Search results for: calcium oxalate crystals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 982

Search results for: calcium oxalate crystals

142 Lignin Phenol Formaldehyde Resole Resin: Synthesis and Characteristics

Authors: Masoumeh Ghorbania, Falk Liebnerb, Hendrikus W.G. van Herwijnenc, Johannes Konnertha

Abstract:

Phenol formaldehyde (PF) resins are widely used as wood adhesives for variety of industrial products such as plywood, laminated veneer lumber and others. Lignin as a main constituent of wood has become well-known as a potential substitute for phenol in PF adhesives because of their structural similarity. During the last decades numerous research approaches have been carried out to substitute phenol with pulping-derived lignin, whereby the lower reactivity of resins synthesized with shares of lignin seem to be one of the major challenges. This work reports about a systematic screening of different types of lignin (plant origin and pulping process) for their suitability to replace phenol in phenolic resins. Lignin from different plant sources (softwood, hardwood and grass) were used, as these should differ significantly in their reactivity towards formaldehyde of their reactive phenolic core units. Additionally a possible influence of the pulping process was addressed by using the different types of lignin from soda, kraft, and organosolv process and various lignosulfonates (sodium, ammonium, calcium, magnesium). To determine the influence of lignin on the adhesive performance beside others the rate of viscosity development, bond strength development of varying hot pressing time and other thermal properties were investigated. To evaluate the performance of the cured end product, a few selected properties were studied at the example of solid wood-adhesive bond joints, compact panels and plywood. As main results it was found that lignin significantly accelerates the viscosity development in adhesive synthesis. Bonding strength development during curing of adhesives decelerated for all lignin types, while this trend was least for pine kraft lignin and spruce sodium lignosulfonate. However, the overall performance of the products prepared with the latter adhesives was able to fulfill main standard requirements, even after exposing the products to harsh environmental conditions. Thus, a potential application can be considered for processes where reactivity is less critical but adhesive cost and product performance is essential.

Keywords: phenol formaldehyde resin, lignin phenol formaldehyde resin, ABES, DSC

Procedia PDF Downloads 212
141 Thermal Stability and Electrical Conductivity of Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M = Zn, Ni Measured by Impedance Spectroscopy

Authors: Anna S. Tolkacheva, Sergey N. Shkerin, Kirill G. Zemlyanoi, Olga G. Reznitskikh, Pavel D. Khavlyuk

Abstract:

Calcium oxovanadates with garnet related structure are multifunctional oxides in various fields like photoluminescence, microwave dielectrics, and magneto-dielectrics. For example, vanadate garnets are self-luminescent compounds. They attract attention as RE-free broadband excitation and emission phosphors and are candidate materials for UV-based white light-emitting diodes (WLEDs). Ca₅M₄(VO₄)₆ (M = Mg, Zn, Co, Ni, Mn) compounds are also considered promising for application in microwave devices as substrate materials. However, the relation between their structure, composition and physical/chemical properties remains unclear. Given the above-listed observations, goals of this study are to synthesise Ca₅M₄(VO₄)₆ (M = Mg, Zn, Ni) and to study their thermal and electrical properties. Solid solutions Ca₅Mg₄₋ₓMₓ(VO₄)₆ (0 ≤ x ≤ 4) where M is Zn and Ni have been synthesized by sol-gel method. The single-phase character of the final products was checked by powder X-ray diffraction on a Rigaku D/MAX-2200 X-ray diffractometer using Cu Kα radiation in the 2θ range from 15° to 70°. The dependence of thermal properties on chemical composition of solid solutions was studied using simultaneous thermal analyses (DSC and TG). Thermal analyses were conducted in a Netzch simultaneous analyser STA 449C Jupiter, in Ar atmosphere, in temperature range from 25 to 1100°C heat rate was 10 K·min⁻¹. Coefficients of thermal expansion (CTE) were obtained by dilatometry measurements in air up to 800°C using a Netzsch 402PC dilatometer; heat rate was 1 K·min⁻¹. Impedance spectra were obtained via the two-probe technique with an impedance meter Parstat 2273 in air up to 700°C with the variation of pH₂O from 0.04 to 3.35 kPa. Cation deficiency in Ca and Mg sublattice under the substitution of MgO with ZnO up to 1/6 was observed using Rietveld refinement of the crystal structure. Melting point was found to decrease with x changing from 0 to 4 in Ca₅Mg₄₋ₓMₓ(VO₄)₆ where M is Zn and Ni. It was observed that electrical conductivity does not depend on air humidity. The reported study was funded by the RFBR Grant No. 17–03–01280. Sample attestation was carried out in the Shared Access Centers at the IHTE UB RAS.

