fibers surface was modified using strong oxidizing agent to facilitate bio molecule binding. Bovine serum albumin and β-galactosidase enzyme were employed as model bio catalysts and immobilized onto the oxidized surfaces through covalent binding. Maximum enzyme adsorption capacity of the modified nano fibers was 3000 mg/g, 3-fold higher than the unmodified counterpart (1000 mg/g). The highest immobilization yield was 80% and reached the saturation point at 2 mg/ml of enzyme concentration. The results indicate a significant increase of activity retention by the enzyme-bound modified nano fibers (80%) as compared to the nascent one (60%), signifying excellent enzyme-nano carrier bio compatibility. The immobilized enzyme was further used for the bio conversion of dairy wastes into value-added products. This study demonstrates great potential of acid-modified electrospun polystyrene nano fibers as enzyme carriers.Keywords: immobilization, enzyme, nanocarrier, nanofibers
Procedia PDF Downloads 2942759 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice
Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi
Abstract:
Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.Keywords: Carrot juice, Dead end, Microfiltration, Ultrasound
Procedia PDF Downloads 3202758 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production
Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia
Abstract:
A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel
Procedia PDF Downloads 2332757 Carbon Monoxide Poisoning in Children
Authors: Atitallah Sofien, Bouyahia Olfa, Hadj Salah Ibrahim, Ben Saleh Foued, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir
Abstract:
Introduction: Carbon monoxide (CO) poisoning is a common pathology responsible for high morbidity and mortality worldwide. Aim: The purpose of this study was to determine the epidemiological profile of CO poisoning as well as its clinical, paraclinical, therapeutic, and evolutionary aspects. Methods: Our study included observations of CO poisoning in children hospitalized in the pediatric department C of the Children's Hospital in Tunis over a period of 3 years. Results: We have collected 199 cases of CO poisoning in children. The average age was 5.43 years, with a sex ratio of 0.98. The source of CO was inside the home in 73.2% of cases, and it was the gas bath heater in 68.8% of cases. The intoxication was collective in 93.5% of the cases, and it occurred during the month of January in 35.8% of the cases. The clinical manifestations were headaches in 69.5% of cases. The rate of carboxyhemoglobin was pathological in 73.9% of cases. All patients received normobaric oxygen therapy, and only 3.6% of patients had a hyperbaric oxygen therapy session. We did not deplore any case of death in our study. Conclusion: CO poisoning remains a public health problem in Tunisia with high morbidity. The risk of secondary complications, particularly neuropsychiatric, requires clinical and possibly neuroradiological monitoring of these victims.Keywords: poisoning, carbon monoxide, children, hyperbaric oxygenation
Procedia PDF Downloads 722756 Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers
Authors: Marina Nisnevitch, Anton Valkov, Faina Nakonechny, Kate Adar Raik, Yamit Mualem
Abstract:
Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused.Keywords: antimicrobial polymers, gram-positive bacteria, immobilization of photosensitizers, photodynamic antibacterial activity
Procedia PDF Downloads 2432755 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray
Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry
Abstract:
Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion
Procedia PDF Downloads 972754 Preparation and Characterization of Chitosan-Hydrocortisone Nanoshell for Drug Delivery Application
Authors: Suyeon Kwon, Ik Joong Kang, Wang Bingjie
Abstract:
Chitosan is a polymer that is usually produced from N-deacetylation of chitin. It is emerging as a promising biocompatible polymer that is harmless to humans. For the reason that many merits such as good adsorptive, biodegradability, many researches are being done on the chitosan for drug delivery system. Drug delivery system (DDS) has been developed for the control of drug. It makes the drug can be delivered effectively and safely into the targeted human body. The drug used in this work is hydrocortisone that is used in Rheumatism, skin diseases, allergy treatment. In this work, hydrocortisone was used to make allergic rhinitis medicine. Our study focuses on drug delivery through the nasal mucosa by using hydrocortisone impregnated chitosan nanoshells. This study has performed an investigation in order to establish the