Search results for: shared frailty survival models
7867 Predicting High-Risk Endometrioid Endometrial Carcinomas Using Protein Markers
Authors: Yuexin Liu, Gordon B. Mills, Russell R. Broaddus, John N. Weinstein
Abstract:
The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to the high-stage diseases. However, there are no available biomarkers that predict EEC patient staging at the time of diagnosis. We aim to develop a predictive scheme to help in this regards. Using reverse-phase protein array expression profiles for 210 EEC cases from The Cancer Genome Atlas (TCGA), we constructed a Protein Scoring of EEC Staging (PSES) scheme for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MD Anderson Cancer Center (MDACC) using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. PSES robustly distinguished high- from low-stage tumors in the TCGA cohort (area under the ROC curve [AUC]=0.74; 95% confidence interval [CI], 0.68 to 0.82) and in the validation cohort (AUC=0.67; 95% CI, 0.58 to 0.76). Even among grade 1 or 2 tumors, PSES was significantly higher in high- than in low-stage tumors in both the TCGA (P = 0.005) and MDACC (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in high-stage tumors. PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.Keywords: endometrial carcinoma, protein, protein scoring of EEC staging (PSES), stage
Procedia PDF Downloads 2207866 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy
Procedia PDF Downloads 5177865 Internet of Health Things as a Win-Win Solution for Mitigating the Paradigm Shift inside Senior Patient-Physician Shared Health Management
Authors: Marilena Ianculescu, Adriana Alexandru
Abstract:
Internet of Health Things (IoHT) has already proved to be a persuasive means to support a proper assessment of the living conditions by collecting a huge variety of data. For a customized health management of a senior patient, IoHT provides the capacity to build a dynamic solution for sustaining the shift inside the patient-physician relationship by allowing a real-time and continuous remote monitoring of the health status, well-being, safety and activities of the senior, especially in a non-clinical environment. Thus, is created a win-win solution in which both the patient and the physician enhance their involvement and shared decision-making, with significant outcomes. Health monitoring systems in smart environments are becoming a viable alternative to traditional healthcare solutions. The ongoing “Non-invasive monitoring and health assessment of the elderly in a smart environment (RO-SmartAgeing)” project aims to demonstrate that the existence of complete and accurate information is critical for assessing the health condition of the seniors, improving wellbeing and quality of life in relation to health. The researches performed inside the project aim to highlight how the management of IoHT devices connected to the RO-SmartAgeing platform in a secure way by using a role-based access control system, can allow the physicians to provide health services at a high level of efficiency and accessibility, which were previously only available in hospitals. The project aims to identify deficient aspects in the provision of health services tailored to a senior patient’s specificity and to offer a more comprehensive perspective of proactive and preventive medical acts.Keywords: health management, internet of health things, remote monitoring, senior patient
Procedia PDF Downloads 1007864 The Changing Face of Pedagogy and Curriculum Development Sub-Components of Teacher Education in Nigeria: A Comparative Evaluation of the University of Lagos, Lagos State University, and Sokoto State University Models
Authors: Saheed A. Rufai
Abstract:
Courses in Pedagogy and Curriculum Development expectedly occupy a core place in the professional education components of teacher education at Lagos, Lagos State, and Sokoto State Universities. This is in keeping with the National Teacher Education Policy statement that stipulates that for student teachers to learn effectively teacher education institutions must be equipped to prepare them adequately. However, there is a growing concern over the unfaithfulness of some of the dominant Nigerian models of teacher education, to this policy statement on teacher educators’ knowledge and skills. The purpose of this paper is to comparatively evaluate both the curricular provisions and the manpower for the pedagogy and curriculum development sub-components of the Lagos, Lagos State, and Sokoto State models of teacher preparation. The paper employs a combination of quantitative and qualitative methods. Preliminary analysis revealed a new trend in teacher educators’ pedagogical knowledge and understanding, with regard to the two intertwined sub-components. The significance of such a study lies in its potential to determine the degree of conformity of each of the three models to the stipulated standards. The paper’s contribution to scholarship lies in its correlation of deficiencies in teacher educators’ professional knowledge and skills and articulation of the implications of such deficiencies for the professional knowledge and skills of the prospective teachers, with a view to providing a framework for reforms.Keywords: curriculum development, pedagogy, teacher education, dominant Nigerian teacher preparation models
Procedia PDF Downloads 4437863 Statistical Analysis of Natural Images after Applying ICA and ISA
Authors: Peyman Sheikholharam Mashhadi
Abstract:
Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images
Procedia PDF Downloads 3397862 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant
Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha
Abstract:
This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata
Procedia PDF Downloads 3857861 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 817860 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 6057859 Redesigning Clinical and Nursing Informatics Capstones
Authors: Sue S. Feldman
Abstract:
As clinical and nursing informatics mature, an area that has gotten a lot of attention is the value capstone projects. Capstones are meant to address authentic and complex domain-specific problems. While capstone projects have not always been essential in graduate clinical and nursing informatics education, employers are wanting to see evidence of the prospective employee's knowledge and skills as an indication of employability. Capstones can be organized in many ways: a single course over a single semester, multiple courses over multiple semesters, as a targeted demonstration of skills, as a synthesis of prior knowledge and skills, mentored by one single person or mentored by various people, submitted as an assignment or presented in front of a panel. Because of the potential for capstones to enhance the educational experience, and as a mechanism for application of knowledge and demonstration of skills, a rigorous capstone can accelerate a graduate's potential in the workforce. In 2016, the capstone at the University of Alabama at Birmingham (UAB) could feel the external forces of a maturing Clinical and Nursing Informatics discipline. While the program had a capstone course for many years, it was lacking the depth of knowledge and demonstration of skills being asked for by those hiring in a maturing Informatics field. Since the program is online, all capstones were always in the online environment. While this modality did not change, other contributors to instruction modality changed. Pre-2016, the instruction modality was self-guided. Students checked in with a single instructor, and that instructor monitored progress across all capstones toward a PowerPoint and written paper deliverable. At the time, the enrollment was few, and the maturity had not yet pushed hard enough. By 2017, doubling enrollment and the increased demand of a more rigorously trained workforce led to restructuring the capstone so that graduates would have and retain the skills learned in the capstone process. There were three major changes: the capstone was broken up into a 3-course sequence (meaning it lasted about 10 months instead of 14 weeks), there were many chunks of deliverables, and each faculty had a cadre of about 5 students to advise through the capstone process. Literature suggests that the chunking, breaking up complex projects (i.e., the capstone in one summer) into smaller, more manageable chunks (i.e., chunks of the capstone across 3 semesters), can increase and sustain learning while allowing for increased rigor. By doing this, the teaching responsibility was shared across faculty with each semester course being taught by a different faculty member. This change facilitated delving much deeper in instruction and produced a significantly more rigorous final deliverable. Having students advised across the faculty seemed like the right thing to do. It not only shared the load, but also shared the success of students. Furthermore, it meant that students could be placed with an academic advisor who had expertise in their capstone area, further increasing the rigor of the entire capstone process and project and increasing student knowledge and skills.Keywords: capstones, clinical informatics, health informatics, informatics
Procedia PDF Downloads 1337858 Albendazole Ameliorates Inflammatory Response in a Rat Model of Acute Mesenteric Ischemia Reperfusion Injury
Authors: Kamyar Moradi
Abstract:
Background: Acute mesenteric ischemia is known as a life-threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury, which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. Methods: Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg, and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 minutes followed by 120 minutes of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also, protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. Results: Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. Conclusion: Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. Still, more studies would clarify existing causality in this phenomenon.Keywords: albendazole, ischemia reperfusion injury, inflammation, mesenteric ischemia
Procedia PDF Downloads 1697857 The Models of Character Development Bali Police to Improve Quality of Moral Members in Bali Police Headquarters
Authors: Agus Masrukhin
Abstract:
This research aims to find and analyze the model of character building in the Police Headquarters in Bali with a case study of Muslim members in improving the quality of the morality of its members. The formation of patterns of thinking, behavior, mentality, and police officers noble character, later can be used as a solution to reduce the hedonistic nature of the challenges in the era of globalization. The benefit of this study is expected to be a positive recommendation to find a constructive character building models of police officers in the Republic of Indonesia, especially Bali Police. For the long term, the discovery of the character building models can be developed for the entire police force in Indonesia. The type of research that would apply in this study researchers mix the qualitative research methods based on the narrative between the subject and the concrete experience of field research and quantitative research methods with 92 respondents from the police regional police Bali. This research used a descriptive analysis and SWOT analysis then it is presented in the FGD (focus group discussion). The results of this research indicate that the variable modeling the leadership of the police and variable police offices culture have significant influence on the implementation of spiritual development.Keywords: positive constructive, hedonistic, character models, morality
Procedia PDF Downloads 3657856 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell
Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim
Abstract:
Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.Keywords: dolichos lablab, germination, neuroprotection, trigonelline
Procedia PDF Downloads 3237855 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM
Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins
Abstract:
In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS
Procedia PDF Downloads 2617854 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency
Authors: Niya Chen, Jennifer Chan
Abstract:
In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk
Procedia PDF Downloads 1097853 Exploring the Types of Infants and Toddlers' Reading Responses in Nursery Centers: A Qualitative Study
Authors: Ming Fang Hsieh
Abstract:
The purpose of this study was to investigate the reading responses of infants and toddlers across different contexts in nursery centers. The study adopted Sipe’s framework for children’s literacy education to explore the reading behavior of infants and toddlers. The study was conducted at two nurseries. The sample comprised 46 infants and toddlers and 6 caregivers. The methods of data collection included observation of various reading activities, including shared reading in a group, one-on-one reading, and unstructured reading activities, as well as interviews with caregivers. The data obtained through observations and interviews were transcribed and analyzed. The caregivers and the children’s parents signed an informed consent form before the start of the study. There was no risk anticipated during the course of the study. The analysis revealed five types of reading responses exhibited by the infants and toddlers: (1) linguistic- verbally responding to reading, repeating vocabulary, and answering questions; (2) affective- concentrating on reading or requesting for repeated reading, leaning on books, and gazing at caregivers; (3) explosive- children under 18 months were observed manipulating books through their bodies or different movements like flipping, rotating, or tapping on books; (4) social- during unstructured reading context, children were seen interacting with peers or following the rules of reading, sitting properly, and choosing one book at a time; and (5) distracted responses- paying attention to something else instead of reading, walking around, and playing, which was usually observed during shared reading in a group. The study concluded that children’s distraction and explosive reading behaviors may be a part of the process of their emergent reading behavior. As children develop, they demonstrate an increase in verbal responses, improved concentration, and better behavior. The study suggests that adults should continue to provide appropriate reading opportunities beginning from infancy to nurture children’s reading behaviors.Keywords: reading response, infants and toddlers, early reading, picture books
Procedia PDF Downloads 1107852 Influence of Travel Time Reliability on Elderly Drivers Crash Severity
Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig
Abstract:
Although older drivers (defined as those of age 65 and above) are less involved with speeding, alcohol use as well as night driving, they are more vulnerable to severe crashes. The major contributing factors for severe crashes include frailty and medical complications. Several studies have evaluated the contributing factors on severity of crashes. However, few studies have established the impact of travel time reliability (TTR) on road safety. In particular, the impact of TTR on senior adults who face several challenges including hearing difficulties, decreasing of the processing skills and cognitive problems in driving is not well established. Therefore, this study focuses on determining possible impacts of TTR on the traffic safety with focus on elderly drivers. Historical travel speed data from freeway links in the study area were used to calculate travel time and the associated TTR metrics that is, planning time index, the buffer index, the standard deviation of the travel time and the probability of congestion. Four-year information on crashes occurring on these freeway links was acquired. The binary logit model estimated using the Markov Chain Monte Carlo (MCMC) sampling technique was used to evaluate variables that could be influencing elderly crash severity. Preliminary results of the analysis suggest that TTR is statistically significant in affecting the severity of a crash involving an elderly driver. The result suggests that one unit increase in the probability of congestion reduces the likelihood of the elderly severe crash by nearly 22%. These findings will enhance the understanding of TTR and its impact on the elderly crash severity.Keywords: highway safety, travel time reliability, elderly drivers, traffic modeling