Keywords: garnet structure, electrical conductivity, thermal expansion, thermal properties

Procedia PDF Downloads 137
140 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 231
139 Characterising Rates of Renal Dysfunction and Sarcoidosis in Patients with Elevated Serum Angiotensin-Converting Enzyme

Authors: Fergal Fouhy, Alan O’Keeffe, Sean Costelloe, Michael Clarkson

Abstract:

Background: Sarcoidosis is a systemic, non-infectious disease of unknown aetiology, characterized by non-caseating granulomatous inflammation. The lung is most often affected (90%); however, the condition can affect all organs, including the kidneys. There is limited evidence describing the incidence and characteristics of renal involvement in sarcoidosis. Serum angiotensin-converting enzyme (ACE) is a recognised biomarker used in the diagnosis and monitoring of sarcoidosis. Methods: A single-centre, retrospective cohort study of patients presenting to Cork University Hospital (CUH) in 2015 with first-time elevations of serum ACE was performed. This included an initial database review of ACE and other biochemistry results, followed by a medical chart review to confirm the presence or absence of sarcoidosis and management thereof. Acute kidney injury (AKI) was staged using the AKIN criteria, and chronic kidney disease (CKD) was staged using the KDIGO criteria. Follow-up was assessed over five years tracking serum creatinine, serum calcium, and estimated glomerular filtration rates (eGFR). Results: 119 patients were identified as having a first raised serum ACE in 2015. Seventy-nine male patients and forty female patients were identified. The mean age of patients identified was 47 years old. 11% had CKD at baseline. 18% developed an AKI at least once within the next five years. A further 6% developed CKD during this time period. 13% developed hypercalcemia. The patients within the lowest quartile of serums ACE had an incidence of sarcoidosis of 5%. None of this group developed hypercalcemia, 23% developed AKI, and 7% developed CKD. Of the patients with a serum ACE in the highest quartile, almost all had documented diagnoses of sarcoidosis with an incidence of 96%. 3% of this group developed hypercalcemia, 13% AKI and 3% developed CKD. Conclusions: There was an unexpectedly high incidence of AKI in patients who had a raised serum ACE. Not all patients with a raised serum ACE had a confirmed diagnosis of sarcoidosis. There does not appear to be a relationship between increased serum ACE levels and increased incidence of hypercalcaemia, AKI, and CKD. Ideally, all patients should have biopsy-proven sarcoidosis. This is an initial study that should be replicated with larger numbers and including multiple centres.

Keywords: sarcoidosis, acute kidney injury, chronic kidney disease, hypercalcemia

Procedia PDF Downloads 82
138 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 318
137 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: digital storytelling, visualization, ocean acidification, social advocacy

Procedia PDF Downloads 98
136 Application of Microbially Induced Calcite Precipitation Technology in Construction Materials: A Comprehensive Review of Waste Stream Contributions

Authors: Amir Sina Fouladi, Arul Arulrajah, Jian Chu, Suksun Horpibulsuk

Abstract:

Waste generation is a growing concern in many countries across the world, particularly in urban areas with high rates of population growth and industrialization. The increasing amount of waste generated from human activities has led to environmental, economic, and health issues. Improper disposal of waste can result in air and water pollution, land degradation, and the spread of diseases. Waste generation also consumes large amounts of natural resources and energy, leading to the depletion of valuable resources and contributing to greenhouse gas emissions. To address these concerns, there is a need for sustainable waste management practices that reduce waste generation and promote resource recovery and recycling. Amongst these, developing innovative technologies such as Microbially Induced Calcite Precipitation (MICP) in construction materials is an effective approach to transforming waste into valuable and sustainable applications. MICP is an environmentally friendly microbial-chemical technology that applies microorganisms and chemical reagents to biological processes to produce carbonate mineral. This substance can be an energy-efficient, cost-effective, sustainable solution to environmental and engineering challenges. Recent research has shown that waste streams can replace several MICP-chemical components in the cultivation media of microorganisms and cementation reagents (calcium sources and urea). In addition to its effectiveness in treating hazardous waste streams, MICP has been found to be cost-effective and sustainable solution applicable to various waste media. This comprehensive review paper aims to provide a thorough understanding of the environmental advantages and engineering applications of MICP technology, with a focus on the contribution of waste streams. It also provides researchers with guidance on how to identify and overcome the challenges that may arise applying the MICP technology using waste streams.

