Search results for: Schottky emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1470

Search results for: Schottky emission

630 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.

Keywords: turbocharger, wastegate, diesel engine, concept NREC programs

Procedia PDF Downloads 236
629 Health Impacts of Size Segregated Particulate Matter and Black Carbon in Industrial Area of Firozabad

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, Chronic obstructive pulmonary disease (COPD), and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring (mass as well as a number) of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban, and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM₁₀ (223.73 g/m-³), PM₅.₀ (44.955 g/m-³), PM₂.₅ (59.275 g/m-³), PM₁.₀ (33.02 g/m-³), PM₀.₅ (2.05 g/m-³), and PM₀.₂₅ (2.99 g/m- ³). In number mode, PM concentration was found as PM₁₀ (27.46g/m-³), PM₅.₀ (233.48g/m-³), PM₂.₅ (646.61g/m-³), PM₁.₀ (1134.94 g/m-³), PM₀.₅ (14056.04g/m-³), and PM₀.₂₅ (182906.4 g/m-³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning while NO2 was highest at the rural sites. The concentrations of PM₁₀ and PM₂.₅ exceeded the NAAQS and WHO guidelines. The sensitive, exposed population may be at risk of developing health-related problems from exposure to size-segregated PM and BC.

Keywords: particulate matter, black carbon, NO2, health risk

Procedia PDF Downloads 31
628 Aligning the Sustainability Policy Areas for Decarbonisation and Value Addition at an Organisational Level

Authors: Bishal Baniya

Abstract:

This paper proposes the sustainability related policy areas for decarbonisation and value addition at an organizational level. General and public sector organizations around the world are usually significant in terms of consuming resources and producing waste – powered through their massive procurement capacity. However, these organizations also possess huge potential to cut resource use and emission as many of these organizations controls supply chain of goods/services. They can therefore be a trend setter and can easily lead other major economic sectors such as manufacturing, construction and mining, transportation, etc. in pursuit towards paradigm shift for sustainability. Whilst the environmental and social awareness has improved in recent years and they have identified policy areas to improve the organizational environmental performance, value addition to the core business of the organization hasn’t been understood and interpreted correctly. This paper therefore investigates ways to align sustainability policy measures in a way that it creates better value proposition relative to benchmark by accounting both eco and social efficiency. Preliminary analysis shows co-benefits other than resource and cost savings fosters the business cases for organizations and this can be achieved by better aligning the policy measures and engaging stakeholders.

Keywords: policy measures, environmental performance, value proposition, organisational level

Procedia PDF Downloads 143
627 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media

Authors: Sofiane Grira, Hichem Eleuch

Abstract:

We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.

Keywords: non-linear differential equations, solitons, wave propagations, optical fiber

Procedia PDF Downloads 126
626 Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock

Authors: K. R. Guna, Aldin Justin Sundararaj, B. C. Pillai, A. N. Subash

Abstract:

A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University.

Keywords: ignition delay, LPG, reflected shock, shock wave

Procedia PDF Downloads 249
625 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)

Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan

Abstract:

The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.

Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent

Procedia PDF Downloads 327
624 Environmental Quality On-Line Monitoring Based on Enterprises Resource Planning on Implementation ISO 14001:2004

Authors: Ahmad Badawi Saluy

Abstract:

This study aims to develop strategies for the prevention or elimination of environmental pollution as well as changes in external variables of the environment in order to implement the environmental management system ISO 14001:2004 by integrating analysis of environmental issues data, RKL-RPL transactional data and regulation as part of ERP on the management dashboard. This research uses a quantitative descriptive approach with analysis method comparing with air quality standard (PP 42/1999, LH 21/2008), water quality standard (permenkes RI 416/1990, KepmenLH 51/2004, kepmenLH 55/2013 ), and biodiversity indicators. Based on the research, the parameters of RPL monitoring have been identified, among others, the quality of emission air (SO₂, NO₂, dust, particulate) due to the influence of fuel quality, combustion performance in a combustor and the effect of development change around the generating area. While in water quality (TSS, TDS) there was an increase due to the flow of water in the cooling intake carrying sedimentation from the flow of Banjir Kanal Timur. Including compliance with the ISO 14001:2004 clause on application design significantly contributes to the improvement of the quality of power plant management.

Keywords: environmental management systems, power plant management, regulatory compliance , enterprises resource planning

Procedia PDF Downloads 173
623 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 198
622 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 131
621 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials

Authors: P. Ninduangdee, V. I. Kuprianov

Abstract:

Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.

Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention

Procedia PDF Downloads 243
620 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 178
619 Traditional Values and Their Adaptation in Social Housing Design: Towards a New Typology and Establishment of 'Airhouse' Standard in Malaysia

Authors: Mohd Firrdhaus Mohd Sahabuddin, Cristina Gonzalez-Longo

Abstract:

Large migration from rural areas to urban areas like Kuala Lumpur has led to some implications for economic, social and cultural development. This high population has placed enormous demand on the existing housing stocks, especially for low-income groups. However, some issues arise, one of which is overheated indoor air temperature. This problem contributes to the high-energy usage that forces huge sums of money to be spent on cooling the house by using mechanical equipment. Therefore, this study focuses on thermal comfort in social housing, and incorporates traditional values into its design to achieve a certain measurement of natural ventilation in a house. From the study, the carbon emission and energy consumption for an air-conditioned house is 67%, 66% higher than a naturally ventilated house. Therefore, this research has come up with a new typology design, which has a large exposed wall area and full-length openings on the opposite walls to increase cross ventilation. At the end of this research, the measurement of thermal comfort for a naturally ventilated building called ‘AirHouse’ has been identified.

Keywords: tropical architecture, natural ventilation, passive design, AirHouse, social housing design

Procedia PDF Downloads 671
618 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology

Authors: Pradeep Kumar, Shalinee Shukla

Abstract:

Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.

Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties

Procedia PDF Downloads 132
617 Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete

Authors: S. U. Khan, T. Ayub, N. Shafiq

Abstract:

The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively.

Keywords: metakaolin, compressive strength, splitting tensile strength, load deflection, interfacial transition zone

Procedia PDF Downloads 202
616 Predictive Value of ¹⁸F-Fdg Accumulation in Visceral Fat Activity to Detect Colorectal Cancer Metastases

Authors: Amil Suleimanov, Aigul Saduakassova, Denis Vinnikov

Abstract:

Objective: To assess functional visceral fat (VAT) activity evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in colorectal cancer (CRC). Materials and methods: We assessed 60 patients with histologically confirmed CRC who underwent 18F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVmax) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also report the best areas under the curve (AUC) for SUVmax with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted for age regression models and ROC analysis, 18F-FDG accumulation in RLH (cutoff SUVmax 0.74; Se 75%; Sp 61%; AUC 0.668; p = 0.049), RU (cutoff SUVmax 0.78; Se 69%; Sp 61%; AUC 0.679; p = 0.035), RRL (cutoff SUVmax 1.05; Se 69%; Sp 77%; AUC 0.682; p = 0.032) and RRI (cutoff SUVmax 0.85; Se 63%; Sp 61%; AUC 0.672; p = 0.043) could predict later metastases in CRC patients, as opposed to age, sex, primary tumor location, tumor grade and histology. Conclusions: VAT SUVmax is significantly associated with later metastases in CRC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, colorectal cancer, predictive value

Procedia PDF Downloads 112
615 A Technical and Economic Feasibility Study of the Use of Concentrating Solar Power (CSP) in Desalination Plants on the Kenyan Coast

Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu

Abstract:

Despite the implementation of a Feed in Tariff (FiT) for solar power plants in Kenya, the uptake and subsequent development of utility scale power plants has been slow. This paper, therefore, proposes a Concentrating Solar Power (CSP) plant configuration that can supply both power to the grid and operate a sea water desalination plant, thus providing an economically viable alternative to Independent Power Producers (IPPs). The largest city on the coast, Mombasa, has a chronic water shortage and authorities are looking to employ desalination plants to supply a deficit of up to 100 million cubic meters of fresh water per day. In this study the desalination plant technology was selected based on an analysis of operational costs in $/m3 of plants that are already running. The output of the proposed CSP plant, Net Present Value (NPV), plant capacity factor, thermal efficiency and quantity of CO2 emission avoided were simulated using Greenius software (Green energy system analysis tool) developed by the institute of solar research at the German Aerospace Center (DLR). Data on solar irradiance were derived from the Solar and Wind Energy Resource Assessment (SWERA) for Kenya.

Keywords: desalination, feed in tariff, independent power producer, solar CSP

Procedia PDF Downloads 278
614 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy

Procedia PDF Downloads 535
613 An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Youcef Faci, Djillali Allou, Ahmed Mebtouche, Badredine Maalem

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, digital image correlation, bolt inclination angle, joint

Procedia PDF Downloads 61
612 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 60
611 Genotoxicity of 4-Nonylphenol (4NP) on Oreochromus spilurs Fish

Authors: M. M. Alsharif

Abstract:

4-Nonylphenol Compound is widely used as an element of detergents, paints, insecticides and many others products. It is known that the existence of this compound may lead to the emission of estrogenic responses in mammals, birds and fish. It is described as pollutant since it causes disorder of endocrine glands. In previous studies, it was proven that this compound exists in water and in the materials precipitated in Red Sea coast in Jeddah near the drains of processed drainage water and near the drainage site of the residuals of paper factories. Therefore, this study aimed to evaluate the cytogenetic aberrations caused by 4-nonylphenol through exposing Talapia Fishes to aquatic solution of the compound with 0, 15, 30 microgram/liter for one month. Samples of gills and liver were collected for micronuclei, nuclear abnormalities and measuring DNA and RNA amount in the treated fish. The results pointed out that there is a significant increase in the numbers of micronuclei in the fish exposed to the former concentrations as compared to the control group. Exposing fishes to 4-nonylphenol resulted in an increased amount of both DNA and RNA, compared to the control group. There is a positive correlation between the amount of the compound (i.e. dosage dependent effect) and the inspiring for cytogenetic effect on Talapia fishes in Jeddah. Therefore, micronucleus test, DNA and RNA contents can be considered as an index of cumulative exposure, which appear to be a sensitive model to evaluate genotoxic effects of 4-Nonylphenol compound on fish.

Keywords: genotoxic, 4-nonylphenol, micronuclei, fish, DNA, RNA

Procedia PDF Downloads 304
610 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia PDF Downloads 143
609 Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin

Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg

Abstract:

In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.

Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis

Procedia PDF Downloads 349
608 Early Stage Hydration of Wollastonite: Kinetic Aspects of the Metal-Proton Exchange Reaction

Authors: Nicolas Giraudo, Peter Thissen

Abstract:

In this paper we bring up new aspects of the metal proton exchange reaction (MPER, also called early stage hydration): (1) its dependence of the number of protons consumed by the preferential exchanged cations on the pH value applied at the water/wollastonite interface and (2) strong anisotropic characteristics detected in atomic force microscopy (AFM) and low energy ion scattering spectroscopy measurements (LEIS). First we apply density functional theory (DFT) calculations to compare the kinetics of the reaction on different wollastonite surfaces, and combine it with ab initio thermodynamics to set up a model describing (1) the release of Ca in exchange with H coming from the water/wollastonite interface, (2) the dependence of the MPER on the chemical potential of protons. In the second part of the paper we carried out in-situ AFM and inductive coupled plasma atomic emission spectroscopy (ICP-OES) measurements in order to evaluate the predicted values. While a good agreement is found in the basic and neutral regime (pH values from 14-4), an increasing mismatch appears in the acidic regime (pH value lower 4). This is finally explained by non-equilibrium etching, dominating over the MPER in the very acidic regime.

Keywords: anisotropy, calcium silicate, cement, density functional theory, hydration

Procedia PDF Downloads 275
607 Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae

Authors: Malith Premarathne, Shehan Bandara, Kaushalya G. Batawala, Thilini U. Ariyadasa

Abstract:

The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard.

Keywords: biodiesel, lipid extraction, microalgae, pre-treatment

Procedia PDF Downloads 167
606 Impact of Ship Traffic to PM 2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at International level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol

Procedia PDF Downloads 747
605 Nano-Particle of π-Conjugated Polymer for Near-Infrared Bio-Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a π-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the π-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The π-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals.

Keywords: fluorescence, conjugated polymer, in vivo imaging, nano-particle, near-infrared

Procedia PDF Downloads 472
604 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 62
603 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel

Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa

Abstract:

The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.

Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy

Procedia PDF Downloads 134
602 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 293
601 Preparation and Characterization of Modified ZnO Incorporated into Mesoporous MCM-22 Catalysts and Their Catalytic Performances of Crude Jatropha Oil to Biodiesel

Authors: Bashir Abubakar Abdulkadir, Anita Ramli, Lim Jun Wei, Yoshimitsu Uemura

Abstract:

In this study, the ZnO/MCM-22 catalyst with different ZnO loading were prepared using conventional wet impregnation process and the catalyst activity was tested for biodiesel production from Jatropha oil. The effects of reaction parameters with regards to catalyst activity were investigated. The synthesized catalysts samples were then characterized by X-ray diffraction (XRD) for crystal phase, Brunauer–Emmett–Teller (BET) for surface area, pore volume and pore size, Field Emission Scanning electron microscope attached to energy dispersive x-ray (FESEM/EDX) for morphology and elemental composition and TPD (NH3 and CO2) for basic and acidic properties of the catalyst. The XRD spectra couple with the EDX result shows the presence of ZnO in the catalyst confirming the positive intercalation of the metal oxide into the mesoporous MCM-22. The synthesized catalyst was confirmed to be mesoporous according to BET findings. Also, the catalysts can be considered as a bifunctional catalyst based on TPD outcomes. Transesterification results showed that the synthesized catalyst was highly efficient and effective to be used for biodiesel production from low grade oil such as Jatropha oil and other industrial application where the high fatty acid methyl ester (FAMEs) yield was achieved at moderate reaction conditions. It was also discovered that the catalyst can be used more than five (5) runs with little deactivation confirming the catalyst to be highly active and stable to the heat of reaction.

Keywords: MCM-22, synthesis, transesterification, ZnO

Procedia PDF Downloads 200