Procedia PDF Downloads 4937851 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models
Procedia PDF Downloads 4457850 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 2357849 Puerto Rico and Pittsburg: A Social Psychology Perspective on How Perceived Infringement on Job and Cultural Identity Unite Racially Different Working-Class Groups
Authors: Reagan Rodriguez
Abstract:
With a growing divide between political echo chambers in the United States, exacerbated by race and income inequality, it might seem to be unfathomable to draw connections that tie working class in an industrial city and a U.S. territory. Yet, in regions where either the economy has been hit due to dwindling job infrastructure or natural disasters have left indelible marks on an island already once marked by colonial imperialism, a larger social shared identity is at play. Fracking has long been an intergenerational and stable work opportunity for many in the Pittsburg PA, yet the rising severity of global climate change may soon impact the policy and even presidential elections which could result in the reduction of jobs in the industry. Cock-fighting, considered a cultural mainstay within the island of Puerto Rico, has already had legislation banning activity and thus cutting out one of the most lucrative aspects of a severely injured economy. Insecurity, infringement, and isolation while being tied to a working-class bracket with no other opportunities in proximity have left both groups expressing similar frustration and while another larger shared identity politic is giving little other options to develop social mobility. This paper utilizes a thematic analysis and compares convergent and divergent themes on internet forums amongst unionized fracking workers in Pittsburg and cockfighters in Puerto Rico. This research examines how group identity in relation to job and cultural identity is most strong and at which points its most malleable; when intergenerational job identity becomes a part of one’s cultural identity, its override may be strongest when it is perceived as threatened. Final findings and limitations were comprehensively outlined.Keywords: identity threat, social psychology, group identity, culture and social mobility
Procedia PDF Downloads 1507848 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1457847 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1537846 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3937845 Variable-Fidelity Surrogate Modelling with Kriging
Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans
Abstract:
Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients
Procedia PDF Downloads 5587844 Measurement of CES Production Functions Considering Energy as an Input
Authors: Donglan Zha, Jiansong Si
Abstract:
Because of its flexibility, CES attracts much interest in economic growth and programming models, and the macroeconomics or micro-macro models. This paper focuses on the development, estimating methods of CES production function considering energy as an input. We leave for future research work of relaxing the assumption of constant returns to scale, the introduction of potential input factors, and the generalization method of the optimal nested form of multi-factor production functions.Keywords: bias of technical change, CES production function, elasticity of substitution, energy input
Procedia PDF Downloads 2827843 Analysis of Risk Factors Affecting the Motor Insurance Pricing with Generalized Linear Models
Authors: Puttharapong Sakulwaropas, Uraiwan Jaroengeratikun
Abstract:
Casualty insurance business, the optimal premium pricing and adequate cost for an insurance company are important in risk management. Normally, the insurance pure premium can be determined by multiplying the claim frequency with the claim cost. The aim of this research was to study in the application of generalized linear models to select the risk factor for model of claim frequency and claim cost for estimating a pure premium. In this study, the data set was the claim of comprehensive motor insurance, which was provided by one of the insurance company in Thailand. The results of this study found that the risk factors significantly related to pure premium at the 0.05 level consisted of no claim bonus (NCB) and used of the car (Car code).Keywords: generalized linear models, risk factor, pure premium, regression model
Procedia PDF Downloads 4667842 Ontologies for Social Media Digital Evidence
Authors: Edlira Kalemi, Sule Yildirim-Yayilgan
Abstract:
Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.Keywords: criminal digital evidence, social media, ontologies, reasoning
Procedia PDF Downloads 3887841 Groundwater Pollution Models for Hebron/Palestine
Authors: Hassan Jebreen
Abstract:
These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.Keywords: groundwater, models, pollutants, wadis, hebron
Procedia PDF Downloads 4397840 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3457839 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes
Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek
Abstract:
Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling
Procedia PDF Downloads 1407838 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium
Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir
Abstract:
This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model
Procedia PDF Downloads 334