Keywords: waste stream, microbially induced calcite precipitation, construction materials, sustainability

Procedia PDF Downloads 55
135 Recovery of Food Waste: Production of Dog Food

Authors: K. Nazan Turhan, Tuğçe Ersan

Abstract:

The population of the world is approximately 7.6 billion, and it increases uncontrollably and irrepressibly, leading to an increase in consumption. This situation causes crucial problems, and food waste is one of these. Wasting food endangers natural resources and causes hunger. For instance, excessive amounts of food waste cause greenhouse gas emissions, contributing to global warming. Therefore, waste management has been gaining significance in the last few decades at both local and global levels due to the expected scarcity of resources for the increasing population of the world. There are several ways to recover food waste. Bioethanol, biodiesel, biogas, agricultural fertilizer and animal feed can be obtained from food waste that is generated by different food industries. In this project, feeding animals was selected as a food waste recovery method and food waste of a plant was used to provide ingredient uniformity. Grasshoppers were used as a protein source. In other words, the project was performed to develop a dog food product by recovering the plant’s food waste after following some steps. The collected food waste and purchased grasshoppers were sterilized, dried, and pulverized. Then, they were all mixed with 60 g agar-agar solution (4%w/v). 3 different aromas were added separately to the samples to enhance flavor quality. Since there are differences in the required amounts of different species of dogs, fulfilling all nutritional needs is one of the problems. In other words, there is a wide range of nutritional needs in terms of carbohydrates, protein, fat, sodium, calcium and so on. Furthermore, the requirements differ depending on age, gender, weight, height and species. Therefore, the product that was developed contains average amounts of each substance to not cause any deficiency or surplus. On the other hand, it contains more protein than similar products in the market. The product was evaluated in terms of contamination and nutritional content. For contamination risk, detection of E. coli and Salmonella experiments were performed, and the results were negative. For the nutritional value test, protein content analysis was done. The protein contents of different samples vary between 33.68% and 26.07%. In addition, water activity analysis was performed, and the water activity (aw) values of different samples ranged between 0.2456 and 0.4145.

Keywords: food waste, dog food, animal nutrition, food waste recovery

Procedia PDF Downloads 16
134 Chemical Characterization, Crystallography and Acute Toxicity Evaluation of Two Boronic-Carbohydrate Adducts

Authors: Héctor González Espinosa, Ricardo Ivan Cordova Chávez, Alejandra Contreras Ramos, Itzia Irene Padilla Martínez, José Guadalupe Trujillo Ferrara, Marvin Antonio Soriano Ursúa

Abstract:

Boronic acids are able to create diester bonds with carbohydrates because of their hydroxyl groups; in nature, there are some organoborates with these characteristics, such as the calcium fructoborate, formed by the union of two fructose molecules and a boron atom, synthesized by plants. In addition, it has been observed that, in animal cells only the compounds with cis-diol functional groups are capable of linking to boric or boronic acids. The formation of these organoboron compounds could impair the physical and chemical properties of the precursors, even their acute toxicity. In this project, two carbohydrate-derived boron-containing compounds from D-fructose and D-arabinose and phenylboronic acid are analyzed by different spectroscopy techniques such as Raman, Infrared with Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) and X-ray diffraction crystallography to describe their chemical characteristics. Also, an acute toxicity test was performed to determine their LD50 using the Lorke’s method. It was confirmed by multiple spectra the formation of the adducts by the generation of the diester bonds with a β-D-pyranose of fructose and arabinose. The most prominent findings were the presence of signals corresponding to the formation of new bonds, like the stretching of B-O bonds, or the absence of signals of functional groups like the hydroxyls presented in the reagents used for the synthesis of the adducts. The NMR spectra yielded information about the stereoselectivity in the synthesis reaction, observed by the interaction of the protons and their vicinal atoms in the anomeric and second position carbons; but also, the absence of a racemic mix by the finding of just one signal in the range for the anomeric carbon in the 13C NMR spectra of both adducts. The acute toxicity tests by the Lorke’s method showed that the LD50 value for both compounds is 1265 mg/kg. Those results let us to propose these adducts as highly safe agents for further biological evaluation with medical purposes.

Keywords: acute toxicity, adduct, boron, carbohydrate, diester bond

Procedia PDF Downloads 30
133 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats

Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das

Abstract:

Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.

Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity

Procedia PDF Downloads 399
132 Dermatomyositis: It is Not Always an Allergic Reaction

Authors: Irfan Abdulrahman Sheth, Sohil Pothiawala

Abstract:

Dermatomyositis is an idiopathic inflammatory myopathy, traditionally characterized by a progressive, symmetrical proximal muscle weakness and pathognomonic or characteristic cutaneous manifestations. We report a case of a 60-year old Chinese female who was referred from polyclinic for allergic rash over the body after applying hair dye 3 weeks ago. It was associated with puffiness of face, shortness of breath and hoarse voice since last 2 weeks with decrease effort tolerance. She also complained of dysphagia/ myalgia with progressive weakness of proximal muscles and palpitations. She denied chest pain, loss of appetite, weight loss, orthopnea or fever. She had stable vital signs and appeared cushingoid. She was noted to have rash over the scalp/ face and ecchymosis over the right arm with puffiness of face and periorbital oedema. There was symmetrical muscle weakness and other neurological examination was normal. Initial impression was of allergic reaction and underlying nephrotic syndrome and Cushing’s syndrome from TCM use. Diagnostic tests showed high Creatinine kinase (CK) of 1463 u/l, CK–MB of 18.7 ug/l and Troponin –T of 0.09 ug/l. The Full blood count and renal panel was normal. EMG showed inflammatory myositis. Patient was managed by rheumatologist and discharged on oral prednisolone with methotrexate/ ergocalciferol capsule and calcium carb, vitamin D tablets and outpatient follow up. In some patients, cutaneous disease exists in the absence of objective evidence of muscle inflammation. Management of dermatomyositis begins with careful investigation for the presence of muscle disease or of additional systemic involvement, particularly of the pulmonary, cardiac or gastrointestinal systems, and for the possibility of an accompanying malignancy. Muscle disease and systemic involvement can be refractory and may require multiple sequential therapeutic interventions or, at times, combinations of therapies. Thus, we want to highlight to the physicians that the cutaneous disease of dermatomyositis should not be confused with allergic reaction. It can be particularly challenging to diagnose. Early recognition aids appropriate management of this group of patients.

Keywords: dermatomyositis, myopathy, allergy, cutaneous disease

Procedia PDF Downloads 315
131 Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process

Authors: Bharti Garg, Ashleigh Cousins, Pauline Pearson, Vincent Verheyen, Paul Feron

Abstract:

The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation.

Keywords: combined capture, cost analysis, crystallisation, CS-Cap, flue gas desulfurisation, regeneration, sulfur, thermal reclamation

Procedia PDF Downloads 100
130 Food Waste and Sustainable Management

Authors: Farhana Nosheen, Moeez Ahmad

Abstract:

Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.

Keywords: food waste, tomato, bioactive compound, sustainable management

Procedia PDF Downloads 86
129 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 490
128 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 114
127 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 261
126 Association of Phosphorus and Magnesium with Fat Indices in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a disease associated with obesity. It is a complicated clinical problem possibly affecting body composition as well as macrominerals. These parameters gain further attention, particularly in the pediatric population. The aim of this study is to investigate the amount of discrete body composition fractions in groups that differ in the severity of obesity. Also, the possible associations with calcium (Ca), phosphorus (P), magnesium (Mg) will be examined. The study population was divided into four groups. Twenty-eight, 29, 34, and 34 children were involved in Group 1 (healthy), 2 (obese), 3 (morbid obese), and 4 (MetS), respectively. Institutional Ethical Committee approved the study protocol. Informed consent forms were obtained from the participants. The classification of obese groups was performed based upon the recommendations of the World Health Organization. Metabolic syndrome components were defined. Serum Ca, P, Mg concentrations were measured. Within the scope of body composition, fat mass, fat-free mass, protein mass, mineral mass were determined by a body composition monitor using bioelectrical impedance analysis technology. Weight, height, waist circumference, hip circumference, head circumference, and neck circumference values were recorded. Body mass index, diagnostic obesity notation model assessment index, fat mass index, and fat-free mass index values were calculated. Data were statistically evaluated and interpreted. There was no statistically significant difference among the groups in terms of Ca and P concentrations. Magnesium concentrations differed between Group 1 and Group 4. Strong negative correlations were detected between P as well as Mg and fat mass index as well as diagnostic obesity notation model assessment index in Group 4, the group, which comprised morbid obese children with MetS. This study emphasized unique associations of P and Mg minerals with diagnostic obesity notation model assessment index and fat mass index during the evaluation of morbid obese children with MetS. It was also concluded that diagnostic obesity notation model assessment index and fat mass index were more proper indices in comparison with body mass index and fat-free mass index for the purpose of defining body composition in children.

Keywords: children, fat mass, fat-free mass, macrominerals, obesity

Procedia PDF Downloads 129
125 Improvement of Ground Water Quality Index Using Citrus limetta

Authors: Rupas Kumar M., Saravana Kumar M., Amarendra Kumar S., Likhita Komal V., Sree Deepthi M.