optimal conditions, changing concentration, quantity of hydrocortisone. DLS, SEM, TEM, FT-IR, UV spectrum were used to analyze the manufactured chitosan-hydrocortisone silver nanoshell and silver nanoshell, whose function as drug carriers. This study has performed an investigation on new drug carriers and delivery routes for hydrocortisone. Various methods of manufacturing chitosan-hydrocortisone nanoshells were attempted in order to establish the optimal condition. As a result, the average size of chitosan-hydrocortisone silver nanoshell is about 80 nm. So, chitosan-hydrocortisone silver nanoshell is suitable as drug carriers because optimal size of drug carrier in human body is less than 120 nm. UV spectrum of Chitosan-hydrocortisone silver nanoshell shows the characteristic peak of silver nanoshell at 420 nm. Likewise, the average size of chitosan-hydrocortisone silver nanoshell is about 100nm. It is also suitable for drug carrier in human body. Also, multi-layered silver shell over chitosan nanoshells induced the red-shift of absorption peak and increased the intensity of absorption peak. The resultant chitosan–silver nanocomposites (or nanoshells) exhibited the absorption peak around 430nm attributed to silvershell formation. i.e. the absorption peak was red-shifted by ca. 40 nm in reference to 390 nm of silver nanoshells.Keywords: chitosan, drug delivery, hydrocortisone, rhinitis, nanoshell
Procedia PDF Downloads 2602753 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study
Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das
Abstract:
Rotary entrainment is a phenomenon in which the interfaces of two immiscible fluids are subjected to external flux in the form of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles have been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.Keywords: entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing
Procedia PDF Downloads 3402752 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties
Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta
Abstract:
Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability
Procedia PDF Downloads 1032751 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3442750 Validation of an Impedance-Based Flow Cytometry Technique for High-Throughput Nanotoxicity Screening
Authors: Melanie Ostermann, Eivind Birkeland, Ying Xue, Alexander Sauter, Mihaela R. Cimpan
Abstract:
Background: New reliable and robust techniques to assess biological effects of nanomaterials (NMs) in vitro are needed to speed up safety analysis and to identify key physicochemical parameters of NMs, which are responsible for their acute cytotoxicity. The central aim of this study was to validate and evaluate the applicability and reliability of an impedance-based flow cytometry (IFC) technique for the high-throughput screening of NMs. Methods: Eight inorganic NMs from the European Commission Joint Research Centre Repository were used: NM-302 and NM-300k (Ag: 200 nm rods and 16.7 nm spheres, respectively), NM-200 and NM- 203 (SiO₂: 18.3 nm and 24.7 nm amorphous, respectively), NM-100 and NM-101 (TiO₂: 100 nm and 6 nm anatase, respectively), and NM-110 and NM-111 (ZnO: 147 nm and 141 nm, respectively). The aim was to assess the biological effects of these materials on human monoblastoid (U937) cells. Dispersions of NMs were prepared as described in the NANOGENOTOX dispersion protocol and cells were exposed to NMs at relevant concentrations (2, 10, 20, 50, and 100 µg/mL) for 24 hrs. The change in electrical impedance was measured at 0.5, 2, 6, and 12 MHz using the IFC AmphaZ30 (Amphasys AG, Switzerland). A traditional toxicity assay, Trypan Blue Dye Exclusion assay, and dark-field microscopy were used to validate the IFC method. Results: Spherical Ag particles (NM-300K) showed the highest toxic effect on U937 cells followed by ZnO (NM-111 ≥ NM-110) particles. Silica particles were moderate to non-toxic at all used concentrations under these conditions. A higher toxic effect was seen with smaller sized TiO2 particles (NM-101) compared to their larger analogues (NM-100). No interferences between the IFC and the used NMs were seen. Uptake and internalization of NMs were observed after 24 hours exposure, confirming actual NM-cell interactions. Conclusion: Results collected with the IFC demonstrate the applicability of this method for rapid nanotoxicity assessment, which proved to be less prone to nano-related interference issues compared to some traditional toxicity assays. Furthermore, this label-free and novel technique shows good potential for up-scaling in directions of an automated high-throughput screening and for future NM toxicity assessment. This work was supported by the EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584), the Research Council of Norway, project NorNANoREG (239199/O70), the EuroNanoMed II 'GEMN' project (246672), and the UH-Nett Vest project.Keywords: cytotoxicity, high-throughput, impedance, nanomaterials