Abstract:

The demand for water is increasing at an alarming rate due to rapid urbanization and increase in population. Due to freshwater scarcity, Groundwater became the necessary source of potable water to major parts of the world. This problem of freshwater scarcity and groundwater dependency is very severe particularly in developing countries and overpopulated regions like India. The present study aimed at evaluating the Ground Water Quality Index (GWQI), which represents overall quality of water at certain location and time based on water quality parameters. To evaluate the GWQI, sixteen water quality parameters have been considered viz. colour, pH, electrical conductivity, total dissolved solids, turbidity, total hardness, alkalinity, calcium, magnesium, sodium, chloride, nitrate, sulphate, iron, manganese and fluorides. The groundwater samples are collected from Kadapa City in Andhra Pradesh, India and subjected to comprehensive physicochemical analysis. The high value of GWQI has been found to be mainly from higher values of total dissolved solids, electrical conductivity, turbidity, alkalinity, hardness, and fluorides. in the present study, citrus limetta (sweet lemon) peel powder has used as a coagulant and GWQI values are recorded in different concentrations to improve GWQI. Sensitivity analysis is also carried out to determine the effect of coagulant dosage, mixing speed and stirring time on GWQI. The research found the maximum percentage improvement in GWQI values are obtained when the coagulant dosage is 100ppm, mixing speed is 100 rpm and stirring time is 10 mins. Alum is also used as a coagulant aid and the optimal ratio of citrus limetta and alum is identified as 3:2 which resulted in best GWQI value. The present study proposes Citrus limetta peel powder as a potential natural coagulant to treat Groundwater and to improve GWQI.

Keywords: alum, Citrus limetta, ground water quality index, physicochemical analysis

Procedia PDF Downloads 206
124 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 114
123 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)

Authors: Amer Obaid Saud

Abstract:

Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.

Keywords: Babylon governorate, Canadian version, water quality, Euphrates river

Procedia PDF Downloads 378
122 Effluent from Royal LERD Wastewater Treatment Systems to Furnish Nutrients for Phytoplankton to Generate the Abundance of Hard Clam (Meretrix spp.) on Muddy Beach

Authors: O. Phewnil, S. Khowhit, W. Inkapatanakul, A. Boutson, K. Chunkao, O. Chueawong, T. Pattamapitoon, N. Chanwong, C. Nimpee

Abstract:

The King’s Royally Initiated Laem Phak Bia Environmental Research and Development Project (“the Royal LERD Project”) is located in Laem Phak Bia Sub-District, Ban Laem District, Phetchaburi Province, Thailand. Phetchaburi municipal wastewater was treated with a simple technology by using aquatic plants, constructed wetland, oxidation ponds through a nature-by-nature process. The effluent from the Royal LERD Project was discharged into Laem Phak Bia muddy beach. The soil sediment samples were collected from two zones (200 and 600 meters from the coast of the beach), and tested for cation-exchange capacity (CEC), pH and organic matter and soil particles content. The marine water samples were also collected from the beach in wet and dry seasons and analyzed for its quality and compositions, including but not limited to, biochemical oxygen demand (BOD), dissolved oxygen (DO), suspended solids (SS), nutrients, heavy metals (As, Cd, Cr, Hg, and Pb), and phytoplankton at high and low tides. The soil texture was sandy loam with high concentration of calcium and magnesium which showed a property of base (pH 8). The marine water was qualified with the standard limits of coastal water quality. A dominant species was Coscinodiscus sp. It was found approximately 70.46% of total phytoplankton species in Meretrix casta gastrointestinal tract. The concentration of the heavy metals (As, Cd, Cr, Hg, Ni and Pb) in the tissues and water content of two species of hard clams indicated that heavy metals in Meretrix casta were higher than those in Meretrix meretrix. However, the heavy metals in both species were under the standard limits and safe for consumption. It can be concluded that nutrients in effluent from the wastewater treatment systems play important role in promoting the growth of phytoplankton and generating abundance of hard clams on muddy beach.

Keywords: wastewater, phytoplankton, hard clam (Meretrix spp.), muddy beach

Procedia PDF Downloads 272
121 Neonatal Subcutaneous Fat Necrosis with Severe Hypercalcemia: Case Report