Procedia PDF Downloads 3622749 Effect of Hypoxia on AOX2 Expression in Chlamydomonas reinhardtii
Authors: Maria Ostroukhova, Zhanneta Zalutskaya, Elena Ermilova
Abstract:
The alternative oxidase (AOX) mediates cyanide-resistant respiration, which bypasses proton-pumping complexes III and IV of the cytochrome pathway to directly transfer electrons from reduced ubiquinone to molecular oxygen. In Chlamydomonas reinhardtii, AOX is a monomeric protein that is encoded by two genes of discrete subfamilies, AOX1 and AOX2. Although AOX has been proposed to play essential roles in stress tolerance of organisms, the role of subfamily AOX2 is largely unknown. In C. reinhardtii, AOX2 was initially identified as one of constitutively low expressed genes. Like other photosynthetic organisms C. reinhardtii cells frequently experience periods of hypoxia. To examine AOX2 transcriptional regulation and role of AOX2 in hypoxia adaptation, real-time PCR analysis and artificial microRNA method were employed. Two experimental approaches have been used to induce the anoxic conditions: dark-anaerobic and light-anaerobic conditions. C. reinhardtii cells exposed to the oxygen deprivation have shown increased AOX2 mRNA levels. By contrast, AOX1 was not an anoxia-responsive gene. In C. reinhardtii, a subset of genes is regulated by transcription factor CRR1 in anaerobic conditions. Notable, the AOX2 promoter region contains the potential motif for CRR1 binding. Therefore, the role of CRR1 in the control of AOX2 transcription was tested. The CRR1-underexpressing strains, that were generated and characterized in this work, exhibited low levels of AOX2 transcripts under anoxic conditions. However, the transformants still slightly induced AOX2 gene expression in the darkness. These confirmed our suggestions that darkness is a regulatory stimulus for AOX genes in C. reinhardtii. Thus, other factors must contribute to AOX2 promoter activity under dark-anoxic conditions. Moreover, knock-down of CRR1 caused a complete reduction of AOX2 expression under light-anoxic conditions. These results indicate that (1) CRR1 is required for AOX2 expression during hypoxia, and (2) AOX2 gene is regulated by CRR1 together with yet-unknown regulatory factor(s). In addition, the AOX2-underexpressing strains were generated. The analysis of amiRNA-AOX2 strains suggested a role of this alternative oxidase in hypoxia adaptation of the alga. In conclusion, the results reported here show that C. reinhardtii AOX2 gene is stress inducible. CRR1 transcriptional factor is involved in the regulation of the AOX2 gene expression in the absence of oxygen. Moreover, AOX2 but not AOX1 functions under oxygen deprivation. This work was supported by Russian Science Foundation (research grant № 16-14-10004).Keywords: alternative oxidase 2, artificial microRNA approach, chlamydomonas reinhardtii, hypoxia
Procedia PDF Downloads 2422748 Enhancing Animal Protection: Topical RNAi with Polymer Carriers for Sustainable Animal Health in Australian Sheep Flystrike
Authors: Yunjia Yang, Yakun Yan, Peng Li, Gordon Xu, Timothy Mahony, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck with a protection window only lasting 5-7 days. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for controlled release of the dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. We have investigated four different BenPol carriers for their dsRNA loading capabilities of which three of them were able to afford dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in the sheep serum. Based on stability results, we further tested dsRNA from potential targeted genes loaded with BenPol carrier in larvae feeding assay, and get three knockdowns. Our results, establish that the dsRNA when loaded on BenPol particles is stable unlike naked dsRNA which is rapidly degraded in the sheep serum. A stable nanoparticles delivery system that can protect and increase the inherent stability of the dsRNA molecules at higher temperatures in a complex biological fluid like serum, offers a great deal of promise for the future use of this approach for enhancing animal protection.Keywords: RNA interference, Lucillia cuprina, polymer carriers, polymer stability
Procedia PDF Downloads 822747 Effect of Wind and Humidity on Microwave Links in North West Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.Keywords: : Attenuation, scattering, transmission loss.
Procedia PDF Downloads 2152746 Pt Decorated Functionalized Acetylene Black as Efficient Cathode Material for Li Air Battery and Fuel Cell Applications
Authors: Rajashekar Badam, Vedarajan Raman, Noriyoshi Matsumi
Abstract:
Efficiency of energy converting and storage systems like fuel cells and Li-Air battery principally depended on oxygen reduction reaction (ORR) which occurs at cathode. As the kinetics of the ORR is very slow, it becomes the rate determining step. Exploring carbon substrates for enhancing the dispersion and activity of the metal catalyst and commercially viable simple preparation method is a very crucial area of research in the field of energy materials. Hence, many researchers made large number of carbon-based ORR materials today. But, there are hardly few studies on the effect of interaction between Pt-carbon and carbon-electrolyte on activity. In this work, we have prepared functionalized carbon-based Pt catalyst (Pt-FAB) with enhanced interfacial properties that lead to efficient ORR catalysis. The present work deals with a single-pot method to exfoliate and functionalized acetylene black with enhanced interaction with Pt as well as electrolyte. Acetylene black was functionalized and exfoliated using a facile single pot acid treatment method. The resulted FAB was further decorated with Pt-nano particles (Pt-np). The TEM images of Pt-FAB with uniformly decorated Pt-np of ~3 nm. Further, XPS studies of Pt 4f peak revealed that Pt0 peak was shifted by 0.4 eV in Pt-FAB compared to binding energy of typical Pt⁰ found in Pt/C. The shift can be ascribed to the modulation of electronic state and strong electronic interaction of Pt with carbon. Modulated electronic structure of Pt and strong electronic interaction of Pt with FAB enhances the catalytic activity and durability respectively. To understand the electrode electrolyte interface, electrochemical impedance spectroscopy was carried out. These measurements revealed that the charge transfer resistance of electrode to electrolyte for Pt-FAB is 10 times smaller than that of conventional Pt/C. The interaction with electrolyte helps reduce the interface boundaries, which in turn affects the overall catalytic performance of the electrode. Cyclic voltammetric measurements in 0.1M HClO₄ aq. at a potential scan rate of 50 mVs-1 was employed to evaluate electrochemical surface area (ECSA) of Pt. ECSA of Pt-FAB was found to be as high as 67.2 m²g⁻¹. The three-electrode system showed very high ORR catalytic activity. Mass activity at 0.9 V vs. RHE showed 460 A/g which is much higher than the DOE target values for the year 2020. Further, it showed enhanced performance by showing 723 mW/cm² of highest power density and 1006 mA/cm² of current density at 0.6 V in fuel cell single cell type configuration and 1030 mAhg⁻¹ of rechargeable capacity in Li air battery application. The higher catalytic activity can be ascribed to the improved interaction of FAB with Pt and electrolyte. The aforementioned results evince that Pt-FAB will be a promising cathode material for efficient ORR with significant cyclability for its application in fuel cells and Li-Air batteries. In conclusion, a disordered material was prepared from AB and was systematically characterized. The extremely high ORR activity and ease of preparation make it competent for replacing commercially available ORR materials.Keywords: functionalized acetylene black, oxygen reduction reaction, fuel cells, Functionalized battery
Procedia PDF Downloads 1092745 Advanced Electrocoagulation for Textile Wastewater Treatment
Authors: Alemi Asefa Wordofa
Abstract:
The textile industry is among the biggest industries in the world, producing a wide variety of products. Industry plays an important role in the world economy as well as in our daily lives. In Ethiopia, this has also been aided by the country’s impressive economic growth over the years. However, Textile industries consume large amounts of water and produce colored wastewater, which results in polluting the environment. In this study, the efficiency of the electrocoagulation treatment process using Iron electrodes to treat textile wastewater containing Reactive black everzol was studied. The effects of parameters such as voltage, time of reaction, and inter-electrode distance on Chemical oxygen demand (COD) and dye removal efficiency were investigated. In addition, electrical energy consumption at optimum conditions has been investigated. The results showed that COD and dye removals were 90.76% and 97.66%, respectively, at the optimum point of input voltage of 14v, inter-electrode distance of 7.24mm, and 47.86min electrolysis time. Energy consumption at the optimum point is also 2.9*10-3. It can be concluded that the electrocoagulation process by the iron electrode is a very efficient and clean process for COD and reactive black removal from wastewater.Keywords: iron electrode, electrocoagulation, chemical oxygen demand, wastewater