Authors: Atitallah Sofien, Bouyahia Olfa, Krifi farah, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Subcutaneous fat necrosis of the newborn (SCFN) is a rare acute hypodermatitis characterized by skin lesions in the form of infiltrated, hard plaques and subcutaneous nodules, with a purplish-red color, occurring between the first and sixth week of life. SCFN is generally a benign condition that spontaneously regresses without sequelae, but it can be complicated by severe hypercalcemia. Methodology: This is a retrospective case report of neonatal subcutaneous fat necrosis complicated with severe hypercalcemia and nephrocalcinosis. Results: This is a case of a female newborn with a family history of a hypothyroid mother on Levothyrox, born to non-consanguineous parents and from a well-monitored pregnancy. The newborn was delivered by cesarean section at 39 weeks gestation due to severe preeclampsia. She was admitted to the Neonatal Intensive Care Unit at 1 hour of life for the management of grade 1 perinatal asphyxia and immediate neonatal respiratory distress related to transient respiratory distress. Hospitalization was complicated by a healthcare-associated infection, requiring intravenous antibiotics for ten days, with a good clinical and biological response. On the 20th day of life, she developed skin lesions in the form of indurated purplish-red nodules on the back and on both arms. A SCFN was suspected. A calcium level test was conducted, which returned a result of 3 mmol/L. The rest of the phosphocalcic assessment was normal, with early signs of nephrocalcinosis observed on renal ultrasound. The diagnosis of SCFN complicated by nephrocalcinosis associated with severe hypercalcemia was made, and the condition improved with intravenous hydration and corticosteroid therapy. Conclusion: SCFN is a rare and generally benign hypodermatitis in newborns with an etiology that is still poorly understood. Despite its benign nature, SCFN can be complicated by hypercalcemia, which can sometimes be life-threatening. Therefore, it is important to conduct a thorough skin examination of newborns, especially those with risk factors, to detect and correct any potential hypercalcemia.

Keywords: subcutaneous fat necrosis, newborn, hypercalcemia, nephrocalcinosis

Procedia PDF Downloads 40
120 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 51
119 Peat Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA)

Authors: Mohd. Khaidir Abu Talib, Noriyuki Yasufuku, Ryohei Ishikura

Abstract:

It is well recognized that peat can impede the proper hydration of cement because of high organic content, presence of humic acid and less solid particles. That means the large amount of cement is required in order to neutralize the acids or otherwise the process of the peat stabilization remains retarded. Nevertheless, adding a great quantity of cement into the peat is absolutely an unfriendly and uneconomical solution. Sugarcane production is world number one commodities and produced a lot of bagasse. Bagasse is burnt to generate power required for diverse activities in the factory and leave bagasse ash as a waste. Increasing concern of disposal of bagasse residual creates interest to explore the potential application of this material. The objective of this study is to develop alternative binders that are environment friendly and contribute towards sustainable management by utilizing sugarcane bagasse ash (SCBA) in the stabilization of peat soil. Alongside SCBA, Ordinary Portland Cement (OPC), calcium chloride (CaCl2) and silica sand (K7) were used as additives to stabilize the peat that sampled from Hokkaido, Japan. In obtaining the optimal mix design, specimens of stabilized peat were tested in unconfined compression. It was found that stabilized peat comprising 20% and 5% (PCB1-20 and PCB2-5) partial replacement of OPC with SCBA 1 and SCBA 2 attain the maximum unconfined compressive strength (UCS) and discovered greater than untreated soil (P) and UCS of peat-cement (PC) specimen. At the optimal mix design, the UCS of the stabilized peat specimens increased with increasing of curing time, preloading during curing, OPC dosage and K7 dosage. For PCB1-20 mixture, inclusion of a minimum OPC dosage of 300 kg/m3 and K7 dosage of 500 kg/m3 along with curing under 20kPa pressure is recommendable for the peat stabilization to be effective. However for PCB2-5 mixture, it suggested to use more OPC and K7 dosage or alternatively increase the preloading during curing to 40kPa in order to achieve minimum strength target. It can be concluded that SCBA 1 has better quality than SCBA 2 in peat stabilization especially the contribution made by its fine particle size.

Keywords: peat stabilization, sugarcane bagasse ash utilization, partial cement replacement, unconfined strength

Procedia PDF Downloads 513
118 Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids

Authors: Saheli Mitra, Ramesh Karri, Praveen K. Mylapalli, Arka. B. Dey, Gourav Bhattacharya, Gouriprasanna Roy, Syed M. Kamil, Surajit Dhara, Sunil K. Sinha, Sajal K. Ghosh

Abstract:

The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates.

Keywords: lyotropic liquid crystals, polarizing optical microscopy, rheology, surfactants, small angle x-ray diffraction

Procedia PDF Downloads 118
117 Formulation of Suppositories Using Allanblackia Floribunda Butter as a Base

Authors: Mary Konadu

Abstract:

The rectal route for drug administration is becoming attractive to drug formulators because it can avoid hepatic first-pass effects, decrease gastrointestinal side effects and avoid undesirable effects of meals on drug absorption. Suppositories have been recognized as an alternative to the oral route in situations such as when the patient is comatose, unable to swallow, or when the drug produces nausea or vomiting. Effective drug delivery with appropriate pharmaceutical excipient is key in the production of clinically useful preparations. The high cost of available excipients coupled with other disadvantages have led to the exploration of potential excipients from natural sources. Allanblackia floribunda butter, a naturally occurring lipid, is used for medicinal, culinary, and cosmetic purposes. Different extraction methods (solvent (hexane) extraction, traditional/hot water extraction, and cold/screw press extraction) were employed to extract the oil. The different extracts of A. floribunda oil were analyzed for their physicochemical properties and mineral content. The oil was used as a base to formulate Paracetamol and Diclofenac suppositories. Quality control test were carried out on the formulated suppositories. The %age oil yield for hexane extract, hot water extract, and cold press extract were 50.40 ±0.00, 37.36±0.00, and 20.48±0.00, respectively. The acid value, saponification value, iodine value and free fatty acid were 1.159 ± 0.065, 208.51 ± 8.450, 49.877 ± 0.690 and 0.583 ± 0.032 respectively for hexane extract; 3.480 ± 0.055, 204.672±2.863, 49.04 ± 0.76 and 1.747 ± 0.028 respectively for hot water/traditional extract; 4.43 ± 0.055, 192.05±1.56, 49.96 ± 0.29 and 2.23 ± 0.03 respectively for cold press extract. Calcium, sodium, magnesium, potassium, and iron were minerals found to be present in the A. floribunda butter extracts. The uniformity of weight, hardness, disintegration time, and uniformity of content were found to be within the acceptable range. The melting point ranges for all the suppositories were found to be satisfactory. The cumulative drug release (%) of the suppositories at 45 minutes was 90.19±0.00 (Hot water extract), 93.75±0.00 (Cold Pres Extract), and 98.16±0.00 (Hexane Extract) for Paracetamol suppositories. Diclofenac sodium suppositories had a cumulative %age release of 81.60±0.00 (Hot water Extract), 95.33±0.00 (Cold Press Extract), and 99.20±0.00 (Hexane Extract). The physicochemical parameters obtained from this study shows that Allanblackia floribunda seed oil is edible and can be used as a suppository base. The suppository formulation was successful, and the quality control tests conformed to Pharmacopoeia standard.

Keywords: allanblackia foribunda, paracetamol, diclofenac, suppositories

Procedia PDF Downloads 104
116 Simulation of Ester Based Mud Performance through Drilling Genting Timur Field

Authors: Lina Ismail Jassim, Robiah Yunus

Abstract:

To successfully drill oil or gas well, two main characteristics of numerous other tasks of an efficient drilling fluid are required, which are suspended and carrying cuttings from the beneath wellbore to the surface and managed between pore (formation) and hydrostatic pressure (mud pressure). Several factors like mud composition and its rheology, wellbore design, drilled cuttings characteristics and drilling string rotation contribute to drill wellbore successfully. Simulation model can support an appropriate indication on the drilling fluid performance in the real field as Genting Timur field, located in Pahang in Malaysia on 4295 m depth, held the world record in Sempah Muda 1 (Vertical). A detailed 3 dimensional CFD analysis of vertical, concentric annular two phase flow was developed to study and asses Herschel Bulkley drilling fluid. The effect of Hematite, Barite and calcium carbonates types and size of cutting rock particles on such flow is analyzed. The vertical flows are also associated with a good amount of temperature variation along the depth. This causes a good amount of change in viscosity of the fluid, which is non-Newtonian in nature. Good understanding of the nature of such flows is imperative in developing and maintaining successful vertical well systems. A detailed analysis of flow characteristics due to the drill pipe rotation is done in this work. The inner cylinder of the annulus gets different rotational speed, depending upon the operating conditions. This speed induces a good swirl on the particles and primary fluids which interpret in Ester based drilling fluid cleaning well ability, which in turn determines energy loss along the pipe. Energy loss is assessed in this work in terms of wall shear stress and pressure drop along the pipe. The flow is under an adverse pressure gradient condition, which causes chance of reversed flow and transfers the rock cuttings to the surface.

Keywords: concentric annulus, non-Newtonian, two phase, Herschel Bulkley

Procedia PDF Downloads 286
115 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK

Authors: Usman Bawa

Abstract:

Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.

Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution

Procedia PDF Downloads 318
114 Various Shaped ZnO and ZnO/Graphene Oxide Nanocomposites and Their Use in Water Splitting Reaction

Authors: Sundaram Chandrasekaran, Seung Hyun Hur

Abstract:

Exploring strategies for oxygen vacancy engineering under mild conditions and understanding the relationship between dislocations and photoelectrochemical (PEC) cell performance are challenging issues for designing high performance PEC devices. Therefore, it is very important to understand that how the oxygen vacancies (VO) or other defect states affect the performance of the photocatalyst in photoelectric transfer. So far, it has been found that defects in nano or micro crystals can have two possible significances on the PEC performance. Firstly, an electron-hole pair produced at the interface of photoelectrode and electrolyte can recombine at the defect centers under illumination of light, thereby reducing the PEC performances. On the other hand, the defects could lead to a higher light absorption in the longer wavelength region and may act as energy centers for the water splitting reaction that can improve the PEC performances. Even if the dislocation growth of ZnO has been verified by the full density functional theory (DFT) calculations and local density approximation calculations (LDA), it requires further studies to correlate the structures of ZnO and PEC performances. Exploring the hybrid structures composed of graphene oxide (GO) and ZnO nanostructures offer not only the vision of how the complex structure form from a simple starting materials but also the tools to improve PEC performances by understanding the underlying mechanisms of mutual interactions. As there are few studies for the ZnO growth with other materials and the growth mechanism in those cases has not been clearly explored yet, it is very important to understand the fundamental growth process of nanomaterials with the specific materials, so that rational and controllable syntheses of efficient ZnO-based hybrid materials can be designed to prepare nanostructures that can exhibit significant PEC performances. Herein, we fabricated various ZnO nanostructures such as hollow sphere, bucky bowl, nanorod and triangle, investigated their pH dependent growth mechanism, and correlated the PEC performances with them. Especially, the origin of well-controlled dislocation-driven growth and its transformation mechanism of ZnO nanorods to triangles on the GO surface were discussed in detail. Surprisingly, the addition of GO during the synthesis process not only tunes the morphology of ZnO nanocrystals and also creates more oxygen vacancies (oxygen defects) in the lattice of ZnO, which obviously suggest that the oxygen vacancies be created by the redox reaction between GO and ZnO in which the surface oxygen is extracted from the surface of ZnO by the functional groups of GO. On the basis of our experimental and theoretical analysis, the detailed mechanism for the formation of specific structural shapes and oxygen vacancies via dislocation, and its impact in PEC performances are explored. In water splitting performance, the maximum photocurrent density of GO-ZnO triangles was 1.517mA/cm-2 (under UV light ~ 360 nm) vs. RHE with high incident photon to current conversion Efficiency (IPCE) of 10.41%, which is the highest among all samples fabricated in this study and also one of the highest IPCE reported so far obtained from GO-ZnO triangular shaped photocatalyst.

Keywords: dislocation driven growth, zinc oxide, graphene oxide, water splitting

Procedia PDF Downloads 267
113 Survival of Micro-Encapsulated Probiotic Lactic Acid Bacteria in Mutton Nuggets and Their Assessments in Simulated Gastro-Intestinal Conditions

Authors: Rehana Akhter, Sajad A. Rather, F. A. Masoodi, Adil Gani, S. M. Wani

Abstract:

During recent years probiotic food products receive market interest as health-promoting, functional foods, which are believed to contribute health benefits. In order to deliver the health benefits by probiotic bacteria, it has been recommended that they must be present at a minimum level of 106 CFU/g to 107 CFU/g at point of delivery or be eaten in sufficient amounts to yield a daily intake of 108 CFU. However a major challenge in relation to the application of probiotic cultures in food matrix is the maintenance of viability during processing which might lead to important losses in viability as probiotic cultures are very often thermally labile and sensitive to acidity, oxygen or other food constituents for example, salts. In this study Lactobacillus plantarum and Lactobacillus casei were encapsulated in calcium alginate beads with the objective of enhancing their survivability and preventing exposure to the adverse conditions of the gastrointestinal tract and where then inoculated in mutton nuggets. Micro encapsulated Lactobacillus plantarum and Lactobacillus casei were resistant to simulated gastric conditions (pH 2, 2h) and bile solution (3%, 2 h) resulting in significantly (p ≤ 0.05) improved survivability when compared with free cell counterparts. A high encapsulation yield was found due to the encapsulation procedure. After incubation at low pH-values, micro encapsulation yielded higher survival rates compared to non-encapsulated probiotic cells. The viable cell numbers of encapsulated Lactobacillus plantarum and Lactobacillus casei were 107-108 CFU/g higher compared to free cells after 90 min incubation at pH 2.5. The viable encapsulated cells were inoculated into mutton nuggets at the rate of 108 to 1010 CFU/g. The micro encapsulated Lactobacillus plantarum and Lactobacillus casei achieved higher survival counts (105-107 CFU/g) than the free cell counterparts (102-104 CFU/g). Thus micro encapsulation offers an effective means of delivery of viable probiotic bacterial cells to the colon and maintaining their survival during simulated gastric, intestinal juice and processing conditions during nugget preparation.

Keywords: survival, Lactobacillus plantarum, Lactobacillus casei, micro-encapsulation, nugget

Procedia PDF Downloads 260