Procedia PDF Downloads 682744 Thermal Pre-Treatment of Sewage Sludge in Fluidized Bed for Enhancing Its Solid Fuel Properties
Authors: Sujeeta Karki, Jeeban Poudel, Ja Hyung Choi, Sea Cheon Oh
Abstract:
A lab-scale fluidized bed was used for the study of sewage sludge, a non-lignocellulosic biomass, torrefaction. The influence of torrefaction temperature ranging from 200–350 °C and residence time of 0–50 minutes on the physical and chemical properties of the torrefied product was investigated. Properties of the torrefied product were analyzed on the basis of degree of torrefaction, ultimate and proximate analysis, gas analysis and chemical exergy. The degree of torrefaction and chemical exergy had a positive influence on increasing the torrefaction temperature. Moreover, the effect of torrefaction temperature and residence time on the elemental variation of sewage sludge exhibited an increase in the weight percentage of carbon while the content of H/C and O/C molar ratios decreased. The product gas emitted during torrefaction was analyzed to study the pathway of hydrocarbons and oxygen-containing compounds. The compounds with oxygen were emitted at higher temperatures in contrast to hydrocarbon gases. An attempt was made to obtain the chemical exergy of sewage sludge. In addition, the study of various correlations for predicting the calorific value of torrefied sewage sludge was made.Keywords: chemical exergy, degree of torrefaction, fluidized bed, higher heating value (HHV), O/C and H/C molar ratios, sewage sludge
Procedia PDF Downloads 1682743 Magnesium Nanoparticles for Photothermal Therapy
Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini
Abstract:
Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy
Procedia PDF Downloads 2702742 The Pressure Losses in the Model of Human Lungs
Authors: Michaela Chovancova, Pavel Niedoba
Abstract:
For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.Keywords: human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing
Procedia PDF Downloads 3572741 First Documented Anesthesia with Use of Low Doses of Tiletamine-Zolazepam Combination in Ovoviparous Amazon Tree Boa Undergoing Emergency Coeliotomy-Case Report
Authors: Krzysztof Buczak, Sonia Lachowska, Pawel Kucharski, Agnieszka Antonczyk
Abstract:
Tiletamine - zolazepam combination is increasingly used in veterinary anaesthesiology in wild animals, including snakes. The available literature shows a lack of information about anesthesia in this mixture in ovoviviparous snakes. The studies show the possibility of using the combination at a dose of 20 mg/kg or more for snake immobilization. This paper presents an anesthetic protocol with the use of a combination of tiletamine - zolazepam at the dose of 10 mg/kg intramuscularly and maintenance with inhalant anesthesia with isoflurane in pure oxygen. The objective of this study was to evaluate the usefulness of the anesthetic protocol to proceed with coeliotomy in Amazon Tree Boa. The patient was a five years old bicolor female Amazon Tree Boa (Corallus hortulanus) with dystocia. The clinical examination reveals significant emaciation (bodyweight 520g), high degree of dehydration, heart rate (HR = 60 / min), pale mucous membranes and poor reactivity. Meloxicam (1 mg/kg) and tramadol (10 mg/kg) were administered subcutaneously and the patient was placed in an incubator with access to fresh oxygen. Four hours later, the combination of tiletamine - zolazepam (10 mg/kg) was administered intramuscularly for induction of anesthesia. The snake was intubated and connected to inhalant anesthesia equipment. For maintenance, the anesthesia isoflurane in pure oxygen was used due to apnea, which occurs 30 minutes after the induction semi-closed system was attached and the ventilator was turned on (PCV system, four breaths per minute, 8 cm of H2O). Cardiopulmonary parameters (HR, RR, SPO2, ETCO2, ETISO) were assessed throughout the procedure. During the entire procedure, the operating room was heated to a temperature of 26 degrees Celsius. Additionally, the hose was placed on a heating mat, which maintained a temperature of 30 degrees Celsius. For 15 minutes after induction, the loss of muscle tone was observed from the head to the tail. Induction of general anesthesia was scored as good because of the possibility of intubation. During the whole procedure, the heart rate was at the rate of 58 beats per minute (bpm). Ventilation parameters were stable throughout the procedure. The recovery period lasts for about 4 hours after the end of general anesthesia. The muscle tension returned from tail to head. The snake started to breathe spontaneously within 1,5 hours after the end of general anesthesia. The protocol of general anesthesia with the combination of tiletamine- zolazepam with a dose of 10 mg/kg is useful for proceeding with the emergency coeliotomy in maintenance with isoflurane in oxygen. Further study about the impact of the combination of tiletamine- zolazepam for the recovery period is needed.Keywords: anesthesia, corallus hortulanus, ovoviparous, snake, tiletamine, zolazepam
Procedia PDF Downloads 2472740 Raman Spectroscopy of Fossil-like Feature in Sooke #1 from Vancouver Island
Authors: J. A. Sawicki, C. Ebrahimi
Abstract:
The first geochemical, petrological, X-ray diffraction, Raman, Mössbauer, and oxygen isotopic analyses of very intriguing 13-kg Sooke #1 stone covered in 70% of its surface with black fusion crust, found in and recovered from Sooke Basin, near Juan de Fuca Strait, in British Columbia, were reported as poster #2775 at LPSC52 in March. Our further analyses reported in poster #6305 at 84AMMS in August and comparisons with the Mössbauer spectra of Martian meteorite MIL03346 and Martian rocks in Gusev Crater reported by Morris et al. suggest that Sooke #1 find could be a stony achondrite of Martian polymict breccia type ejected from early watery Mars. Here, the Raman spectra of a carbon-rich ~1-mm² fossil-like white area identified in this rock on a surface of polished cut have been examined in more detail. The low-intensity 532 nm and 633 nm beams of the InviaRenishaw microscope were used to avoid any destructive effects. The beam was focused through the microscope objective to a 2 m spot on a sample, and backscattered light collected through this objective was recorded with CCD detector. Raman spectra of dark areas outside fossil have shown bands of clinopyroxene at 320, 660, and 1020 cm-1 and small peaks of forsteritic olivine at 820-840 cm-1, in agreement with results of X-ray diffraction and Mössbauer analyses. Raman spectra of the white area showed the broad band D at ~1310 cm-1 consisting of main mode A1g at 1305 cm⁻¹, E2g mode at 1245 cm⁻¹, and E1g mode at 1355 cm⁻¹ due to stretching diamond-like sp3 bonds in diamond polytype lonsdaleite, as in Ovsyuk et al. study. The band near 1600 cm-1 mostly consists of D2 band at 1620 cm-1 and not of the narrower G band at 1583 cm⁻¹ due to E2g stretching in planar sp2 bonds that are fundamental building blocks of carbon allotropes graphite and graphene. In addition, the broad second-order Raman bands were observed with 532 nm beam at 2150, ~2340, ~2500, 2650, 2800, 2970, 3140, and ~3300 cm⁻¹ shifts. Second-order bands in diamond and other carbon structures are ascribed to the combinations of bands observed in the first-order region: here 2650 cm⁻¹ as 2D, 2970 cm⁻¹ as D+G, and 3140 cm⁻¹ as 2G ones. Nanodiamonds are abundant in the Universe, found in meteorites, interplanetary dust particles, comets, and carbon-rich stars. The diamonds in meteorites are presently intensely investigated using Raman spectroscopy. Such particles can be formed by CVD process and during major impact shocks at ~1000-2300 K and ~30-40 GPa. It cannot be excluded that the fossil discovered in Sooke #1 could be a remnant of an alien carbon organism that transformed under shock impact to nanodiamonds. We trust that for the benefit of research in astro-bio-geology of meteorites, asteroids, Martian rocks, and soil, this find deserves further, more thorough investigations. If possible, the Raman SHERLOCK spectrometer operating on the Perseverance Rover should also search for such objects in the Martian rocks.Keywords: achondrite, nanodiamonds, lonsdaleite, raman spectra
Procedia PDF Downloads 1532739 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class
Authors: Mohammad Jamil Abd AlGhani
Abstract:
The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.Keywords: antioxidants, chemiluminescence, inhibition, Unol
Procedia PDF Downloads 2042738 In vitro Effects of Viscum album on the Functionality of Rabbit Spermatozoa
Authors: Marek Halenár, Eva Tvrdá, Simona Baldovská, Ľubomír Ondruška, Peter Massányi, Adriana Kolesárová
Abstract:
This study aimed to assess the in vitro effects of different concentrations of the Viscum album extract on the motility, viability, and reactive oxygen species (ROS) production by rabbit spermatozoa during different time periods (0, 2, and 8h). Spermatozoa motility was assessed by using the CASA (Computer aided sperm analysis) system. Cell viability was evaluated by using the metabolic activity MTT assay, and the luminol-based luminometry was applied to quantify the ROS formation. The CASA analysis revealed that low Viscum concentrations were able to prevent a rapid decline of spermatozoa motility, especially in the case of concentrations ranging between 1 and 5 µg/mL (P<0.05 with respect to time 8h). At the same time, concentrations ranging between 1 and 100 µg/mL of the extract led to a significant preservation of the cell viability (P<0.05 in case of 5, 50 and 100 µg/mL; P<0.01 with respect to 1 and 10 µg/mL, time 8h). 1 and 5 µg/mL of the extract exhibited antioxidant characteristics, translated into a significant reduction of the ROS production, particularly notable at time 8h (P<0.01). The results indicate that the Viscum extract is capable of delaying the damage inflicted to the spermatozoon by the in vitro environment.Keywords: CASA, mistletoe, mitochondrial activity, motility, reactive oxygen species, rabbits, spermatozoa, Viscum album
Procedia PDF Downloads 3942737 The Anti-Angiogenic Effect of Tectorigenin in a Mouse Model of Retinopathy of Prematurity
Authors: KuiDong Kang, Hye Bin Yim, Su Ah Kim
Abstract:
Purpose: Tectorigenin is an isoflavone derived from the rhizome of Belamacanda chinensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of tectorigenin in mice. Methods: ICR neonatal mice were exposed to 75% oxygen from postnatal day P7 until P12 and returned to room air (21% oxygen) for five days (P12 to P17). Mice were subjected to daily intraperitoneal injection of tectorigenin (1 mg/kg, 10 mg/kg) and vehicle from P12 to P17. Retro-orbital injection of FITC-dextran was performed and retinal flat mounts were viewed by fluorescence microscopy. The Central avascular area was quantified from the digital images in a masked fashion using image analysis software (NIH ImageJ). Neovascular tufts were quantified by using SWIFT_NV and neovascular lumens were quantified from a histologic section in a masked fashion. Immunohistochemistry and Western blot analysis were also performed to demonstrate the anti-angiogenic activity of this compound in vivo. Results: In the retina of tectorigenin injected mouse (10mg/kg), the central non-perfusion area was significantly decreased compared to the vehicle injected group (1.76±0.5 mm2 vs 2.85±0.6 mm2, P<0.05). In vehicle-injected group, 33.45 ± 5.51% of the total retinal area was avascular, whereas the retinas of pups treated with high-dose (10 mg/kg) tectorigenin showed avascular retinal areas of 21.25 ±4.34% (P<0.05). High dose of tectorigenin also significantly reduced the number of vascular lumens in the histologic section. Tectorigenin (10 mg/kg) significantly reduced the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), MMP-9, and angiotensin II compared to the vehicle injected group. Tectorigenin did not affect CD31 abundance at any tested dose. Conclusions: Our results show that tectorigenin possesses powerful anti-angiogenic properties and can attenuate new vessel formation in the retina after systemic administration. These results imply that this compound can be considered as a candidate substance for therapeutic inhibition of retinal angiogenesis.Keywords: tectorigenin, anti-angiogenic, retinopathy, Belamacanda chinensis
Procedia PDF Downloads 2672736 Solvent-Free Conductive Coatings Containing Chemically Coupled Particles for Functional Textiles
Authors: Jagadeshvaran P. L., Kamlesh Panwar, Indumathi Ramakrishnan, Suryasarathi Bose
Abstract:
The surge in the usage of wireless electronics and communication devices has engendered a different form of pollution, viz. the electromagnetic (EM) pollution and yet another serious issue, electromagnetic interference (EMI). There is a legitimate need to develop strategies and materials to combat this issue, otherwise leading to dreadful consequences. Functional textiles have emerged as the modern materials to help attenuate EM waves due to the numerous advantages – flexibility being the most important. In addition to this, there is an inherent advantage of multiple interfaces in coated fabrics that can engender significant attenuation. Herein we report a coating having multifunctional properties – capable of blocking both UV and EM radiation (predominantly of the microwave frequencies) with flame-retarding properties. The layer described here comprises iron titanate(FT) synthesized from its sustainable precursor – ilmenite sand and carbon nanotubes (CNT) dispersed in waterborne polyurethane. It is worth noting that FT's use as a multifunctional material is being reported for the first time. It was observed that a single layer of coated fabric shows EMI shielding effectiveness of -40 dB translating to 99.99% attenuation and similarly a UV blocking of 99.99% in the wavelength ranging from 200-400 nm. The microwave shielding properties of the fabric were demonstrated using a Bluetooth module – where the coated fabric was able to block the incoming Bluetooth signals to the module from a mobile phone. Besides, the coated fabrics exhibited phenomenal enhancement in thermal stability - a five percent increase in the limiting oxygen index (LOI) was observed upon the application of the coating. Such exceptional properties complement cotton fabrics' existing utility, thereby extending their use to specialty applications.Keywords: multifunctional coatings, EMI shielding, UV blocking, iron titanate, CNT, waterborne polyurethane, cotton fabrics
Procedia PDF Downloads 1182735 PD Test in Gas Insulated Substation Using UHF Method
Authors: T. Prabakaran
Abstract:
Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance.Keywords: gas insulated substation, partial discharge, free moving particle defect, particle fixed on cone defect, ultra high frequency method
Procedia PDF Downloads 2472734 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment
Authors: Innocent O. Arukalam, Emeka E. Oguzie
Abstract:
Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation
Procedia PDF Downloads 992733 Sonocatalytic Treatment of Baker’s Yeast Wastewater by Using SnO2/TiO2 Composite
Authors: Didem Ildırar, Serap Fındık
Abstract:
Baker’s yeast industry uses molasses as a raw material. Molasses wastewater contains high molecular weight polymers called melanoidins. Melanoidins are obtained after the reactions between the amino acids and carbonyl groups in molasses. The molasses wastewater has high biochemical and chemical oxygen demand and dark brown color. If it is discharged to receiving bodies without any treatment, it prevents light penetration and dissolved oxygen level of the surface water decreases. Melanoidin compounds are toxic effect to the microorganism in water and there is a resistance to microbial degradation. Before discharging molasses wastewater, adequate treatment is necessary. In addition to changing environmental regulations, properties of treated wastewater must be improved. Advanced oxidation processes can be used to improve existing properties of wastewater. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs the use of ultrasound resulting in cavitation phenomena. In this study, decolorization and chemical oxygen demand removal (COD) of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator was used for this study. Its operating frequency is 20kHz. SnO2/TiO2 catalyst has been used as sonocatalyst. The effects of the composite preparation method, mixing time while composite prepared, the molar ratio of SnO2/TiO2, the calcination temperature, and time, the catalyst amount were investigated on the treatment of baker’s yeast effluent. . According to the results, the prepared composite SnO2/TiO2 by using ultrasonic probe gave a better result than prepared composite by using an ultrasonic bath. Prepared composite by using an ultrasonic probe with a 4:1 molar ratio treated at 800°C for 60min gave a better result. By using this composite, optimum catalyst amount was 0.2g/l. At these conditions 26.6% decolorization was obtained. There was no COD removal at the studied conditions.Keywords: baker’s yeast effluent, COD, decolorization, sonocatalyst, ultrasonic irradiation
Procedia PDF Downloads 3222732 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor
Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar
Abstract:
Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption
Procedia PDF Downloads 116